FORT BELKNAP RESERVATION List of Topics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ennis 30 X 60 Text–MBMG
GEOLOGIC MAP OF THE ENNIS 30' x 60' QUADRANGLE MADISON AND GALLATIN COUNTIES, MONTANA, AND PARK COUNTY, WYOMING by Karl S. Kellogg* and Van S. Williams* Montana Bureau of Mines and Geology Open-File Report 529 2006 * U. S. Geological Survey, Denver, CO Revisions by MBMG This report has been reviewed for conformity with Montana Bureau of Mines & Geology’s technical and editorial standards. Introductory Note This geologic quadrangle map is based almost entirely on the original map by Karl S. Kellogg and Van S. Williams (2000) published by the U.S. Geological Survey as Geologic Investigation Series I-2690, scale 1:100,000. Differences from the original map arise from MBMG’s effort to integrate the Ennis quadrangle data with adjacent MBMG quadrangle maps to establish a seamless geologic coverage in southwest Montana. To this end, some map unit letter symbols have been revised, twelve new units have been added, two units have been dropped, and a few unit text descriptions have been slightly modified. 1 Kalispell MONTANA 15 Great Falls 90 Missoula Helena 94 Butte Bozeman Billings 90 90 15 112°00' R3W R2W R1W R1E R2E R3E R4E R5E 111°00' 45°30' R n o s T4S 287 i d a 191 Mc Allister M Ennis TOBACCO ROOT Lake MOUNTAINS T5S r MADISON CO CO GALLATIN C Ja te ck ni C ra r G Ennis Virginia T6S City 287 A Big Sky CO PARK ld Big Sky e r Meadow Village C Mountain Village r GALLATIN CO GALLATIN G M r C a k a c l o d R T7S l i a s Cameron t o Bea i r C n n r GALLATIN RANGE GRAVELLY R 287 R i i v v RANGE e MADISON RANGE r e T8S Indian Cr r ylor Fo r Ta k R ub r y C T9S R by 191 Ru 45°00' 0246 mile 0 2 46 8 km Figure 1. -
Mineral Resources of the Cow Creek and Antelope Creek Wilderness Study Areas, Blaine and Phillips Counties, Montana
Mineral Resources of the Cow Creek and Antelope Creek Wilderness Study Areas, Blaine and Phillips Counties, Montana U.S. GEOLOGICAL SURVEY BULLETIN 1722-C Chapter C Mineral Resources of the Cow Creek and Antelope Creek Wilderness Study Areas, Blaine and Phillips Counties, Montana By JAMES W. MYTTON, VIKI BANKEY, M. DEAN KLEINKOPF, JOHN W. M'GONIGLE, and EDWARD E. MCGREGOR U.S. Geological Survey MICHAEL S. MILLER and J. DOUGLAS CAUSEY U.S. Bureau of Mines U.S. GEOLOGICAL SURVEY BULLETIN 1722 MINERAL RESOURCES OF WILDERNESS STUDY AREAS EASTERN MONTANA DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1988 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Mineral resources of the Cow Creek and Antelope Creek Wilderness Study Areas, Blaine and Phillips counties, Montana (Mineral resources of wilderness study areas eastern Montana ; ch. C) (U.S. Geological Survey bulletin ; 1722-C) Bibliography: p. Supt. of Docs. No.: I 19.3:1722-C 1. Mines and mineral resources Montana Cow Creek Wilderness. 2. Mines and mineral resources Montana Antelope Creek Wilderness. 3. Cow Creek Wilderness (Mont.) 4. Antelope Creek Wilderness (Mont.) I. Mvtton, James W. II. Series. III. Series: U.S. Geological Survey bulletin ; 1722-C. QE75.B9 no. 1722-C 557.3 s [553'.09786'15] 87-600377 [TN24.M9] STUDIES RELATED TO WILDERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. -
Chapter Upper Cretaceous Reservoirs
CHAPTER 9 UPPER CRETACEOUS RESERVOIRS P. Viney, Petrel Robertson; Part B: Belly River Fm; and J.F. Chappell, L.L. & E. Canada; Part A: Cardium Fm INTRODUCTION The Bearpaw Fm, over 150 m thick in southcentral Alberta it would appear that exploration dollars directed towards them could Walker (1987, 1988), Swagor (1975) and Swagor et al. (1976). (14-18-2-23W4M), thins to the north and grades into the non-marine yield a good rate of return. Interest in exploration for these Cardium Fm conglomerate reser The evolution of the Alberta Basin during Upper Cretaceous time sequence of the overlying Horseshoe Canyon Fm (Edmonton Gp). voirs was reactivated in the early 1980's due to the discovery of and its effect on the geologic section is covered in the introduction to The four major Upper Cretaceous reservoirs are: 1) The Cardium; several new Cardium Fm pools and the recognition that modern this text. Strata of the Upper Cretaceous underlie most of the area Production has been obtained from the Upper Cretaceous section 2) The lower Belly River; 3) The Dunvegan-Doe Creek; and 4) The seismic reflection technology could be used in their detection covered by the Western Canada Sedimentary Basin in an almost con for many years. However, prospecting for Upper Cretaceous hydro Belly River fluvial. (Chappell, 1984, 1985; Wren, 1984). The Carrot Creek Cardium S tinuous sequence of deposition. From the Base of Fish Scales Zone, carbons did not begin in earnest until the discovery of Cardium pool, located in 53-12 and 13 W5M (Fig. 9.4), is a typical example. -
GEOLOGY and OIL and GAS PROSPECTS of the HUNTLEY FIELD, Montanj
GEOLOGY AND OIL AND GAS PROSPECTS OF THE HUNTLEY FIELD, MONTANj By E. T. HANCOCK. INTRODUCTION. The Huntley field is in Yellowstone and Big Horn counties, south- central Montana, and embraces an area of about 650 square miles, part of which lies northwest and part southeast of Yellowstone River. The field has railroad facilities that are exceptionally good for this general region, being traversed by the main lines of the Northern Pacific and the Chicago, Burlington & Quincy railroads. These roads furnish excellent shipping facilities at Huntley, Warden, Ballantine, Pompeys Pillar, and other points. Acknowledgments. In presenting this report the writer desires to express his thanks to David White for valuable suggestions and criticisms, to T. W. Stanton and F. H. Knowlton for the identifica tion of fossils, and to C. E. Dobbins for assistance in the detailed mapping. He also wishes to call attention to the public service rendered by oil and gas operators who have furnished records of deep borings and by individuals who have contributed in various ways to the success of the investigation. Earlier investigations. The Huntley field is in reality an ex tension of the Lake Basin field, which was mapped by the writer during the summer of 1916.1 The geologic investigation of the region including the Lake Basin and Huntley fields began with the Northern Transcontinental Survey of 1882. Prior to that time geologists had described certain struc tural features and the stratigraphic succession at points closely ad jacent to these fields, such as Judith Gap, the canyon of the North Fork of the- Musselshell, and the Bridger Range, but almost noth ing had been written concerning the geology of the area herein de scribed. -
Paleoindian Land Use in Glacier National Park
PALEOINDIAN LAND USE IN GLACIER NATIONAL PARK John J. Kinsner, M.A. Final Report 2010 Author’s Acknowledgements This project was made possible by funding provided from the National Park Service’s Rocky Mountain Cooperative Ecosystem Studies Unit (RM-CESU). The author would like to extend special thanks to Christine Whitacre and Pei-Lin Yu of the RM-CESU, Lon Johnson and Deirdre Shaw of Glacier National Park, and Dr. Douglas H. MacDonald of the University of Montana. John J. Kinsner OUTLINE 1. Title Page w/ photo 4 (Mount Carter) 2. Acknowledgements 2. Report Outline 3. Introduction 3. Cultural Chronology 3. Table 1 5. Paleoindian Evidence in Glacier Park 6. Original Interpretations w/ photo 1 (Alberta projectile point) 7. Other Evidence 9. Seasonality 9. Physical Evidence 11. Depositional Environment 12. Three Hypotheses 15. Discussion 16. Conclusion 18. Figure 1 19. Photos 2 – 3 20. Photos 4 - 5 21. Bibliography 2 It has generally been understood that Glacier National Park (GNP) has a 10,000 year culture history as implied by the archeological record of GNP, park brochures, numerous publications (Reeves 2003), and governmental, corporate, and private web sites (nps.gov, Wikipedia.com, fcvb.org). However, this presumption is based upon a very weak record of Paleoindian occupation within park boundaries represented by two isolated, surface discoveries, and three typologically non-diagnostic, non-stratified basalt knives. Of the three represented ‘sites’, only one potentially represents Alpine land use within GNP and may or may not be related to Paleoindian activities. This paper examines this lone Paleoindian alpine site in order to extract a logical explanation of its deposition and to offer up possible evidence of early human occupation in one of the more remote and inaccessible regions of GNP. -
Mannville Group of Saskatchewan
Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan. -
Carboniferous Formations and Faunas of Central Montana
Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________ -
TGI Strat Column 2009.Cdr
STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone -
NATIONAL REGISTER of HISTORIC PLACES REGISTRATION FORM B
NFS Fbnn 10-900 'Oitntf* 024-0019 (Rev. 10-90) United States Department of the Interior National Park Service I * II b 1995 NATIONAL REGISTER OF HISTORIC PLACES REGISTRATION FORM iNTERAGENCY RBOr- „ NATIONAL i3AR: 1. Name of Property fe NAllUNAL HhblbiLH d»vu,su historic name: Glacier National Park Tourist Trails: Inside Trail; South Circle; North Circle other name/site number Glacier National Park Circle Trails 2. Location street & number N/A not for publication: n/a vicinity: Glacier National Park (GLAC) city/town: N/A state: Montana code: MT county: Flathead; Glacier code: 29; 35 zip code: 59938 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act of 1988, as amended, I hereby certify that this X nomination _ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property X meets _ does not meet the National Register Criteria. I recommend that this property be considered significant _ nationally X statewide _ locally. ( See continuation sheet for additional comments.) ) 9. STgnatuTBof 'certifying official/Title National Park Service State or Federal agency or bureau In my opinion, thejiuipKty. does not meet the National Register criteria. gj-^ 1B> 2 9 1995. Signature of commenting or other o Date Montana State Preservation Office State or Federal agency and bureau 4. National Park Service -
Nano-Petrophysics Study of the Three Forks Formation in The
NANO-PETROPHYSICS STUDY OF THE THREE FORKS FORMATION IN THE WILLISTON BASIN, NORTH DAKOTA, U.S.A. by DANIEL SAMUEL BAAH Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Daniel Samuel Baah 2015 All Rights Reserved ii Acknowledgements I would like to begin by thanking God Almighty for His strength, love and grace throughout my research project. Special thanks to my supervisor Dr. Qinhong Hu and my other committee members, Dr. John Wickham and Dr. William Griffith for their support and guidance throughout the project. I would also like to thank the Ms. Julie LeFever and the staff of the Wilson M. Laird Core and Sample Library and the North Dakota Geological Survey for allowing me to use their facilities, photographs, and samples. Lastly, I would like to thank my parents and siblings for their persistent love and support throughout my lifetime of education. Their support in my educational pursuits, their suggestions to improve my work, and also the necessary tools I have needed to succeed in life have ultimately guided me to this point. April 3, 2015 iii Abstract NANO-PETROPHYSICS STUDY OF THE THREE FORKS FORMATION IN THE WILLISTON, NORTH DAKOTA, U.S.A. Daniel Samuel Baah, M.S. The University of Texas at Arlington, 2015 Supervising Professor: Max Qinhong Hu The Late Devonian Three Forks Formation has increasingly become one of the productive plays in the Williston Basin, North Dakota. -
Unconventional Shallow Biogenic Gas Systems
Unconventional shallow AUTHORS George W. Shurr ϳ GeoShurr Resources, biogenic gas systems LLC, Rt. 1, Box 91A, Ellsworth, Minnesota, 56129; [email protected] George W. Shurr and Jennie L. Ridgley George W. Shurr is an independent geologist and partner in GeoShurr Resources, LLC. He recently retired from a thirty-year career of university teaching and consulting. His B.A. ABSTRACT degree is from the University of South Dakota, Unconventional shallow biogenic gas falls into two distinct systems his M.S. degree is from Northwestern that have different attributes. Early-generation systems have blan- University, and his Ph.D. is from the University of Montana. His research interests include ketlike geometries, and gas generation begins soon after deposition shallow gas systems on basin margins, of reservoir and source rocks. Late-generation systems have ringlike lineament block tectonics, and Cretaceous geometries, and long time intervals separate deposition of reservoir stratigraphy in the northern Great Plains. and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks Jennie L. Ridgley ϳ U.S. Geological Survey, that are not thermally mature. Box 25046, MS 939, Denver, Colorado, Early-generation biogenic gas systems are typified by produc- 80225-0046; [email protected] tion from low-permeability Cretaceous rocks in the northern Great Jennie Ridgley received her B.S. degree in Plains of Alberta, Saskatchewan, and Montana. The main area of mathematics from Pennsylvania State production is on the southeastern margin of the Alberta basin and University and M.S. degree in geology from the northwestern margin of the Williston basin. -
Williston Basin Project (Targeted Geoscience Initiative II): Summary Report on Paleozoic Stratigraphy, Mapping and Hydrocarbon A
Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and GP2008-2 hydrocarbon assessment, southwestern Manitoba By M.P.B. Nicolas and D. Barchyn GEOSCIENTIFIC PAPER Geoscientific Paper GP2008-2 Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and hydrocarbon assessment, southwestern Manitoba by M.P.B. Nicolas and D. Barchyn Winnipeg, 2008, reprinted with minor revisions January, 2009 Science, Technology, Energy and Mines Mineral Resources Division Hon. Jim Rondeau John Fox Minister Assistant Deputy Minister John Clarkson Manitoba Geological Survey Deputy Minister E.C. Syme Director ©Queen’s Printer for Manitoba, 2008, reprinted with minor revisions, January 2009 Every possible effort is made to ensure the accuracy of the information contained in this report, but Manitoba Science, Technol- ogy, Energy and Mines does not assume any liability for errors that may occur. Source references are included in the report and users should verify critical information. Any digital data and software accompanying this publication are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation and/or any use of proprietary data formats in this release do not constitute endorsement by Manitoba Science, Technology, Energy and Mines of any manufacturer’s product. When using information from this publication in other publications or presentations, due acknowledgment should be given to the Manitoba Geological Survey. The following reference format is recommended: Nicolas, M.P.B, and Barchyn, D.