The New Melanoma: a Novel Model for Disease Progression

Total Page:16

File Type:pdf, Size:1020Kb

The New Melanoma: a Novel Model for Disease Progression DISS. ETH NO. 17606 The new melanoma: A novel model for disease progression A dissertation submitted to SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of DOCTOR OF SCIENCES presented by Natalie Schlegel Master of Science, Otago University (New Zealand) born on January 20th 1976 citizen of Zürich (ZH) accepted on the recommendation of Professor Sabine Werner, examinor Professor Reinhard Dummer, co-examinor Professor Josef Jiricny, co-examinor 2008 22 Table of Contents Abstract ...................................................................................................................................... 6 Résumé....................................................................................................................................... 8 Abbreviations ........................................................................................................................... 10 1. Introduction ...................................................................................................................... 13 1.1 Definition ................................................................................................................. 14 1.2 Clinical features........................................................................................................ 14 1.3 Pathological features and staging............................................................................. 16 1.3.2 Clark’s level of invasion and Breslow’s thickness........................................... 16 1.3.3 TNM staging .................................................................................................... 17 1.4 Epidemiology ........................................................................................................... 18 1.5 Genes and pathways................................................................................................. 19 1.5.1 Genes involved in familial melanoma.............................................................. 19 1.5.2 PTEN................................................................................................................ 21 1.5.3 MAPK .............................................................................................................. 22 1.5.4 Wnt................................................................................................................... 23 1.5.5 Microphthalmia-associated transcription factor............................................... 24 1.6 The transforming growth factor-β super-family ...................................................... 25 1.6.1 Receptors and Smad proteins ........................................................................... 27 1.6.2 Transforming growth factor-β.......................................................................... 28 1.6.3 Activin.............................................................................................................. 32 1.7 Id proteins................................................................................................................. 34 1.7.1 Ids, cell cycle regulation and cancer ................................................................ 34 1.7.2 TGF-β and Id proteins...................................................................................... 35 1.7.3 Id proteins and melanoma ................................................................................ 36 1.8 Aim........................................................................................................................... 37 1.9 References ................................................................................................................ 38 2. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature................................................................................................................ 49 2.1 Abstract .................................................................................................................... 52 2.2 Introduction .............................................................................................................. 52 2.3 Results ...................................................................................................................... 54 2.3.1 No correlation between BRAF/NRAS mutations and gene expression........... 54 2.3.2 Microarray analyses reveal three cohorts......................................................... 56 2.3.3 Two groups of co-regulated genes define the cohorts...................................... 57 2.3.4 The cohorts reflect differences in metastatic potential..................................... 60 2.3.5 In vitro tests support the link between cohort distribution and metastatic potential............................................................................................................ 61 2.3.6 Wnt signalling controls Motif 1 ....................................................................... 62 2.4 Discussion ................................................................................................................ 63 2.5 Material and Methods............................................................................................... 67 2.5.1 Cell Culture and Media .................................................................................... 67 2.5.2 Genotyping....................................................................................................... 68 2.5.3 Total RNA Extraction and Expression Profiling.............................................. 68 2.5.4 Microarray Data Analysis ................................................................................ 68 2.5.5 Growth Inhibition Assays................................................................................. 70 2.5.6 Motility Assays ................................................................................................ 70 2.5.7 Western Analyses and ELISA.......................................................................... 70 2.5.8 Immunohistochemistry..................................................................................... 71 3 2.6 References ................................................................................................................ 72 3. In vitro phenotype validation.. ......................................................................................... 79 3.1 Introduction .............................................................................................................. 80 3.1.1 Modulation of TGF-β signalling...................................................................... 80 3.1.2 Vasculogenic mimicry...................................................................................... 83 3.2 Results ...................................................................................................................... 84 3.2.1 Confirming TGF-β1 and activin A secretion ................................................... 84 3.2.2 Follistatin secretion does not correlate with activin secretion ......................... 84 3.2.3 Smad2 and Smad3 are activated across all cohorts.......................................... 85 3.2.4 Ski is not responsible for the differential TGF-β signalling ............................ 86 3.2.5 The activation of the MAPK pathways does not correlate with the TGF-β signature ........................................................................................................... 87 3.2.6 Identifying vasculogenic mimicry as a discriminating phenotype................... 88 3.2.7 Phenotype switching ........................................................................................ 89 3.3 Discussion ................................................................................................................ 90 3.4 Material and Methods............................................................................................... 94 3.4.1 Cell culture ....................................................................................................... 94 3.4.2 Preparation of condition media ........................................................................ 95 3.4.3 ELISA............................................................................................................... 95 3.4.4 Preparation of total cell protein extracts .......................................................... 95 3.4.5 Preparation of cytosolic and nuclear protein extracts ...................................... 95 3.4.6 Western blot analysis ....................................................................................... 96 3.5 References ................................................................................................................ 98 4. In vivo switching of human melanoma cells between proliferative and invasive states 101 4.1 Abstract .................................................................................................................. 104 4.2 Introduction ............................................................................................................ 104 4.3 Results .................................................................................................................... 106 4.3.1 Phenotypic assignment of cell lines ............................................................... 106 4.3.2 Mitf is a marker of proliferative phenotype ................................................... 107 4.3.3 Mitf expression reflects signature phenotype................................................
Recommended publications
  • The Ski Oncoprotein Interacts with Skip, the Human Homolog of Drosophila Bx42
    Oncogene (1998) 16, 1579 ± 1586 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42 Richard Dahl, Bushra Wani and Michael J Hayman Department of Microbiology, State University of New York, Stony Brook, New York 11794, USA The v-Ski avian retroviral oncogene is postulated to act Little is known about how Ski functions. Both the as a transcription factor. Since protein ± protein interac- cellular and the viral genes share transforming and tions have been shown to play an important role in the muscle inducing ability. Ski localizes to the nucleus and transcription process, we attempted to identify Ski is observed to associate with chromatin (Barkas et al., protein partners with the yeast two-hybrid system. Using 1986; Sutrave et al., 1990a). Because of its nuclear v-Ski sequence as bait, the human gene skip (Ski localization and its ability to induce expression of Interacting Protein) was identi®ed as encoding a protein muscle speci®c genes in quail cells (Colmenares and which interacts with both the cellular and viral forms of Stavnezer, 1989), Ski has been assumed to be a Ski in the two-hybrid system. Skip is highly homologous transcription factor. Consistent with this assumption, to the Drosophila melanogaster protein Bx42 which is c-Ski has been shown to bind DNA in vitro with the found associated with chromatin in transcriptionally help of an unknown protein factor (Nagase et al., active pus of salivary glands. The Ski-Skip interaction 1990), and has been recently shown to enhance MyoD is potentially important in Ski's transforming activity dependent transactivation of a myosin light chain since Skip was demonstrated to interact with a highly enhancer linked reporter gene in muscle cells (Engert conserved region of Ski required for transforming et al., 1995).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Bioinformatics Analyses of Genomic Imprinting
    Bioinformatics Analyses of Genomic Imprinting Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Barbara Hutter Saarbrücken 2009 Tag des Kolloquiums: 08.12.2009 Dekan: Prof. Dr.-Ing. Stefan Diebels Berichterstatter: Prof. Dr. Volkhard Helms Priv.-Doz. Dr. Martina Paulsen Vorsitz: Prof. Dr. Jörn Walter Akad. Mitarbeiter: Dr. Tihamér Geyer Table of contents Summary________________________________________________________________ I Zusammenfassung ________________________________________________________ I Acknowledgements _______________________________________________________II Abbreviations ___________________________________________________________ III Chapter 1 – Introduction __________________________________________________ 1 1.1 Important terms and concepts related to genomic imprinting __________________________ 2 1.2 CpG islands as regulatory elements ______________________________________________ 3 1.3 Differentially methylated regions and imprinting clusters_____________________________ 6 1.4 Reading the imprint __________________________________________________________ 8 1.5 Chromatin marks at imprinted regions___________________________________________ 10 1.6 Roles of repetitive elements ___________________________________________________ 12 1.7 Functional implications of imprinted genes _______________________________________ 14 1.8 Evolution and parental conflict ________________________________________________
    [Show full text]
  • See Also Figure 1
    Figure S1. Box-and-whisker plots depicting the range of expression values per developmental stage, with DESeq normalization (A) or quantile normalization (B). See also Figure 1. Figure S2. Lv-Setmar expression has low variation over developmental time. A. A plot of Lv-setmar versus Lv-ubiquitin expression over time demonstrates that Lv-setmar exhibits less temporal variation than Lv-ubiquitin. B. A representative gel showing Lv-setmar qPCR products amplified from cDNAs representing each sequenced stage in this study, demonstrating comparable product levels and an absence of spurious amplification products. See also Figure 1E. Figure S3. LvEDGE database. Screen shots showing the home page (A), the search window (B), an example search with a temporal expression plot (C), and the numerical data reflected in the plot (D) for the LvEDGE public database, which hosts the data described herein. stage 1 2 3 4 5 6 7 8 9 10 11 Category Subcategory 2-cell 60-cell EB HB TVP MB EG MG LG EP LP meiotic Cell Division Cytokinesis Mitosis checkpoint cell division recombination cell cycle stem cell left-right cell left-right Development maintenance asymmetry morphogenesis asymmetry regulation of multicellular organismal process cell soma cell soma Gene Expression chromatin SWI/SNF Control Chromatin modification chromatin binding complex methylated histone Binding negative sequence- sequence- sequence- regulation of sequence- specific DNA specific DNA specific DNA transcription specific DNA sequence-specific DNA binding binding binding binding factor activity
    [Show full text]
  • Mutations in SKI in Shprintzen–Goldberg Syndrome Lead to Attenuated TGF-B Responses Through SKI Stabilization
    RESEARCH ARTICLE Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-b responses through SKI stabilization Ilaria Gori1, Roger George2, Andrew G Purkiss2, Stephanie Strohbuecker3, Rebecca A Randall1, Roksana Ogrodowicz2, Virginie Carmignac4, Laurence Faivre4, Dhira Joshi5, Svend Kjær2, Caroline S Hill1* 1Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom; 2Structural Biology Facility, The Francis Crick Institute, London, United Kingdom; 3Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom; 4INSERM - Universite´ de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France; 5Peptide Chemistry Facility, The Francis Crick Institute, London, United Kingdom Abstract Shprintzen–Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys–Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-b signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-b signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-b responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-b- *For correspondence: induced transcriptional responses, and not enhancement, which has important implications for [email protected] other Marfan-related syndromes. Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Role of Drosophila Bx42/SKIP in Cell Cycle
    The Role of Drosophila Bx42/SKIP in Cell Cycle D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Diplom-Biologin Shaza Dehne Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekanin/Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Richard Lucius Gutachter/innen: 1. Prof. Dr. Harald Saumweber 2. Prof. Dr. Christian Schmitz-Linneweber 3. Prof. Dr. Achim Leutz Tag der mündlichen Prüfung: 30.11.2016 Contents Abstract Abstrakt 1 Introduction .................................................................. 10 1.1 Bx42: Identification, protein structure and function .................................................. 11 1.2 Bx42/SNW/SKIP is an essential protein family, conserved in evolution and involved in several biological processes ............................................................................................ 13 1.2.1 Involvement of Bx42/SNW/SKIP in signaling pathways ................................ 16 1.2.1.1 Involvement in nuclear receptor pathways ................................................ 16 1.2.1.2 Involvement in the Notch signaling pathway ............................................ 17 1.2.1.3 Involvement in the TGF-ß/Dpp signal pathway ........................................ 19 1.2.2 Involvement of Bx42/SNW/SKIP in RNA splicing ......................................... 20 1.2.3 Bx42/SNW/SKIP protein family and cell cycle regulation .............................. 22 1.2.3.1 Short overview on cell cycle regulation. ................................................... 22 1.2.3.2 Evidence for Bx42/SNW/SKIP contribution to cell cycle regulation ....... 24 1.3 Drosophila eye imaginal disc: a model to study proliferation and cell cycle regulation during development.
    [Show full text]
  • (Cxxc5) a Thesis Submitted to the Graduate
    STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY GAMZE AYAZ ŞEN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY NOVEMBER 2018 Approval of the thesis: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) submitted by GAMZE AYAZ ŞEN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of Department, Biological Sciences Prof. Dr. Mesut Muyan Supervisor, Biological Sciences Dept., METU Examining Committee Members: Prof. Dr. A. Elif Erson Bensan Biological Sciences Dept., METU Prof. Dr. Mesut Muyan Biological Sciences Dept., METU Asst. Prof. Dr. Murat Alper Cevher Molecular Biology and Genetics Dept., Bilkent University Assoc. Prof. Dr. Nurcan Tunçbağ Informatics Institute, METU Asst. Prof. Dr. Onur Çizmecioğlu Molecular Biology and Genetics Dept., Bilkent University Date: 16.11.2018 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Gamze Ayaz Şen Signature: iv To All Women Who Pursue Their Dreams In Science v ABSTRACT STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) Ayaz Şen, Gamze Ph.D., Biology Department Supervisor: Prof.
    [Show full text]
  • Supplementary Information For
    1 Supplementary Information for 2 Molecular map of GNAO1-related disease phenotypes and reactions to therapy 3 Ivana Mihalek, Jeff L. Waugh, Meredith Park, Saima Kayani, Annapurna Poduri, Olaf Bodamer 4 Ivana Mihalek, Olaf Bodamer 5 E-mail: [email protected], [email protected] 6 This PDF file includes: 7 Supplementary text 8 Figs. S1 to S9 9 Tables S1 to S5 10 Legend for Movie S1 11 Legend for Dataset S1 12 SI References 13 Other supplementary materials for this manuscript include the following: 14 Movie S1 15 Dataset S1 Ivana Mihalek, Jeff L. Waugh, Meredith Park, Saima Kayani, Annapurna Poduri, Olaf Bodamer 1 of 18 16 Supporting Information Text 17 Building the target-response profiles 18 To construct the target-response profiles used in Fig. 1 in the main text, we collected the information about the targets of 19 drugs reported as therapy for GNAO1-related symptoms. We collected both the direction of action (up- or down-regulation), 20 and its micromolar activity for each drug-target pair, keeping in mind that drugs typically have multiple targets. The sources 21 were DrugBank (1), BindingDB (2), GuideToPharm (3), PDSP (4), and PubChem (5), as well as manual literature search in a 22 handful of cases. This information is included on Dataset S1. The full collection can be found and downloaded as an SQLite 23 database from the accompanying CodeOcean capsule (codeocean.com/capsule/8747824). 24 Giving the name td to the combined label of target + drug activity direction, for example GABR ↑ for upregulated GABA-A 25 receptor (Human Genome Nomenclature Committee symbol GABR), we assign to it a weight −log (activity) + 6, if the activity is < 106µM w(td) = 10 0 otherwise.
    [Show full text]
  • The SMAD-Binding Domain of SKI: a Hotspot for De Novo Mutations Causing Shprintzen&Ndash
    European Journal of Human Genetics (2015) 23, 224–228 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen–Goldberg syndrome Dorien Schepers1,20, Alexander J Doyle2,3,20,GretchenOswald2, Elizabeth Sparks2,LorethaMyers2,PatrickJWillems4, Sahar Mansour5, Michael A Simpson6,HelenaFrysira7, Anneke Maat-Kievit8,RickVanMinkelen8, Jeanette M Hoogeboom8, Geert R Mortier1, Hannah Titheradge9,LouiseBrueton9,LoisStarr10, Zornitza Stark11, Charlotte Ockeloen12, Charles Marques Lourenco13,EdBlair14, Emma Hobson15,JaneHurst16, Isabelle Maystadt17, Anne Destre´e17, Katta M Girisha18, Michelle Miller19,HarryCDietz2,3,BartLoeys1,20 and Lut Van Laer*,1,20 Shprintzen–Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys–Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFb activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)).
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Inside out Behavioral phenotyping in genetic syndromes Mulder, P.A. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): Mulder, P. A. (2020). Inside out: Behavioral phenotyping in genetic syndromes. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 6 Further delineation of Malan syndrome Authors: Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, Hennekam RC.
    [Show full text]
  • Human Ortholog of Drosophila Melted Impedes SMAD2 Release from TGF
    Human ortholog of Drosophila Melted impedes SMAD2 PNAS PLUS release from TGF-β receptor I to inhibit TGF-β signaling Premalatha Shathasivama,b,c, Alexandra Kollaraa,c, Maurice J. Ringuetted, Carl Virtanene, Jeffrey L. Wranaa,f, and Theodore J. Browna,b,c,1 aLunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada M5T 3H7; Departments of bPhysiology, cObstetrics and Gynaecology, dCell and Systems Biology, and fMolecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3G5; and ePrincess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7 Edited by Igor B. Dawid, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and approved May 5, 2015 (received for review March 11, 2015) Drosophila melted encodes a pleckstrin homology (PH) domain- The gene locus encompassing human VEPH1, 3q24-25, lies containing protein that enables normal tissue growth, metabo- within a region frequently amplified in ovarian cancer (6, 7). Tan lism, and photoreceptor differentiation by modulating Forkhead et al. (8) found that this locus was also amplified in 7 of 12 ep- box O (FOXO), target of rapamycin, and Hippo signaling pathways. ithelial ovarian cancer cell lines. A gene copy number analysis of Ventricular zone expressed PH domain-containing 1 (VEPH1) is the 68 primary tumors by Ramakrishna et al. (9) identified frequent mammalian ortholog of melted, and although it exhibits tissue- (>40%) VEPH1 gene amplification that correlated with tran- restricted expression during mouse development and is poten- script levels. We determined the impact of VEPH1 on gene ex- tially amplified in several human cancers, little is known of its pression in an ovarian cancer cell line using a whole-genome function.
    [Show full text]