National Advisory Committee on Research in the Geological Sciences

Total Page:16

File Type:pdf, Size:1020Kb

National Advisory Committee on Research in the Geological Sciences 6 -01 NATIONAL ADVISORY COMMITTEE ON RESEARCH IN THE GEOLOGICAL SCIENCES SIXTEENTH ANNUAL REPORT 1965-66 ANNUAL REVIEW AND REPORTS OF SUBCOMMITTEES Published by the Geological Survey of Canada as GSC Paper 66 -61 MANUSCRIPT AI'1D National Advisory Cf\ DT()':~AO~JY - APR 3 1967 HR · 1967 Price, 5 D ce nts 1967 SECTION Comn-.:!:~ee SIXTEENTH ANNUAL REPORT 1965-66 ANNUAL REVIEW AND REPORTS OF SUBCOMMITTEES @ Crown C opyrights reserved Availa b le by mail from the Queen' s Printer, Otta wa from the Geologi cal Survey of Canada, 601 B ooth St. , Ottawa and a t th e fo llowing Can a dian Governm ent book s h op s: OTTAWA Daly Building, Corner Mackenzie and Rideau TORONTO 221 Yonge Street MONTREAL /Eterna-Vie Building, 1182 St. Catherine St. West WINNIPEG Mall Center Building, 499 Portage Avenue VANCOUVER 657 Granville Avenue HALIFAX 1737 Barrington Street or through your bookseller A deposit copy of this publication is also available for reference in public libraries across Canada Price, 50 cents Cat. No. M44-66-61 Price subject to change without notice ROGER D UHAMEL, F.R.S.C. Queen's Printer and Controller of Stationery Ottawa, Canada 1967 CONTENTS Page MEMBERS OF COMMITTEE . • . • . • • . • . • . • . • • . vii Executive Committee . • . • . • . • • . • • • • . • . viii Projects Subcommittee . • . • . • . • . • • . • • • • • • • • . • . • • • • ix THE YEAR IN REVIEW •.....•.•••••...••••......•..•..•..•..•.• Research grants to universities .•.•••...••.........•....••• Comprehensive studies of Canadian sulphide • • . • . • • . • . • . • . • Z Storage and retrieval of geological data . • . • . • • • . • 3 Geochemical prospecting symposium........................ 6 International Union of Geological Sciences . • . • . • • . • • . • . • . 6 Summary statements and discussion of subcommittee reports.. 7 Changes in personnel of committee ....................... 13 SUBCOMMITTEE REPORTS..................................... 14 Geophysical methods applied to geological problems . • . • 14 Mineral deposits....... ................................... 27 Mineralogy , geochemistry and petrology . • • • • • • . • • • • • • . • • • . 38 Quaternary geology . • . • . • • . • • . • 53 Scholarship and research training . • . • • . • . • • • • . • • 95 Stratig raphy, palaeontology and fossil fuels.................. 98 Structural geology . • • . • . • • . • • . • . • • . • • . • . 111 APPENDIX; Research grants awarded in 1965-66 • . • . • . • • . • . 125 601 Booth Street, Ottawa, October 17, 1966. The Honourable Jean-Luc Pepin, Minister of Energy, Mines and Resources, Ottawa, Ontario. Sir: I have the honour to submit to you the Sixteenth Annual Report of the National Advisory Committee on Research in the Geological Sciences cover- ing the period September 1, 1965, to August 31, 1966. Respectfully submitted, u/2J~ YY. 0. Fortier, Y Chairman. - vii - MEMBERS OF COMMITTEE Dr. Y. 0. Fortier, Chairman Geological Survey of Canada, Ottawa, Ontario. Professor L. G. Berry Queen's University, Kingston, Ontario. Professor J.E. Blanchard Dalhousie University, Halifax, Nova Scotia. Professor W. C. Brisbin University of Manitoba, Winnipeg, Manitoba. Professor W. D . Brueckner Memorial University of Newfoundland, St. John's, Newfoundland . Dr. S. A . Ferguson Department of Mines, Toronto, Ontario. Dr. James T. Fyles D epartment of Mines and Petroleum Resources, Victoria, British Columbia. Dr. P. E. Grenier D epartment of Natural Resources, Quebec, P. Q. Dr. J.M. Harrison Department of Energy, Mines &: Resources, Ottawa, Ontario. Dr. G. G. L. Henderson The California Standard Company, Calgary, Alberta. Professor W.O. Kupsch University of Saskatchewan, Saskatoon, Saskatchewan. Dr. Robert F. Legget National Research Council, Ottawa, Ontario. Dr. C. S. Lord Geological Survey of Canada, Ottawa, Ontario. Professor W. H. Mathews University of British Columbia, Vancouver 1, British Columbia. - v.iii - Professor Guy Perrault Ecole Polytechnique, Montreal, Quebec. Professor D. M . Shaw McMaster Unive rsity, Hamilton, Ontario. Professor Robe rt Sabourin Univ ersite Laval, Quebec, P . Q. Professor C. W . Ste arn McGill University, Montreal, Que bee. Profe ssor C . R. Stelck University of Alberta, Edmonton, Alberta. Dr. C. J. Sulliv an Kennco Explorations (Canada) Ltd., Toronto, Ontario. Dr. J. F . Henderson, Secretary Geolog ical Survey of Canada, Ottawa, Ontario. M eetings: April 18-19, 19 66, Ottawa, Ontario. EXECUTIVE COMMITTEE Dr. Y. 0. Fortie r , Chairman Geological Survey of Canada, Ottawa, Ontario. Professor L . G . Berry Queen's University, Kingston, Ontario. Dr. P . E. Grenier Department of Natural Resources, Quebec, P. Q. Dr. C.S. Lord Geological Survey of Canada, Ottawa, Ontario. Professor D . M . Shaw McMaster University, Hamilton, Ontario. - ix - PROJECTS SUBCOMMITTEE Dr. Y. O. Fortier, Chairman Geological Survey of Canada, Ottawa, Ontario. Professor J.E. Blanchard Dalhousie University, Halifax, Nova Scotia. Professor R. E. Folinsbee University of Alberta, Edmonton, Alberta. Professor W . O. Kupsch University of Saskatchewan, Saskatoon, Saskatchewan. Dr. C. S. Lord Geological Survey of Canada, Ottawa, Ontario. Meeting: June 9, 1966, Ottawa, Ontario. THE YEAR IN REVIEW The National Advisory Committee on Research in the Geological S ciences has a threefold purpose: to stimulate and coordinate geological research in Canada; to suggest research projects that should receive atten­ tion; and to aid in having these projects undertaken. Its function is to stim­ ulate research by the universities, federal and provincial departments of mines, and by other organizations equipped for the work. The first part of this report gives a summary of the work of the Committee over the period September 1, 196 5, to August 31, 1966 . This is followed by the reports of the subcommittees. These cover the different fields of the geological sciences, record developments in 1965-66 and sug­ gest further problems for study. An appendix lists the research grants to Canadian universities for 1966 -67 which were awarded by the Geological Survey of Canada on the basis of the National Advisory Committee's recom­ mendations. The annual survey of current research in the geological and related sciences in Canada for 1965-66 which in previous years formed Part II of this report is published this year as a separate volumel. It records inform­ ation on research by the universities, federal and provincial departments, and research councils and foundations. Other current publications of the National Advisory Committee include the Interim Report of the Committee on Storage and Retrieval of Geolog ical Data in Canada (Geol. Surv. Can., Paper 66-43, 1966} and the Symposium on Geochemical Prospecting (Geol. Surv. Can., Paper 66-54, 1967 ). RESEARCH GRANTS TO UNIVERSITIES Grants by the Geological Survey of Canada were initiated in 1951 at the instigation of this Committee to stimulate and support geological research in Canadian universities. Applications are received from mem­ bers of university staffs and must be submitted to the Director, Geological Survey of Canada, before May 1 of each year . They are reviewed by the Projects Subcommittee of the National Advisory Committee in June and the applicants are notified at that time whether they will receive grants . The National Research Council of Canada also awards grants-in-aid for research in the geological sciences (earth sciences} on a more sub­ stantial scale, Applicants for N. R. C. grants apply by December 1 and are Survey of Current Geological Research. in Canada, 1965-66, National Advisory Committee on Research in the Geological Sciences, Ottawa , 1966. Geol. Surv. Can., Paper 66 -5 3, 1966. - 2 - notified of awards in April of each year . The National Advisory Committee has full knowledge of grants in the earth sciences awarded in April by the National Research Council. In addition, to assure full coordination in the award of grants by the two organizations, one or more members of the National Research Council Grant Application Screening Committee serve on the subcommittee of the National Advisory Committee that reviews the appli­ cations to the Geological Survey. For 1966 -6 7, 98 applications were received (compared with 92 in 1965-66) and the total of the grants applied for was $309, 292 (compared with $264, 263 in 1965-66). Eighty-five grants totalling $150, OOO were awarded to 20 universities . The names of the recipients, the titles of their research projects and the amounts awarded are listed in the Appendix (p. 125). With but few exceptions the applications for grants for 1966-67 were deserving of support. However, because they totalled $309 , 292, o r more than double the funds available, some were rejected with no support and in nearly all cases the grants to the remainder are substantially less than the amounts requested. The National Adv isory Committee has recommended to the Geological Survey that the amount to be provided for grants -in-aid to the universities in 1967-68 be increased from $150, OOO to $185, OOO. COMPREHENSIVE STUDIES OF CANADIAN SULPHIDE D EPOSITS The cooperative, c omprehensive study of the Coronation cupriferous pyrite orebody southwest of Flin Flon, Manitoba has been completed and a final report is in preparation. This report will be a symposium type volume made up of papers written by those who carri ed out the different projects with only a minimum of editing to ensure consistency in format, illustrations, etc. Dr. D.R. E. Whitmore, the coordinator of the project since its inception will be responsible for assembling
Recommended publications
  • Souris R1ve.R Investigation
    INTERNATIONAL JOINT COMMISSION REPORT ON THE SOURIS R1VE.R INVESTIGATION OTTAWA - WASHINGTON 1940 OTTAWA EDMOND CLOUTIER PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1941 INTERNATIONAT, JOINT COMMISSION OTTAWA - WASHINGTON CAKADA UNITEDSTATES Cllarles Stewrt, Chnirmun A. 0. Stanley, Chairman (korge 11'. Kytc Roger B. McWhorter .J. E. I'erradt R. Walton Moore Lawrence ,J. Burpee, Secretary Jesse B. Ellis, Secretary REFERENCE Under date of January 15, 1940, the following Reference was communicated by the Governments of the United States and Canada to the Commission: '' I have the honour to inform you that the Governments of Canada and the United States have agreed to refer to the International Joint Commission, underthe provisions of Article 9 of theBoundary Waters Treaty, 1909, for investigation, report, and recommendation, the following questions with respect to the waters of the Souris (Mouse) River and its tributaries whichcross the InternationalBoundary from the Province of Saskatchewanto the State of NorthDakota and from the Stat'e of NorthDakota to the Province of Manitoba:- " Question 1 In order to secure the interests of the inhabitants of Canada and the United States in the Souris (Mouse) River drainage basin, what apportion- ment shouldbe made of the waters of the Souris(Mouse) River and ita tributaries,the waters of whichcross theinternational boundary, to the Province of Saskatchewan,the State of North Dakota, and the Province of Manitoba? " Question ,$! What methods of control and operation would be feasible and desirable in
    [Show full text]
  • L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
    l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Reconstruction of Glacial Lake Hind of Southwestern
    Journal of Paleolimnology 17: 9±21, 1997. 9 c 1997 Kluwer Academic Publishers. Printed in Belgium. Reconstruction of glacial Lake Hind in southwestern Manitoba, Canada C. S. Sun & J. T. Teller Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 Received 24 July 1995; accepted 21 January 1996 Abstract Glacial Lake Hind was a 4000 km2 ice-marginal lake which formed in southwestern Manitoba during the last deglaciation. It received meltwater from western Manitoba, Saskatchewan, and North Dakota via at least 10 channels, and discharged into glacial Lake Agassiz through the Pembina Spillway. During the early stage of deglaciation in southwestern Manitoba, part of the glacial Lake Hind basin was occupied by glacial Lake Souris which extended into the area from North Dakota. Sediments in the Lake Hind basin consist of deltaic gravels, lacustrine sand, and clayey silt. Much of the uppermost lacustrine sand in the central part of the basin has been reworked into aeolian dunes. No beaches have been recognized in the basin. Around the margins, clayey silt occurs up to a modern elevation of 457 m, and ¯uvio-deltaic gravels occur at 434±462 m. There are a total of 12 deltas, which can be divided into 3 groups based on elevation of their surfaces: (1) above 450 m along the eastern edge of the basin and in the narrow southern end; (2) between 450 and 442 m at the western edge of the basin; and (3) below 442 m. The earliest stage of glacial Lake Hind began shortly after 12 ka, as a small lake formed between the Souris and Red River lobes in southwestern Manitoba.
    [Show full text]
  • Pleistocene Geology of Eastern South Dakota
    Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.
    [Show full text]
  • Geomorphic and Sedimentological History of the Central Lake Agassiz Basin
    Electronic Capture, 2008 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. Recommended citation: J.T. Teller, L.H. Thorleifson, G. Matile and W.C. Brisbin, 1996. Sedimentology, Geomorphology and History of the Central Lake Agassiz Basin Field Trip Guidebook B2; Geological Association of CanadalMineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27-29, 1996. © 1996: This book, orportions ofit, may not be reproduced in any form without written permission ofthe Geological Association ofCanada, Winnipeg Section. Additional copies can be purchased from the Geological Association of Canada, Winnipeg Section. Details are given on the back cover. SEDIMENTOLOGY, GEOMORPHOLOGY, AND HISTORY OF THE CENTRAL LAKE AGASSIZ BASIN TABLE OF CONTENTS The Winnipeg Area 1 General Introduction to Lake Agassiz 4 DAY 1: Winnipeg to Delta Marsh Field Station 6 STOP 1: Delta Marsh Field Station. ...................... .. 10 DAY2: Delta Marsh Field Station to Brandon to Bruxelles, Return En Route to Next Stop 14 STOP 2: Campbell Beach Ridge at Arden 14 En Route to Next Stop 18 STOP 3: Distal Sediments of Assiniboine Fan-Delta 18 En Route to Next Stop 19 STOP 4: Flood Gravels at Head of Assiniboine Fan-Delta 24 En Route to Next Stop 24 STOP 5: Stott Buffalo Jump and Assiniboine Spillway - LUNCH 28 En Route to Next Stop 28 STOP 6: Spruce Woods 29 En Route to Next Stop 31 STOP 7: Bruxelles Glaciotectonic Cut 34 STOP 8: Pembina Spillway View 34 DAY 3: Delta Marsh Field Station to Latimer Gully to Winnipeg En Route to Next Stop 36 STOP 9: Distal Fan Sediment , 36 STOP 10: Valley Fill Sediments (Latimer Gully) 36 STOP 11: Deep Basin Landforms of Lake Agassiz 42 References Cited 49 Appendix "Review of Lake Agassiz history" (L.H.
    [Show full text]
  • The Generation of Mega Glacial Meltwater Floods and Their Geologic
    urren : C t R gy e o s l e o r a r LaViolette, Hydrol Current Res 2017, 8:1 d c y h H Hydrology DOI: 10.4172/2157-7587.1000269 Current Research ISSN: 2157-7587 Research Article Open Access The Generation of Mega Glacial Meltwater Floods and Their Geologic Impact Paul A LaViolette* The Starburst Foundation, 1176 Hedgewood Lane, Niskayuna, New York 12309, United States Abstract A mechanism is presented explaining how mega meltwater avalanches could be generated on the surface of a continental ice sheet. It is shown that during periods of excessive climatic warmth when the continental ice sheet surface was melting at an accelerated rate, self-amplifying, translating waves of glacial meltwater emerge as a distinct mechanism of meltwater transport. It is shown that such glacier waves would have been capable of attaining kinetic energies per kilometer of wave front equivalent to 12 million tons of TNT, to have achieved heights of 100 to 300 meters, and forward velocities as great as 900 km/hr. Glacier waves would not have been restricted to a particular locale, but could have been produced wherever continental ice sheets were present. Catastrophic floods produced by waves of such size and kinetic energy would be able to account for the character of the permafrost deposits found in Alaska and Siberia, flood features and numerous drumlin field formations seen in North America, and many of the lignite deposits found in Europe, Siberia, and North America. They also could account for how continental debris was transported thousands of kilometers into the mid North Atlantic to form Heinrich layers.
    [Show full text]
  • Sedimentology and Stratigraphy of Glacial Lake Souris, North Dakota: Effects of a Glacial-Lake Outburst Mark L
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1988 Sedimentology and Stratigraphy of Glacial Lake Souris, North Dakota: effects of a glacial-lake outburst Mark L. Lord University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Lord, Mark L., "Sedimentology and Stratigraphy of Glacial Lake Souris, North Dakota: effects of a glacial-lake outburst" (1988). Theses and Dissertations. 183. https://commons.und.edu/theses/183 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. SEDIMENTOLOGY AND STRATIGRAPHY OF GLACIAL LAKE SOURIS, NORTH DAKOTA: EFFECTS OF A GLACIAL-LAKE OUTBURST by Mark L. Lord Bachelor of Science, State University of New York College at Cortland, 1981 Master of Science University of North Dakota, 1984 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 1988 l I This Dissertation submitted by Mark L. Lord in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota has been read by the Faculty Advisory Committee under whom the work has been done, and is hereby approved. (Chairperson) This Dissertation meets the standards for appearance and conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.
    [Show full text]
  • Cross-Section of Paleozoic Rocks of Western North Dakota
    JolfN P. BLOEMLE N. D. Geological Survey NORTH DAKOTA GEOLOGICAL SURVEY WILSON M. LAIRD, State Geologist Miscel1aneous Series No. 34 CROSS-SECTION OF PALEOZOIC ROCKS OF WESTERN NORTH DAKOTA BY CLARENCE G. CARLSON Reprinted from Stratigraphic Cross Section of Paleozoic Rocks-Oklahoma to Saskatchewan, 1967: The American Association of Petroleum Geologists Cross Section Publication 5, p. 13-15, 1 Plate Grand Forks, North Dakota, 1967 NORTH DAKOTAI (Section E-F. Plate 5) C. G. CARLSON' Grand Forks, North Dakota INTRODUCTION which, in ascending order, are the Black Island, Icebox, The North Dakota segment of the cross section was and Roughlock. The Black Island generally consists of constructed with the base of the Spearfish Formation as clean quartzose sandstone, the Icebox of greenish-gray, noncalcareous shale, and the Roughlock of greenish-gray the datum. However, the Permian-Triassic boundary to brownish-gray, calcareous shale or siltstone. now is thought to be within redbeds of the Spearfish The Black Island and Icebox Formations can be Formation (Dow, 1964). If this interpretation is cor­ traced northward to Saskatchewan, but they have not rect, perhaps as much as 300 ft of Paleozoic rocks in been recognized as formations there and are included in well 3 and smaller thicknesses in wells I, 2, and 4-12 an undivided Winnipeg Formation. The Black Island are excluded from Plate 5. pinches out southwestward because of nondeposition Wells were selected which best illustrate the Paleozo­ along the Cedar Creek anticline, but the Icebox and ic section and its facies changes in the deeper part of Roughlock Formations, although not present on the the Williston basin.
    [Show full text]
  • Potash Deposits in the Devonian Prairie Evaporite, Southwestern Manitoba Lo Eo Gic G a a L B S O U
    Potash deposits in the Devonian Prairie Evaporite, southwestern Manitoba lo eo gic g a a l b s o u t r i v n e a MGS y m M.P.B. Nicolas 1928 Manitoba Geological Survey, Winnipeg, Manitoba, Canada Potash Geology 3. Esterhazy Member The Esterhazy Member is the most economic Potash Exploration potash beds. It consists of euhedral to subhedal halite 2. Regional and Local Geology crystals with large anhedral sylvite crystals and minor 1. Introduction interstitial carnolite and clays (Figure 7 and 8). In Manitoba, the Paleozoic-, Mesozoic- and Cenozoic-age strata form a basinward-thickening, southwesterly- 6. Potash Resource 7. Exploration History The Prairie Evaporite is a thick Denonian-aged evaporitic sloping wedge, with the strata reaching a total thickness of 2.3 km in the extreme southestern corner of Manitoba The Esterhazy Member is intermittently present in R29W1 R28 R27 R26 R25 R24 R23 sequence dominantly consisting of halite and anhydrite. It Legend (Figure 4). The potash-bearing Devonian-age Prairie Evaporite was deposited within the Elk Point Basin (Figure Formal mineral resource estimates have been prepared for The discovery of potash in Manitoba was in an oil well T30 a narrow, elongate strip in southwestern Manitoba, includes four potash-bearing members, from oldest to youngest N 5). The Prairie Evaporite consists mainly of thick halite beds, with minor anhydrite and four localized potash beds. the Russell deposit, most recently in 2009. A historical resource drilled in 1951 at 15-18-10-27W1. This discovery led to salt distribution WA T29 from Township 5 to 21, Ranges 27 to 29 W1 (Figure E A H B C Within the basin, the formation can exceed 210 m in thickness, and lies at depths of 200 to 2,700 m below surface.
    [Show full text]
  • Geology O F Renville and Ward Counties North
    ISSN : 0546 - 500 1 GEOLOGY O F RENVILLE AND WARD COUNTIES NORTH DAKOTA by John P . Blueml e BULLETIN 50 - PART 1 NORTH DAKOTA INDUSTRIAL COMMISSIO N GEOLOGICAL SURVEY DIVISIO N COUNTY GROUNDWATER STUDIES 11 - PART 1 NORTH DAKOTA STATE WATER COMMISSIO N Prepared by the North Dakota Geological Surve y in cooperation with the North Dakota State Water Commission, the United States Geological Survey, and Renville and Ward Counties Water Management District s Printed by Quality Printing Service 1989 CONTENTS Page ABSTRACT v i INTRODUCTION 1 Purpose 1 Previous Work 1 Methods of Study 2 Acknowledgments 3 Regional Topography and Geology 3 STRATIGRAPHY 6 General Statement 6 Cretaceous and Tertiary Rocks 8 Configuration of the Bedrock Surface 1 0 Pleistocene Sediment 1 2 Glacial Stratigraphy 1 7 Snow School Formation 20 Blue Hill Deposits 20 Younger Glacial Deposits 2 2 Holocene Sediment 24 GEOMORPHOLOGY 26 General Description 2 6 Glacial Landforms 28 Collapsed Glacial Topography 28 Waterworn Topography 32 Sllopewash-Eroded Topography 33 Glacial Lake Landforms 33 Fluvial Landforms 3 5 Spillways 3 5 Overridden Fluvial Deposits 39 Other Glaciofluvial Deposits 39 Eskers and Kames 409 PLEISTOCENE FOSSILS 40 GEOLOGIC HISTORY 41 iii CONTENTS--continued Page ECONOMIC GEOLOGY 52 Lignite 52 Gravel and Sand 53 Hydrocarbons 53 Potash 54 Halite 54 REFERENCES 56 ILLUSTRATION S Figure Page 1. Physiographic map of North Dakota showing the location of Renvill e and Ward Counties 5 2. Stratigraphic column for Renvill e and Ward Counties 7 3. Subglacial geology and topograph y of Renville and Ward Counties 1 1 4. Thickness of the Coleharbor Grou p deposits in Renville and War d Counties 1 3 5.
    [Show full text]
  • Preliminary Report on Sedimentology and Stratigraphy of the Late Devonian Mixed Carbonate-Evaporite Succession of the Duperow Formation, Southeastern Saskatchewan
    Preliminary Report on Sedimentology and Stratigraphy of the Late Devonian Mixed Carbonate-Evaporite Succession of the Duperow Formation, Southeastern Saskatchewan X.C. Cen 1 and O. Salad Hersi 1 Cen, X.C. and Salad Hersi, O. (2005): Preliminary report on sedimentology and stratigraphy of the Late Devonian mixed carbonate-evaporite succession of the Duperow Formation, southeastern Saskatchewan; in Summary of Investigations 2005, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2005-4.1, CD-ROM, Paper A-9, 12p. Abstract The Duperow Formation of southeastern Saskatchewan is divided into four informal units (1 to 4). These units are defined by various lithofacies of laminated to thickly bedded bioclastic limestones, thinly to microbially laminated dolostone, laminated to nodular anhydrite, and rare halite deposits. Bioclasts in the limestone lithofacies include gastropods, bivalves, brachiopods, and stromatoporoids, and represent deposition within an open- to restricted- marine to lagoonal setting. The dolostone, anhydrite, and halite strata are interpreted as supratidal deposits. Limestone, dolostone, and anhydrite comprise the three prominent lithofacies and are preserved as “restricting- upward” rhythmites. The development of repetitive patterns of lithofacies is attributed to cycles of intermittent invasions of normal marine water which evolved to hypersaline brine by evaporative processes. The lateral continuity and regional significance of rhythmites of the Duperow Formation as exhibited by sedimentological, stratigraphic, and microfacies characteristics, and their impact on reservoir quality, are the focus of an on-going research project. Keywords: Duperow Formation, southeastern Saskatchewan, Late Devonian, carbonates, evaporites, rhythmic succession, shallow marine. 1. Introduction This study is focused on sedimentological and stratigraphic features of the Late Devonian Duperow Formation of southeastern Saskatchewan.
    [Show full text]