RI7120100316.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click Here to Return to Volume Title Page by Lawrence O
Chapter 1 Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click here to return to Volume Title Page By Lawrence O. Anna Chapter 1 of Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana By U.S. Geological Survey Powder River Basin Assessment Team U.S. Geological Survey Digital Data Series DDS–69–U U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 Revised: April 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lawrence O. Anna, 2010, Geologic assessment of undiscovered oil and gas in the Powder River Basin Province Wyoming and Montana, in Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana: U.S. -
L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively. -
Status of Mineral Resource Information for the Fort Berthold Indian Reservation, North Dakota
STATUS OF MINERAL RESOURCE INFORMATION FOR THE FORT BERTHOLD INDIAN RESERVATION, NORTH DAKOTA By Bradford B. Williams Mary E. Bluemle U.S. Bureau of Mines N. Dak. Geological Survey Administrative report BIA-40 1978 CONTENTS SUMMARY AND CONCLUSIONS ................................................. 1 INTRODUCTION ................................................................ 1 Area Location and Access .................................................... 1 Past Investigations .......................................................... 2 Present Study and Acknowledgments ........................................... 2 Land Status................................................................ 2 Physiography .............................................................. 3 GEOLOGY ..................................................................... 4 Stratigraphy ............................................................... 4 Subsurface .......................................................... 4 Surface ............................................................. 4 General ....................................................... 4 Bullion Creek and Sentinel Butte Formations ......................... 8 Golden Valley Formation......................................... 9 Cole Harbor Formation .......................................... 9 Structure................................................................. 10 MINERAL RESOURCES ......................................................... 11 General ................................................................. -
Mesocyparis Rosanovii</Emphasis> Sp. Nov
ISSN 0031-0301, Paleontological Journal, 2006, Vol. 40, No. 3, pp. 328–338. © Pleiades Publishing, Inc., 2006. Original Russian Text © T.M. Kodrul, M.V. Tekleva, V.A. Krassilov, 2006, published in Paleontologicheskii Zhurnal, 2006, No. 3, pp. 93–102. A New Conifer Species, Mesocyparis rosanovii sp. nov. (Cupressaceae, Coniferales), and Transberingian Floristic Connections T. M. Kodrula, M. V. Teklevab, and V. A. Krassilovc aGeological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 109017 Russia e-mail: [email protected] bPaleontological Institute of Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117997 Russia cInstitute of Evolution, University of Haifa, Mount Carmel 31905, Haifa, Israel Received October 25, 2005 Abstract—A new species, Mesocyparis rosanovii sp. nov. from the Lower Paleocene of the Amur Region, Rus- sia, is characterized by a combination of advanced and primitive features: mixed opposite-alternate branching of vegetative shoots, leafy microsporophylls, as well as a relatively high number of sporangia per microsporo- phyll and seeds per cone scale. The Late Cretaceous–Early Paleogene genus Mesocyparis McIver et Basinger, which obviously embraces a natural group of closely related species, was a significant component of the vege- tation in the middle and high latitudes of eastern Asia and western North America. The range of the genus tes- tifies to terrestrial Transberingian connections between the continents during the Cretaceous warming phases. DOI: 10.1134/S0031030106030142 Key words: conifers, Cupressaceae, Paleocene, Amur Region, Beringia, phytogeography. INTRODUCTION from each other, which would have virtually excluded the possibility of migration. The problem of floristic exchanges between eastern In this context, phytogeographic relations between Asia and western regions of North America has long Asia and North America should be revised using mod- attracted the attention of phytogeographers. -
Petroleum Geochemistry of the Lower Cretaceous
Petroleum Geochemistry of the Lower Cretaceous Mannville and Jurassic Ellis Groups, Southern Alberta, Canada Kim Manzano-Kareah *, Shell International Exploration and Production, Houston, USA [email protected] The variation of oil quality in southern Alberta, Western Canada Sedimentary Basin, Canada is primarily due to differences in oils generated from different source rocks and biodegradation of oils in reservoirs. 280 oil samples were collected and analysed by GC and GC-MS, in order to assess the nature and extent of these petroleum systems. Oils from Lower Cretaceous Mannville and Jurassic Ellis Group reservoirs in southern Alberta, Canada (T1-40; R1-25W5) were generated from at least five different source rocks. The proven/probable source rocks include: the Devonian Duvernay Formation (Family D), the Devonian-Mississippian Exshaw Formation (Family E), a probable Paleozoic source (Family M), a probable Jurassic source (Rierdon/Fernie shales; Family F), and the Cretaceous Ostracod Zone (Family Q). Family D oils are restricted to the northernmost part of the study area (Provost field). Biodegradation and the mixing of degraded with non-degraded oils are the main factors controlling the variation in oil quality within a given family. The much improved understanding of oil families and degree of biodegradation allow for more accurate mapping of likely oil migration pathways. Known reservoir trends, subcrop edges, structure, hydrodynamics, the distribution and quality of known oil pools can all be integrated into mapping migration paths. This allows for more accurate mapping of likely oil and gas migration pathways, which can be used for prospect risking and for the ranking of exploration plays. -
This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) VOLUME 11-A OCCURRENCE AND CHARACTERISTICS OF GROUND WATER IN THE BIGHORN BASIN, WYOMING Robert Libra, Dale Doremus , Craig Goodwin Project Manager Craig Eisen Water Resources Research Institute University of Wyoming Report to U.S. Environmental Protection Agency Contract Number G 008269-791 Project Officer Paul Osborne June, 1981 INTRODUCTION This report is the second of a series of hydrogeologic basin reports that define the occurrence and chemical quality of ground water within Wyoming. Information presented in this report has been obtained from several sources including available U.S. Geological Survey publications, the Wyoming State Engineer's Office, the Wyoming Geological Survey, and the Wyoming Oil and Gas Conservation Commission. The purpose of this report is to provide background information for implementation of the Underground Injection Control Program (UIC). The UIC program, authorized by the Safe Drinking Water Act (P.L. -
Mannville Group of Saskatchewan
Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan. -
A King-Size Theropod Coprolite
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232796267 A king-size theropod coprolite Article in Nature · June 1998 DOI: 10.1038/31461 CITATIONS READS 154 2,385 4 authors, including: Karen Chin Tim Tokaryk University of Colorado Boulder Royal Saskatchewan Museum 32 PUBLICATIONS 1,143 CITATIONS 39 PUBLICATIONS 488 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Dinosaur Park Formation of Saskatchewan View project Paleobiodiverity and the K-Pg Boundary View project All content following this page was uploaded by Tim Tokaryk on 10 June 2015. The user has requested enhancement of the downloaded file. letters to nature compositions, though the ground mass contains more silicon and aluminium (Table 2). X-ray powder-diffraction analyses indicate A king-sized theropod that carbonate fluorapatite is the predominant phosphate mineral in both the bone and the ground mass. coprolite Several factors confirm that this specimen is a coprolite. The most diagnostic feature is a phosphatic composition, which is character- Karen Chin, Timothy T. Tokaryk*, Gregory M. Erickson†‡ istic of carnivore coprolites9. As phosphorus normally constitutes & Lewis C. Calk 10 only about 0.1% of the Earth’s crustal rocks , concentrated phos- United States Geological Survey, 345 Middlefield Road, MS 975, Menlo Park, phate deposits usually indicate biotic accumulations, and the overall 8 California 94025, USA configuration of the mass is consistent with the irregular faecal * Eastend Fossil Research Station, Royal Saskatchewan Museum, Box 460, deposits produced by very large animals. The matrix-supported Eastend, Saskatchewan S0N 0T0, Canada distribution of bone fragments argues against the possibility that the † Department of Integrative Biology & Museums of Vertebrate Zoology and mass represents regurgitated material or fluvially aggregated bone Paleontology, University of California, Berkeley, California 94720, USA debris. -
Carboniferous Formations and Faunas of Central Montana
Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________ -
FORT BELKNAP RESERVATION List of Topics
FORT BELKNAP RESERVATION List of Topics BACKGROUND Reservation Overview Regional Geologic Overview GEOLOGIC OVERVIEW Geologic History Summary of Play Types CONVENTIONAL PLAY TYPES Play 1 - Shallow Cretaceous Biogenic Gas Play Play 2 - Northern Plains Biogenic Gas Play Plays 3,4,5 - Jurassic/Cretaceous and Mississippian Plays UNCONVENTIONAL / HYPOTHETICAL PLAY TYPES Plays 6,7 - Fractured Bakken and Cambrian Sandstone Plays REFERENCES Historical Background of the OVERVIEW (i.e. joint ventures) in contrast to procedures and regulatory minimums imposed Assiniboine and Gros Ventre Tribes at Fort Belknap by the previous 1938 Minerals Leasing Act. The 1982 Act further provides that FORT BELKNAP RESERVATION The Fort Belknap Indian Reservation was created in 1887 as the home for the individual Indian allottees may join agreements negotiated for tribal lands. The Assiniboine and Gros Ventre Tribes Assiniboine and Gros Ventre Indian Tribes. The ancestors of these tribes have section entitled Operating Regulations discusses the procedures for obtaining lived on the northern plains for several centuries. The Assiniboine were allottee participance in the negotiated agreement. recognized by Europeans as part of the great Sioux Nation and speak a Siouan Principal components for the formal corporate proposal should include the TRIBAL HEADQUARTERS: Fort Belknap Agency, Montana language. However, their name is taken from a Chippewa word referring to area(s) of interest, type of contract, elaboration of proposed agreement terms, GEOLOGIC SETTING: Williston Basin "those who cook with stones." At some point in time the Assiniboine bands points of potential negotiation, diligence commitments (i.e. drilling), bonus broke with the traditional Sioux and allied themselves with the Cree. -
Wyoming-Skye Dinosaurs
Clark, N.D.L. and Brett-Surman, M.K. (2008) A comparison between dinosaur footprints from the Middle Jurassic of the Isle of Skye, Scotland, UK, and Shell, Wyoming, USA. Scottish Journal of Geology, 44 (2). pp. 139-150. ISSN 0036-9276 http://eprints.gla.ac.uk/4807/ Deposited on: 14 April 2009 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk A comparison between dinosaur footprints from the Middle Jurassic of the Isle of Skye, Scotland, UK, and Shell, Wyoming, USA N. D. L. CLARK1 & M. K. BRETT-SURMAN2 1Hunterian Museum and Art Gallery, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK (e-mail: [email protected]) 2Smithsonian Institution, Department of Paleobiology, PO Box 37012, MRC 121 Washington, DC 20013-7012, USA Synopsis Measurements of Middle Jurassic tridactyl dinosaur tracks from the Bathonian, Lealt Shale, Valtos Sandstone, Duntulm and Kilmaluag formations of the Isle of Skye, UK, are compared to the same measurements taken for dinosaur footprints from the Bajocian, Gypsum Spring and the Bathonian, Sundance Formation of the Bighorn Basin, Wyoming, USA. Principal component analysis of the data suggests that the smaller footprints from the Valtos Sandstone and Kilmaluag formations are indistinguishable from the footprints of the Sundance Formation. The single footprint from the Lealt Shale Formation is similar to the larger footprints from the Valtos Sandstone Formation. The footprints from the Duntulm and Gypsum Springs formations form distinct groupings from all other footprints. Four different groupings of dinosaur footprints can be recognized from the principal component analysis that may represent at least four different types of dinosaur. -
The Pro-Ostracum and Primordial Rostrum at Early Ontogeny of Lower Jurassic Belemnites from North-Western Germany
Coleoid cephalopods through time (Warnke K., Keupp H., Boletzky S. v., eds) Berliner Paläobiol. Abh. 03 079-089 Berlin 2003 THE PRO-OSTRACUM AND PRIMORDIAL ROSTRUM AT EARLY ONTOGENY OF LOWER JURASSIC BELEMNITES FROM NORTH-WESTERN GERMANY L. A. Doguzhaeva1, H. Mutvei2 & W. Weitschat3 1Palaeontological Institute of the Russian Academy of Sciences 117867 Moscow, Profsoyuznaya St., 123, Russia, [email protected] 2 Swedish Museum of Natural History, Department of Palaeozoology, S-10405 Stockholm, Sweden, [email protected] 3 Geological-Palaeontological Institute and Museum University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany, [email protected] ABSTRACT The structure of pro-ostracum and primordial rostrum is presented at early ontogenic stages in Lower Jurassic belemnites temporarily assigned to ?Passaloteuthis from north-western Germany. For the first time the pro-ostracum was observed in the first camerae of the phragmocone. The presence of a pro-ostracum in early shell ontogeny supports Naef”s opinion (1922) that belemnites had an internal skeleton during their entire ontogeny, starting from the earliest post-hatching stages. This interpretation has been previously questioned by several writers. The outer and inner surfaces of the juvenile pro-ostracum were studied. The gross morphology of these surfaces is similar to that at adult ontogenetic stages. Median sections reveal that the pro-ostracum consists of three thin layers: an inner and an outer prismatic layer separated by a fine lamellar, predominantly organic layer. These layers extend from the dorsal side of the conotheca to the ventral side. The information obtained herein confirms the idea that the pro-ostracum represents a structure not present in the shell of ectocochleate cephalopods (Doguzhaeva, 1999, Doguzhaeva et al.