Population-Based Genome-Wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Population-Based Genome-Wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver Enzymes REPORT Population-Based Genome-wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver Enzymes Xin Yuan,1 Dawn Waterworth,1 John R.B. Perry,3 Noha Lim,1 Kijoung Song,1 John C. Chambers,4 Weihua Zhang,4 Peter Vollenweider,5 Heide Stirnadel,2 Toby Johnson,6,7,8 Sven Bergmann,6,8 Noam D. Beckmann,6 Yun Li,12 Luigi Ferrucci,9 David Melzer,3 Dena Hernandez,10 Andrew Singleton,10 James Scott,11 Paul Elliott,4 Gerard Waeber,5 Lon Cardon,1 Timothy M. Frayling,3 Jaspal S. Kooner,11 and Vincent Mooser1,* Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treat- ment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-en- zyme levels in three populations (total n ¼ 7715) with replication in three additional cohorts (total n ¼ 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chro- mosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-asso- ciated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associ- ations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in hu- man liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver dis- eases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases. Plasma liver-enzyme tests are widely used in the clinic to these tests. Indeed, such information could assist in our identify patients with liver diseases, to monitor the course understanding of the interindividual differences in the and severity of these diseases and the effect of therapies, propensity for development of liver dysfunction in the and to detect drug-induced liver injury.1,2 These tests also presence of toxins or conditions such as metabolic syn- have substantial epidemiologic significance that extends drome. As such, identification of genes associated with beyond the liver, given that they have been shown to be liver-enzyme levels could reveal previously unsuspected prospective risk factors for type 2 diabetes, cardiovascular candidate genes for liver diseases of viral, metabolic, auto- disease, and all-cause mortality in multiple large stud- immune, or toxic origin. ies.3–6 Therefore, it is of interest to identify genes or loci af- The goal of the present study was to identify, by using fecting these markers in order to establish whether such a genome-wide association (GWA) approach, genes influ- loci are also associated with these clinical endpoints. encing plasma levels of ALT and aspartate-aminotransfer- Plasma liver-enzyme levels are influenced by environ- ase (AST), two markers of hepatocyte injury and liver fat mental and genetic factors. The estimated heritabilities accumulation, and of alkaline phosphatase (ALP) and range from 33% for alanine-aminotransferase (ALT) to GGT, used primarily as indicators of biliary or cholestatic 61% for gamma-glutamyl transferase (GGT).7,8 So far, diseases and heavy alcohol consumption. only a limited number of genes that influence liver- In the discovery phase, we carried out independent GWA enzyme levels have been identified, mostly those responsi- studies in three population-based cohorts, the CoLaus ble for Mendelian liver diseases such as mutations in the Study from Lausanne Switzerland11,12 (n ¼ 5636), the HFE gene in hemochromatosis (MIM 235200).9,10 A thor- InCHIANTI Study from Tuscany Italy13 (n ¼ 1200), and ough understanding of the genetic determinants of plasma a subset of the LOLIPOP Study from West London liver enzymes is important for proper interpretation of UK14,15 (n ¼ 879) (Table 1). The clinical characteristics of 1Genetics Division, GlaxoSmithKline, King of Prussia, PA 19406, USA; 2Worldwide Epidemiology, GlaxoSmithKline, Harlow EX2 5DW, UK; 3Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, CM19 5AW, UK; 4Depart- ment of Epidemiology and Public Health, Imperial College London, London W2 11G, UK; 5Department of Medicine, CHUV University Hospital, Lausanne 1011, Switzerland; 6Division of Medical Genetics, CHUV University Hospital, Lausanne 1011, Switzerland; 7Institute for Social and Preventative Medicine, CHUV University Hospital, Lausanne 1011, Switzerland; 8Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; 9Longitudinal Studies Section, Clinical Research Branch, Gerontology Research Center, National Institute of Aging, Baltimore, MD, USA; 10Laboratory of Neurogenetics, National Institute of Aging, Bethesda, MD 20892, USA; 11National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; 12Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA *Correspondence: [email protected] DOI 10.1016/j.ajhg.2008.09.012. ª2008 by The American Society of Human Genetics. All rights reserved. 520 The American Journal of Human Genetics 83, 520–528, October 10, 2008 Table 1. Description of Six Collections Used in GWAS on Plasma Liver-Enzyme Levels CoLaus InCHIANTI LOLIPOP Sample size (n) 5636 1200 879 1006 1005 2693 Location Lausanne, Tuscany, Italy London, UK London, UK London, UK London, UK Switzerland Ethnicity European white European white European white Indian Asian European white Indian Asian Study Design Population-based Population-based Population-based Nested metabolic Nested metabolic Nested metabolic enriched with syndrome case syndrome case syndrome case coronary artery and control and control and control disease Data Usage GWA Discovery GWA Discovery GWA Discovery Replication Replication Replication Liver enzymes AST,a ALT,b GGT,c AST, ALT, ALT, GGT, ALP ALT, GGT, ALP ALT, GGT, ALP ALT, GGT, ALP and ALPd GGT, ALP Genotyping Affymetrix 500k Illumina Affymetrix 500k Perlegen, Perlegen, Illumina Platform HumanHap550 custom array custom array HumanHap300 Number of SNPs 370,697 496,032 387,549 248,537 266,722 317,968 genotyped a AST, aspartate aminotransferase. b ALT, alanine aminotransferase. c GGT, gamma-glutamyltransferase. d ALP, alkaline phosphatase. the participants are described in Table 2. The mean levels discovery and replication cohorts. The remaining 42 of liver-enzyme tests varied somewhat between popula- SNPs were not considered as replicated because of either tions, presumably because of slight differences in the de- lack of high-quality imputation (Appendix A) of the mographics of the populations under study and methodo- logical differences in the assays (Table S1 available online). Table 2. Clinical Characteristics of the Participants in the Accordingly, we used study-specific criteria for GWA-geno- 11,14 Discovery Data Sets from CoLaus, InCHIANTI, and LOLIPOP typing quality control and liver-enzyme-level analyses Population-Based Studies (Appendix A). Additional genotypes were imputed on the a a a basis of the HapMap Phase II data with the software CoLaus InCHIANTI LOLIPOP IMPUTE.16 For these imputed data, we performed associa- n 5636 1200 879b tion analysis with SNPTEST, using the full posterior proba- Sex (% F) 52.8 55.2 23.0 bility genotype distribution for each study separately Age (years) 53.2 5 10.8 68.4 5 15.9 52.8 5 10.4 Fasting glucose 5.56 5 1.16 5.24 5 1.36 5.50 5 1.54 (adding in relevant covariables). Only SNPs with a posterior (mmol/L) probability score >0.90, high genotype information con- Insulin (mIU/mL) 8.76 5 6.25 10.9 5 6.15 10.3 5 10.7 tent (proper_info >0.5), and minor allele frequency >0.01 BMI (kg/m2) 25.8 5 4.6 27.1 5 4.1 27.9 5 4.8 were considered for these imputed association analyses. Waist (cm) 89.3 5 13.4 NA 96.7 5 13.0 Quantile-quantile plots (Figure 1) revealed the presence Hip (cm) 101.0 5 9.3 NA 103.0 5 9.0 Total cholesterol 5.60 5 1.04 NA 5.32 5 1.07 of a substantial number of SNPs associated with ALT, (mmol/L) GGT, and ALP levels at a genome-wide significance level LDL-cholesterol 3.34 5 0.92 3.43 5 0.90 3.25 5 0.93 (p value < 10À7). No SNP with plasma levels of AST was as- (mmol/L) sociated with genome-wide significance. It is not clear why Triglycerides 1.40 5 1.20 1.42 5 0.88 1.61 5 1.16 AST was uninformative in this case. Highly significantly as- (mmol/L) HDL-cholesterol 1.64 5 0.44 1.43 5 0.39 1.36 5 0.35 sociated SNPs were located within discrete regions of the (mmol/L) genome (Figure 2), including two loci for ALT (10q24.2 Albumin (g/L) 44.2 5 2.5 42.3 5 3.2 43.6 5 2.9 and 22q13.31), two loci for GGT (12q24.31 and Smoking status 11.8 18.8 64.4 22q11.23), and five loci for ALP (1p36.12, 6p22.2, (% smokers) 9q34.13, 10q21.2-21.3, and 19q13.33). Alcohol 77.3 NA 75.7 consumption (%)c A total of 74 Affymetrix-genotyped SNPs (24 for ALT, 8 Type 2 Diabetes (%) 6.6 11.1 11.3 À5 for GGT, and 42 for ALP, Table S2) with a p value % 10 AST (U/L) 29.7 5 13.5 20.2 5 0.4 NA in the discovery phase was subsequently examined in ALT (U/L) 27.6 5 19.5 18.1 5 0.5 29.1 5 16.4 3699 Indian Asian and 1005 European white participants ALP (U/L) 63.4 5 20.4 204.2 5 71.5 80.9 5 38.5 from the LOLIPOP study (Table 1).
Recommended publications
  • S41598-021-93055-5.Pdf
    www.nature.com/scientificreports OPEN Potent antitumor activity of a glutamyltransferase‑derived peptide via an activation of oncosis pathway Cheng Fang1,7, Wenhui Li2,7, Ruozhe Yin3,7, Donglie Zhu3, Xing Liu4, Huihui Wu4, Qingqiang Wang3, Wenwen Wang4, Quan Bai5, Biliang Chen6, Xuebiao Yao4* & Yong Chen3* Hepatocellular carcinoma (HCC) still presents poor prognosis with high mortality rate, despite of the improvement in the management. The challenge for precision treatment was due to the fact that little targeted therapeutics are available for HCC. Recent studies show that metabolic and circulating peptides serve as endogenous switches for correcting aberrant cellular plasticity. Here we explored the antitumor activity of low molecular components in human umbilical serum and identifed a high abundance peptide VI‑13 by peptidome analysis, which was recognized as the part of glutamyltransferase signal peptide. We modifed VI‑13 by inserting four arginines and obtained an analog peptide VI‑17 to improve its solubility. Our analyses showed that the peptide VI‑17 induced rapid context‑dependent cell death, and exhibited a higher sensitivity on hepatoma cells, which is attenuated by polyethylene glycol but not necrotic inhibitors such as z‑VAD‑fmk or necrostatin‑1. Morphologically, VI‑17 induced cell swelling, blebbing and membrane rupture with release of cellular ATP and LDH into extracellular media, which is hallmark of oncotic process. Mechanistically, VI‑17 induced cell membrane pore formation, degradation of α‑tubulin via infux of calcium ion. These results indicated that the novel peptide VI‑17 induced oncosis in HCC cells, which could serve as a promising lead for development of therapeutic intervention of HCC.
    [Show full text]
  • Ftsh Is Required for Proteolytic Elimination of Uncomplexed Forms
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 4532-4536, May 1995 Cell Biology FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit (protein translocation/quality control/proteolysis/AAA family/membrane protein) AKIO KIHARA, YOSHINORI AKIYAMA, AND KOREAKI ITO Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-01, Japan Communicated by Randy Schekman, University of California, Berkeley, CA, February 13, 1995 (receivedfor review December 5, 1994) ABSTRACT When secY is overexpressed over secE or secE Overexpression of SecY from a plasmid does not lead to is underexpressed, a fraction of SecY protein is rapidly significant overaccumulation of SecY (2, 12). Under such degraded in vivo. This proteolysis was unaffected in previously conditions, the majority of SecY is degraded with a half-life of described protease-defective mutants examined. We found, about 2 min, whereas the other fraction that corresponds to the however, that some mutations inftsH, encoding a membrane amount seen in the wild-type cell remains stable (2). When protein that belongs to the AAA (ATPase associated with a SecE is co-overproduced, oversynthesized SecY is stabilized variety ofcellular activities) family, stabilized oversynthesized completely (2, 12). Mutational reduction of the quantity of SecY. This stabilization was due to a loss ofFtsH function, and SecE is accompanied by destabilization of the corresponding overproduction of the wild-type FtsH protein accelerated the fraction of newly synthesized SecY molecules (2). These degradation. The ftsH mutations also suppressed, by allevi- observations indicate that uncomplexed SecY is recognized ating proteolysis of an altered form of SecY, the temperature and hydrolyzed by a protease and that SecE can antagonize the sensitivity of the secY24 mutation, which alters SecY such that proteolysis.
    [Show full text]
  • Functional Validation of GWAS Gene Candidates for Abnormal Liver Function During Zebrafish Liver Development
    Disease Models & Mechanisms 6, 1271-1278 (2013) doi:10.1242/dmm.011726 RESEARCH REPORT Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development Leah Y. Liu1, Caroline S. Fox2,3, Trista E. North4,5 and Wolfram Goessling1,5,6,7,* SUMMARY Genome-wide association studies (GWAS) have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf) and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10) decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50) decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to DMM GWAS for additional disease-associated phenotypes. INTRODUCTION of 61,089 individuals, which increased the likelihood that additional Levels of liver enzymes such as alanine aminotransferase (ALT), genes reached statistical significance (Chambers et al., 2011).
    [Show full text]
  • Evaluation of Potential Biomarkers for Ewing´S Sarcoma As Cargo of Tumor Derived Exosomes
    TECHNISCHE UNIVERSITÄT MÜNCHEN Klinik und Poliklinik für Kinder- und Jugendmedizin Klinikum rechts der Isar Direktor: Univ.-Prof. Dr. St. Burdach Evaluation of potential biomarkers for Ewing´s sarcoma as cargo of tumor derived exosomes Isabella Viktoria Miller Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. E. J. Rummeny Prüfer der Dissertation: 1. Univ.-Prof. Dr. St. Burdach 2. Priv.-Doz. Dr. J. M. E. Teichert-von Lüttichau 3. Univ.-Prof. Dr. A. Krackhardt Die Dissertation wurde am 31.10.2014 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 03.02.2016 angenommen. Contents List of Abbreviations 6 Summary 8 1 Introduction 9 1.1 Ewing´s sarcoma . .9 1.1.1 The Ewing family of tumors . .9 1.1.2 RNA based markers for subclinical disease and their limitations . 10 1.2 Exosomes . 11 1.2.1 Biogenesis and classification . 11 1.2.2 Communication pathways . 12 1.2.3 Roles in tumorigenesis . 14 1.2.3.1 Immunosuppression . 15 1.2.3.2 Angiogenesis . 15 1.2.3.3 Modulation of the microenvironment . 15 1.2.3.4 Metastasis . 16 1.2.3.5 Drug resistance . 17 1.2.4 Diagnostic implications as tumor markers . 17 1.3 Research objectives . 24 1.3.1 Aim of the project . 24 1.3.2 Key questions . 24 2 Materials and Methods 25 2.1 Materials . 25 2.1.1 List of Manufacturers . 25 2.1.2 General materials .
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • NIH Public Access Author Manuscript Science
    NIH Public Access Author Manuscript Science. Author manuscript; available in PMC 2014 September 08. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Science. 2014 January 31; 343(6170): 506–511. doi:10.1126/science.1247363. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders A full list of authors and affiliations appears at the end of the article. # These authors contributed equally to this work. Abstract Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease. Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders with prevalence between 3 and 10 per 100,000 individuals (1). Hallmark features are axonal degeneration and progressive lower limb spasticity resulting from a loss of corticospinal tract (CST) function. HSP is classified into two broad categories, uncomplicated and complicated, on the basis of the presence of additional clinical features such as intellectual disability, seizures, ataxia, peripheral neuropathy, skin abnormalities, and visual defects.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Downloaded and Searched Against the Dbest Database to Identify Ests
    BMC Genomics BioMed Central Research article Open Access A transcription map of the 6p22.3 reading disability locus identifying candidate genes Eric R Londin1, Haiying Meng2 and Jeffrey R Gruen*2 Address: 1Graduate Program in Genetics, State University of New York at Stony Brook, NY, USA and 2Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA Email: Eric R Londin - [email protected]; Haiying Meng - [email protected]; Jeffrey R Gruen* - [email protected] * Corresponding author Published: 30 June 2003 Received: 22 April 2003 Accepted: 30 June 2003 BMC Genomics 2003, 4:25 This article is available from: http://www.biomedcentral.com/1471-2164/4/25 © 2003 Londin et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. reading disabilitydyslexia6p22.3In silicoESTs Abstract Background: Reading disability (RD) is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384) on chromosome 6p22.3, suggesting that a gene is located near this marker. Results: In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04.
    [Show full text]
  • Bioinformatics Analyses of Genomic Imprinting
    Bioinformatics Analyses of Genomic Imprinting Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Barbara Hutter Saarbrücken 2009 Tag des Kolloquiums: 08.12.2009 Dekan: Prof. Dr.-Ing. Stefan Diebels Berichterstatter: Prof. Dr. Volkhard Helms Priv.-Doz. Dr. Martina Paulsen Vorsitz: Prof. Dr. Jörn Walter Akad. Mitarbeiter: Dr. Tihamér Geyer Table of contents Summary________________________________________________________________ I Zusammenfassung ________________________________________________________ I Acknowledgements _______________________________________________________II Abbreviations ___________________________________________________________ III Chapter 1 – Introduction __________________________________________________ 1 1.1 Important terms and concepts related to genomic imprinting __________________________ 2 1.2 CpG islands as regulatory elements ______________________________________________ 3 1.3 Differentially methylated regions and imprinting clusters_____________________________ 6 1.4 Reading the imprint __________________________________________________________ 8 1.5 Chromatin marks at imprinted regions___________________________________________ 10 1.6 Roles of repetitive elements ___________________________________________________ 12 1.7 Functional implications of imprinted genes _______________________________________ 14 1.8 Evolution and parental conflict ________________________________________________
    [Show full text]
  • ATA33632-NBPF3 Rabbit Polyclonal Antibody
    ATAGENIX LABORATORIES Catalog Number:ATA33632 NBPF3 rabbit Polyclonal Antibody Product overview product name NBPF3 rabbit Polyclonal Antibody catalog No. ATA33632 Category Primary antibodies Host Rabbit Species specificity Human Tested applications WB,ELISA Clonality Polyclonal Conjugation Unconjugated Immunogen Synthesized peptide derived from human protein . at AA range: 410-490 Product performance Form Liquid Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 4 °C for frequent use. Store at -20 to -80 °C for twelve months from the date of receipt. Purity The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen. Dilution range WB 1:500-2000 ELISA 1:5000-20000 Product background neuroblastoma breakpoint family member 3(NBPF3) Homo sapiens This gene is a member of the neuroblastoma breakpoint family (NBPF) which consists of dozens of recently duplicated genes primarily located in segmental duplications on human chromosome 1. This gene family has experienced its greatest expansion within the human lineage and has expanded, to a lesser extent, among primates in general. Members of this gene family are characterized by tandemly repeated copies of DUF1220 protein domains. DUF1220 copy number variations in human chromosomal region 1q21.1, where most DUF1220 domains are located, have been implicated in a number of developmental and neurogenetic diseases such as microcephaly, macrocephaly, autism, schizophrenia, mental retardation, congenital heart disease, neuroblastoma, and congenital kidney and urinary tract anomalies. Altered expression of some gene family members is associated with several types of cancer. This gene fami Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Spontaneous Tyrosinase Mutations Identified in Albinos of Three Wild Frog Species
    Genes Genet. Syst. (2017) 92, p. 189–196 Albino tyrosinase mutations in frogs 189 Spontaneous tyrosinase mutations identified in albinos of three wild frog species Ikuo Miura1*, Masataka Tagami2, Takeshi Fujitani3 and Mitsuaki Ogata4 1Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan 2Gifu World Freshwater Aquarium, 1453 Kawashima-Kasadamachi, Kakamigahara, Gifu 501-6021, Japan 3Higashiyama Zoo and Botanical Gardens Information, 3-70 Higashiyama-Motomachi, Chikusa-ku, Nagoya, Aichi 464-0804, Japan 4Preservation and Research Center, The City of Yokohama, 155-1 Kawaijuku-cho Asahi-ku, Yokohama, Kanagawa 241-0804, Japan (Received 1 November 2016, accepted 9 March 2017; J-STAGE Advance published date: 30 June 2017) The present study reports spontaneous tyrosinase gene mutations identi- fied in oculocutaneous albinos of three Japanese wild frog species, Pelophylax nigromaculatus, Glandirana rugosa and Fejervarya kawamurai. This repre- sents the first molecular analyses of albinic phenotypes in frogs. Albinos of P. nigromaculatus collected from two different populations were found to suffer from frameshift mutations. These mutations were caused by the insertion of a thymine residue within each of exons 1 and 4, while albinos in a third popula- tion lacked three nucleotides encoding lysine in exon 1. Albinos from the former two P. nigromaculatus populations were also associated with splicing variants of mRNA that lacked either exons 2–4 or exon 4. In the other two frog species exam- ined, missense mutations that resulted in amino acid substitutions from glycine to arginine and glycine to aspartic acid were identified in exons 1 and 3, respec- tively. The two glycines in F.
    [Show full text]