RESEARCH ARTICLE SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values Shan Lin1, Hongyan Zhang1, Yali Hou2, Lin Liu3, Wenhui Li1, Jianping Jiang1, Bo Han1, 1 1 Shengli Zhang , Dongxiao SunID * a1111111111 1 Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal a1111111111 Breeding, China Agricultural University, Beijing, China, 2 Laboratory of Disease Genomics and Individualized a1111111111 Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China, 3 Beijing Dairy Cattle a1111111111 Center, Beijing, China a1111111111 *
[email protected] Abstract OPEN ACCESS Citation: Lin S, Zhang H, Hou Y, Liu L, Li W, Jiang We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib J, et al. (2019) SNV discovery and functional or full-sib families with extremely high and low estimated breeding values (EBV) for milk pro- candidate gene identification for milk composition tein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. based on whole genome resequencing of Holstein Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1 . bulls with extremely high and low breeding values. × PLoS ONE 14(8): e0220629. https://doi.org/ After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 10.1371/journal.pone.0220629 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within Editor: Sujan Mamidi, HudsonAlpha Institute for each family (called as common differential SNVs).