Ganimedes Największy Księżyc Jowisza Względne Masy Księżyców Jowisza Księżyce Galileuszowe Jowisza

Total Page:16

File Type:pdf, Size:1020Kb

Ganimedes Największy Księżyc Jowisza Względne Masy Księżyców Jowisza Księżyce Galileuszowe Jowisza Joanna Kaźmierczak Ganimedes Największy Księżyc Jowisza Względne masy księżyców Jowisza Księżyce Galileuszowe Jowisza odkrycie 7-11.01.1610 Gallileusz 1614 Simon Marius Ziemia Księżyc Ganimedes Największy Księżyc i 9. największy obiekt w Układzie Słonecznym (dwukrotnie większy niż Księżyc Ziemski) Charakterystyka • Średnica Ganimedesa: 5268 km 0. 413 średnicy Ziemii • (Merkury: 4879 km) o 8% większy od Merkurego 45% masy Merkurego • Średnia gęstość: 1,94 g/cm3 • Albedo: 0.43 Europa: 0.67 Księżyc Ziemski: 0.12 Charakterystyka • Pole powierzchni: 8.72*107 km2 0. 171 powierzchni Ziemii • Objętość: 7.66*1010 km3 0. 0704 objętości Ziemii • Grawitacja: 1.428 m/s2 0.146 g • Temperatura na powierzchni: śr. 110 K (min. 70 K, max. 152 K) • Prędkość ucieczki: 2.741 km/s Charakterystyka i parametry orbity Masa Księżyca Ziemskiego~7,3477×1022 kg 0. 025 masy Ziemii Sondy: Pioneer 10 i 11, Voyager 1 i 2 (1977) New Horizons sonda Galileo (Galileo Jupiter Orbiter Probe) Budowa wnętrza Zróżnicowana struktura wnętrza Niewielkie żelazne jądro Płaszcz (krzemiany) Powłoka (lód, wysokociśnieniowe formy lodu, zasolona woda) Niewielka gęstość 1,94 g/cm3 (skały, lód) Model wielowarstwowy Zróżnicowanie warstw lodowych Grubość: kilkanaście km Powierzchnia Ganimedesa • Asymetryczna powierzchnia • Struktury powierzchniowe: Wypiętrzenia i kratery (Impact craters): • Achelous • El • Gula • Khensu • Kittu • Neith • Nergal Mapa geologiczna Kratery Gula i Acheluos Powstanie „Ganymede was likely formed in place around the infant Jupiter in the early solar system. Several smaller worlds likely accreted together to make this moon” Cztery i pół miliarda lat temu Jowisz był już prawie uformowany. W ciągu następnego miliona lat wokół niego utworzył się pierścień z gazu i pyłu, z którego w przeciągu 10 tysięcy lat powstały księżyce. Jupiter and Its Moons David J. Stevenson Science 05 Oct 2001 Vol. 294, Issue 5540, pp. 71-72 DOI: 10.1126/science.1065306 “Okres miliona lat to długi okres w przypadku akumulacji materii” – wyjaśnia Davidson – “to tak jakby ktoś budował dom stawiając tylko jedną cegłę tygodniowo”. Atmosfera • Rozrzedzona • Skład ~ 100% O, O2 , (śladowe ilości: H, O3) • Ciśnienie atmosferyczne: ślady Pa • Powstanie atmosfery: dysocjacja lodu powierzchniowego w efekcie napromieniowania (The oxygen is likely freed as water ice on the surface is broken apart into hydrogen and oxygen by solar radiation) Pole magnetyczne • Ganimedes jest jedynym księżycem w Układzie Słonecznym posiadającym magnetosferę - własne dipolowe pole magnetyczne (linie) • Częściowo stopione jądro (Fe), ocean słonej wody • Pole magnetyczne Ganimedesa ma również składową indukowaną zmianami pola magnetosfery Jowisza • Ochrona przed promieniowaniem Jowisza Zorze polarne na Ganimedesie • Pole magnetyczne Ganimedesa wychwytuje wysokoenergetyczne cząstki i sprawia, że wokół księżyca powstaje zorza polarna podobna do tej, jaką obserwujemy na Ziemi i wokół planet mających pole magnetyczne. • Jowisz odchyla pole Ganimedesa sprawiając, że zorze polarne nie występują w pobliżu biegunów, ale bliżej równika (wynik magnetyzmu ogromnego Jowisza) • duża intensywność • zmienne położenie 1. Nakładające się pola magnetyczne tych dwóch obiektów Badacze podejrzewali istnienie jeszcze innego czynnika powodującego, że zorze są tak intensywne. 2. Słona woda znajdująca się pod powierzchnią lodu Istnienie pod powierzchnią Ganimedesa gigantycznego płynnego oceanu słonej wody. Ocean pod powierzchnią Ganimedesa • ok 150 km pod powierzchnią księżyca • głębokość 100 km (10 razy większą, niż ziemskie oceany) • Bardziej słony niż ziemskie oceany • Przykryty nawet 10-krotnie grubszą warstwą lodu niż ocean na Europie • Jego objętość jest prawdopodobnie większa, niż wszystkich ziemskich oceanów razem wziętych. zbiorniki z wodą, wciśnięte między różne warstwy lodu. Woda = życie ? • Poszukiwanie wody poza Ziemią jest istotne z punktu widzenia poszukiwania pozaziemskich form życia. • Niemniej w tym przypadku szanse na życie podwodne są dużo mniejsze (by nie powiedzieć żadne) w porównaniu z oceanem na Europie czy Enceladusie, księżycu Saturna • Zbadanie księżycy Jowisza • Oceany niektórych księżyców Jowisza są najprawdopodobniej skryte na znacznej głębokości, naukowcy planują więc zastosować sondowanie radarowe. • Sonda będzie też w stanie znaleźć zniekształcone warstwy geologiczne Ganimeda, co pozwoli zrozumieć historię jego ruchów tektonicznych. https://www.youtube.com/watch?v=9e1wrjFSjkI Źródła • Księżyce Jowisza (Wg "Atlas Układu Słonecznego NASA", Prószyński i S-ka, Warszawa 1999) • https://pl.wikipedia.org/wiki/Ganimedes_(ksi%C4 %99%C5%BCyc) • https://solarsystem.nasa.gov/moons/jupiter- moons/ganymede/in-depth/ • https://space-facts.com/ganymede/ • https://space-facts.com/ganymede/ • http://www.astronomy.com/news/2018/10/gany mede-has-earthlike-faults .
Recommended publications
  • The Planets BIBLIOGRAPHY 3–1
    3–1 The Planets BIBLIOGRAPHY 3–1 The aim of this chapter is to introduce the physics of planetary motion and the general properties of the planets. Useful background reading includes: • Young & Freedman: – section 12.1 (Newton’s Law of Gravitation), – section 12.3 (Gravitational Potential Energy), – section 12.4 (The Motion of Satellites), – section 12.5 (Kepler’s Laws and the Motion of Planets) • Zeilik & Gregory: – chapter P1 (Orbits in the Solar System), – chapter 1 (Celestial Mechanics and the Solar System), – chapter 2 (The Solar System in Perspective), – section 4-3 (Interiors), – section 4-5 (Atmospheres), – chapter 5 (The Terrestrial Planets), – chapter 6 (The Jovian Planets and Pluto). • Kutner: – chapter 22 (Overview of the Solar System), – section 23.3 (The atmosphere), – chapter 24 (The inner planets, especially section 24.3), – chapter 25 (The outer planets). Relative sizes of the Sun and the planets Venus Transit, 2004 June 8 Elio Daniele, Palermo The Inner Planets (SSE, NASA) The Outer Planets (SSE, NASA) 3–6 Planets: Properties ◦ a [AU] Porb [yr] i [ ] e Prot M/M R/R Mercury ' 0.387 0.241 7.00 0.205 58.8d 0.055 0.383 Venus ♀ 0.723 0.615 3.40 0.007 −243.0d 0.815 0.949 Earth 1.000 1.000 0.00 0.017 23.9h 1.000 1.00 Mars ♂ 1.52 1.88 1.90 0.094 24.6h 0.107 0.533 Jupiter X 5.20 11.9 1.30 0.049 9.9h 318 11.2 Saturn Y 9.58 29.4 2.50 0.057 10.7h 95.2 9.45 Uranus Z 19.2 83.7 0.78 0.046 −17.2h 14.5 4.01 Neptune [ 30.1 163.7 1.78 0.011 16.1h 17.1 3.88 (Pluto \ 39.2 248 17.2 0.244 6.39d 0.002 0.19) After Kutner, Appendix D; a: semi-major axis Porb: orbital period i: orbital inclination (wrt Earth’s orbit) e: eccentricity of the orbit Prot: rotational period M: mass R: equatorial radius 1 AU = 1.496 × 1011 m.
    [Show full text]
  • Hermeticism Pt 1\374
    "I wish to learn about the things that are, to understand their nature and to know God. How much I want to hear!" from [Discourse] of Hermes Trismegistus : Poimandres Hermeticism "The fifteen tractates of the Corpus Hermeticum, along with the Perfect Sermon or Asclepius, are the foundation documents of the Hermetic tradition. Written by unknown authors in Egypt sometime before the end of the third century C.E., they were part of a once substantial literature attributed to the mythic figure of Hermes Trismegistus, a Hellenistic fusion of the Greek god Hermes and the Egyptian god Thoth. This literature came out of the same religious and philosophical ferment that produced Neoplatonism, Christianity, and the diverse collection of teachings usually lumped together under the label "Gnosticism": a ferment which had its roots in the impact of Platonic thought on the older traditions of the Hellenized East. There are obvious connections and common themes linking each of these traditions, although each had its own answer to the major questions of the time." John Michael Greer : An Introduction to the Corpus Hermeticum "The Corpus Hermeticum landed like a well-aimed bomb amid the philosophical systems of late medieval Europe. Quotations from the Hermetic literature in the Church Fathers (who were never shy of leaning on pagan sources to prove a point) accepted a traditional chronology which dated "Hermes Trismegistus," as a historical figure, to the time of Moses. As a result, the Hermetic tractates' borrowings from Jewish scripture and Platonic philosophy were seen, in the Renaissance, as evidence that the Corpus Hermeticum had anticipated and influenced both.
    [Show full text]
  • High-Resolution Mosaics of the Galilean Satellites from Galileo SSI
    Lunar and Planetary Science XXIX 1833.pdf High-Resolution Mosaics of the Galilean Satellites from Galileo SSI. M. Milazzo, A. McEwen, C. B. Phillips, N. Dieter, J. Plassmann. Planetary Image Research Laboratory, LPL, University of Arizona, Tucson, AZ 85721; [email protected] The Galileo Spacecraft began mapping the Jovian orthographic projection centered at the latitude and system in June 1996. Twelve orbits of Jupiter and more longitude coordinates of the sub-spacecraft point to than 1000 images later, the Solid State Imager (SSI) is still preserve their perspective. Depending on the photometric collecting images, most far superior in resolution to geometry and scale, it may be necessary to apply a anything collected by the Voyager spacecraft. The data photometric normalization to the images. Next, the collected includes: low to medium resolution color data, individual frames are mosaicked together, and mosaicked medium resolution data to fill gaps in Voyager coverage, and onto a portion of the base map for regional context. Once very high-resolution data over selected areas. We have the mosaic is finished, it is checked to make sure that the tie been systematically processing the SSI images of the and match points were correct, and that the frames mesh. Galilean satellites to produce high-resolution mosaics and to We produce 3 final products: (i) an SSI-only mosaic, (ii) SSI place them into the regional context provided by medium- images mosaicked onto regional context, and (iii) the resolution mosaics from Voyager and/or Galileo. addition of a latitude-longitude grid to the context mosaic. Production of medium-resolution global mosaics is The purpose of this poster is to show the mosa- described in a companion abstract [1].
    [Show full text]
  • Appendix Contains a Timeline, Galileo Mission Overview (June 1996–December 1997), and a Set of Quick–Look Orbit Facts Sheets
    A P P E N D I X This appendix contains a timeline, Galileo Mission Overview (June 1996–December 1997), and a set of Quick–Look Orbit Facts sheets. The essentials of each orbit are listed. We have provided them as a handy reference while the orbiter’s tour progresses in the months to come. Appendix • Page A-1 Project Galileo Quick-Look Orbit Facts Appendix • Page A- 5 PROJECT GALILEO QUICK-LOOK ORBIT FACTS Fact Sheet Guide Title Quick Facts Indicates the target satellite and the number of the This section provides a summary listing of the orbit in the satellite tour. In this example, Ganymede is characteristics of the target satellite encounter as well the target satellite on the first orbit of the orbital tour. as the Jupiter encounter. PROJECT GALILEO QUICK-LOOK ORBIT FACTS PROJECT GALILEO QUICK-LOOK ORBIT FACTS Ganymede - Orbit 1 Ganymede - Orbit 1 Encounter Trajectory Quick Facts Ganymede Flyby Geometry +30 min Ganymede Encounter Earth Sun 27 June 1996 Ganymede C/A +15 min 06:29 UTC Ganymede C/A Altitude: 844 km Jupiter 6/27 6/26 133 times closer than VGR1 70 times closer than VGR2 Earth Speed: 7.8 km/s 0W -15 min Sun Jupiter C/A 6/28 Latitude: 30 deg N Longitude: 112 deg W 270W -30 min Perijove Io 28 June 1996 00:31 UTC Europa Jupiter Range: 11.0 Rj Time Ordered Listing Ganymede 6/29 Earth Range: 4.2 AU EVENT TIME (PDT-SCET) EVENT (continued) TIME (PDT-SCET) OWLT: 35 min Start Encounter 23 June 96 09:00 Europa C/A (156000 km) 18:22 Callisto Start Ganymede-1 real-time survey (F&P) 09:02 Europa global observation (NIMS/SSI) 18:43
    [Show full text]
  • The Global Colors of Ganymede As Seen by Galileo Ssi
    Lunar and Planetary Science XXX 1822.pdf THE GLOBAL COLORS OF GANYMEDE AS SEEN BY GALILEO SSI. T. Denk1, K.K. Khurana2, R.T. Pappalardo3, G. Neukum1, J.W. Head3, T.V. Rosanova4, and the Galileo SSI Team, 1DLR, Institute of Planetary Exploration, 12484 Berlin, Germany, e-mail: [email protected], 2UCLA, Los Angeles, CA, 3Brown University, Providence, RI, 4USGS, Flagstaff, AZ. Ganymede, as observed by the Galileo SSI Dark vs. bright and polar terrain. The bright camera, shows a banded, latitude-dependent color ("sulci") and dark ("regio") areas as well as the polar structure which is partly independent of geologic caps are the most obvious surface features on Ganyme- units. A correlation of the surface color with the de when seen at global scale from large distances. The magnetic field of Ganymede is reported, with areas albedo of the polar caps on the leading side is highest, exposed to the charged particles coming from the of the "regio" areas lowest, and of the "sulci" areas in Jovian environment often being redder than shielded between. (The polar caps of the trailing side will be terrain. The northern polar cap can be subdivided discussed below.) The bright polar caps are probably into a whitish area on the pole and the leading side, caused by water frost (e.g., Smith et al. 1981, Hillier and a darker, reddish area on the trailing side. The frost of the south-polar cap appears less opaque than in the north. The spectra of the dark "regio" areas are redder at the long SSI wavelength range than those of the brighter "sulci" terrains, but not significantly different at short SSI wavelengths.
    [Show full text]
  • Rampart Craters on Ganymede: Their Implications for Fluidized Ejecta Emplacement
    Meteoritics & Planetary Science 45, Nr 4, 638–661 (2010) doi: 10.1111/j.1945-5100.2010.01044.x Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement Joseph BOYCE1*, Nadine BARLOW2, Peter MOUGINIS-MARK1, and Sarah STEWART3 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96922, USA 2Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86001, USA 3Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 03 December 2008; revision accepted 12 February 2010) Abstract–Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters.
    [Show full text]
  • Chapter Vi Report of Divisions, Commissions, and Working
    CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting.
    [Show full text]
  • For a Falcon
    New Larousse Encyclopedia of Mythology Introduction by Robert Graves CRESCENT BOOKS NEW YORK New Larousse Encyclopedia of Mythology Translated by Richard Aldington and Delano Ames and revised by a panel of editorial advisers from the Larousse Mvthologie Generate edited by Felix Guirand and first published in France by Auge, Gillon, Hollier-Larousse, Moreau et Cie, the Librairie Larousse, Paris This 1987 edition published by Crescent Books, distributed by: Crown Publishers, Inc., 225 Park Avenue South New York, New York 10003 Copyright 1959 The Hamlyn Publishing Group Limited New edition 1968 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of The Hamlyn Publishing Group Limited. ISBN 0-517-00404-6 Printed in Yugoslavia Scan begun 20 November 2001 Ended (at this point Goddess knows when) LaRousse Encyclopedia of Mythology Introduction by Robert Graves Perseus and Medusa With Athene's assistance, the hero has just slain the Gorgon Medusa with a bronze harpe, or curved sword given him by Hermes and now, seated on the back of Pegasus who has just sprung from her bleeding neck and holding her decapitated head in his right hand, he turns watch her two sisters who are persuing him in fury. Beneath him kneels the headless body of the Gorgon with her arms and golden wings outstretched. From her neck emerges Chrysor, father of the monster Geryon. Perseus later presented the Gorgon's head to Athene who placed it on Her shield.
    [Show full text]
  • 5. Die Jupitersatelliten Im ¨Uberblick
    5. Die Jupitersatelliten im Uberblick¨ 5.1. Entdeckung der Jupitersatelliten und Bahnparameter Nach der Erfindung des Fernrohrs entdeckten Galileo Galilei und Simon Marius unabh¨angig voneinander im Jahre 1610 die vier gr¨oßten Jupitermonde. Der Mitentdecker, Simon Marius, regte an, diese vier Galileischen Satelliten nach Personen aus der griechisch-r¨omischen My- thologie zu benennen. Die vier Satelliten erhielten von innen nach außen die Namen Io (J1), Europa (J2), Ganymed (J3) und Callisto (J4)13. Erst 180 Jahre nach ihrer Entdeckung fand E. Barnard 1892 den innerhalb der Io-Bahn kreisen- den funften¨ Mond Amalthea (J5). Sieben weitere noch kleinere Monde (J6 bis J12) wurden zwischen 1904 und 1951 nachgewiesen. Kowal entdeckte 1974 einen dreizehnten Satelliten. Alle diese kleinen K¨orper befinden sich außerhalb der Callisto-Bahn. Diese dreizehn Monde (J1 bis J13) waren die ”klassischen” bekannten Jupitersatelliten vor der Voyager-Mission 1979. Auf den Voyager-Aufnahmen konnten drei weitere Satelliten (Metis, Adrastea und Thebe) identifiziert werden, die alle innerhalb der Io-Bahn kreisen. Auf den Galileo-Aufnahmen wurden keine weiteren Jupitersatelliten gefunden. Seit 1999 bis heute (Stand: zweites Halbjahr 2006) hat sich durch intensive Beobachtungen mit leistungsstarken Teleskopen die Zahl der bekannten Jupitersatelliten auf 63 erh¨oht, die meisten sehr kleine Objekte mit nur wenigen Kilometern Durchmesser14. Alle Satelliten k¨onnen wenigstens funf¨ verschiedenen Gruppen zugeordnet wer- den, die durch bestimmte Bahnelemente (Exzentrizit¨at, Inklination, prograde oder retrograde Rotationsrichtung) gekennzeichnet sind. Die beiden innersten Gruppen bestehen aus den kleinen Monden Metis, Adrastea, Amalthea und Thebe sowie aus den vier Galileischen Monden. Diese Monde rotieren prograd, d. h. im gleichen Sinn wie sich Jupiter selbst um seine Achse und um die Sonne dreht.
    [Show full text]
  • Gany 15Ppi.Pdf
    180° 0° 55° –55° . Geb Ur Sulcus 210° 330° 150° . Latpon 30° 60° –60° . Namtar . Agrotes Elam Philae Sulcus Sulci . Nigirsu Borsip Sulcus Lakhmu Fossae 70° –70° 240° 300° 60° 120° Galileo . Humbaba . Lagamal 80° . Wepwawet –80° . Teshub 90° 270° 90° 270° . Hathor Regio Bubastis Sulci Anubis . Neheh Dukug Sulcus 80° –80° Anzu Hamra. Patera . Adapa Etana GILGAMESH . Kishar . Aya 120° 60° 300° 240° . Ptah –70° . 70° Isis Ninkasi . Anu Enlil . Zaqar . Gula . Tanit . Sapas . Achelous Sebek 60° –60° 30° 150° 330° Mummu Sulci 210° . Adad 55° –55° 0° 180° North Pole South Pole 180° 170° 160° 150° 140° 130° 120° 110° 100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 350° 340° 330° 320° 310° 300° 290° 280° 270° 260° 250° 240° 230° 220° 210° 200° 190° 180° 57° 57° Geb . Enlil Elam Sulci . Asshur . Sin Ur Sulcus 50° 50° Aquarius Sulcus . Kadi Nun Sulci . Hershef Mashu Sulcus . Upuant Lakhmu Fossae . Galileo . Nefertum Mont Ur . Shu Byblus Sulcus Nippur Sulcus Sulcus Philus Sulcus 40° Enki Catena 40° Zu Fossae Nergal . Akitu Sulcus Tettu Facula . Lumha . Harakhtes . Halieus Abydos . Gir . Perrine Regio Khnum . Amon Facula Regio Kulla Catena . Anhur . Marius Nippur Sulcus M . Ammura Zakar . 30° Sati Mor a Bigeh . s 30° . Mehit Min . h Akhmin Facula Haroeris u Neith . Sicyon Sulcus Ta-urt S Facula Edfu Xibalba Sulcus Nineveh Sulcus u Anshar Sulcus l c Facula u . Ba'al s Epigeus . Bau Diment . Lugalmeslam Epigeus . Ilah Atra-hasis Hermopolis . Facula 20° Khepri Gushkin 20° . Ea . Heliopolis . Geinos Nidaba Nanshe . Facula Memphis Catena Seima . Agreus Busiris Chrysor.. Aleyin .
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]
  • Ancient Faiths Embodied in Ancient Names (Vol. 1)
    Ex Libris Fra. Tripud. Stell. ANCIENT FAITHS EMBODIED IN ANCIENT NAMES ISIS, HORUS, AND FISH ANCIENT FAITHS EMBODIED IN ANCIENT NAMES OR AN ATTEMPT TO TRACE THE RELIGIOUS BELIEFS, SACRED RITES, AND HOLY EMBLEMS OF CERTAIN NATIONS BY AN INTERPRETATION OF THE NAMES GIVEN TO CHILDREN BY PRIESTLY AUTHORITY, OR ASSUMED BY PROPHETS, KINGS, AND HIERARCHS. BY THOMAS INMAN, M.D. (LONDON), CONSULTING PHYSICIAN TO THE ROYAL INFIRMARY, LIVERPOOL; LECTURER SUCCESSIVELY ON BOTANY, MEDICAL JURIPRUDENCE, MATERIA MEDICA WITH THERAPEUTICS, AND THE PRINCIPLES WITH THE PRACTICE OF MEDICINE. LATE PRESIDENT OF THE LIVERPOOL LITERARY AND PHILOSOHICAL SOCIETY. AUTHOR OF “TREATISE ON MYALGIA;” “FOUNDATION FOR A NEW THEORY AND PRACTICE OF MEDICINE;” “ON THE REAL NATURE OF INFLAMMATION,” “ATHEROMA IN ARTERIES,” “SPONTANEOUS COMBUSTION,” “THE PRESERVATION OF HEALTH,” “THE RESTORATION OF HEALTH,” AND “ANCIENT PAGAN AND MODERN CHRISTIAN SYMBOLISM EXPOSED AND EXPLAINED.” VOL. I. SECOND EDITION. LEEDS: CELEPHAÏS PRESS —— 2010. First published privately, London and Liverpool, 1868 Second edition London: Trübner & co., 1872 This electronic text produced by Celephaïs Press, Leeds 2010. This book is in the public domain. However, in accordance with the terms of use under which the page images employed in its preparation were posted, this edition is not to be included in any commercial release. Release 0.9 – October 2010 Please report errors through the Celephaïs Press blog (celephaispress.blogspot.com) citing revision number or release date. TO THOSE WHO THIRST AFTER KNOWLEDGE AND ARE NOT DETERRED FROM SEEKING IT BY THE FEAR OF IMAGINARY DANGERS, THIS VOLUME IS INSCRIBED, WITH GREAT RESPECT, BY THE AUTHOR. “Oátoi d Ãsan eÙgenšsteroi tîn ™n Qessalon…kh, o†tinej ™dšxanto tÕn lÒgon met¦ p£shj proqumiaj, tÕ kaq' ¹mšpan ¢nakr…nontej t£j graf¦j eˆ taàta oÛtwj.”—ACTS XVII.
    [Show full text]