Reconstruction of Forest Fires Through Chemical Analysis of Black Carbon in Ice Cores from High- Alpine Glaciers

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction of Forest Fires Through Chemical Analysis of Black Carbon in Ice Cores from High- Alpine Glaciers Reconstruction of forest fires through chemical analysis of black carbon in ice cores from high- alpine glaciers Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Dimitri Osmont aus Frankreich Leiterin der Arbeit: Prof. Dr. Margit Schwikowski Departement für Chemie und Biochemie der Universität Bern Reconstruction of forest fires through chemical analysis of black carbon in ice cores from high- alpine glaciers Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Dimitri Osmont aus Frankreich Leiterin der Arbeit: Prof. Dr. Margit Schwikowski Departement für Chemie und Biochemie der Universität Bern Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, Der Dekan: Prof. Dr. Z. Balogh Contents List of abbreviations ............................................................................................................................. 7 Summary ................................................................................................................................................ 9 1 Introduction ...................................................................................................................................... 12 1.1 Ice cores as climate archives ....................................................................................................... 12 1.1.1 Current climate change ........................................................................................................ 12 1.1.2 Paleoclimate archives ........................................................................................................... 13 1.1.3 The ice core perspective ....................................................................................................... 15 1.2 Fires, climate and humans ........................................................................................................... 17 1.2.1 Fires: the current situation .................................................................................................... 17 1.2.2 A complex relationship ........................................................................................................ 19 1.2.3 Motivation: the “Broken Fire Hockey Stick” hypothesis..................................................... 20 1.3 Biomass burning proxies in ice cores ......................................................................................... 22 1.3.1 Black carbon ........................................................................................................................ 22 1.3.2 Other proxies ........................................................................................................................ 25 1.3.3 State of the art in ice-core based fire reconstructions .......................................................... 26 1.4 Aim of the study: the PaleoFire project ..................................................................................... 28 References ......................................................................................................................................... 30 2 Ice cores investigated in this thesis ................................................................................................. 39 2.1 Lomonosovfonna, Svalbard ........................................................................................................ 39 2.1.1 Regional settings .................................................................................................................. 39 2.1.2 Ice-core drilling .................................................................................................................... 40 2.1.3 Ice-core dating ..................................................................................................................... 41 2.1.4 Previous studies ................................................................................................................... 42 2.2 Illimani, Bolivian Andes ............................................................................................................. 42 2.2.1 Regional settings .................................................................................................................. 42 2.2.2 Ice-core drilling .................................................................................................................... 44 2.2.3 Ice-core dating ..................................................................................................................... 44 2.2.4 Previous studies ................................................................................................................... 45 2.3 Colle Gnifetti, Swiss Alps ........................................................................................................... 46 2.3.1 Regional settings .................................................................................................................. 46 2.3.2 Ice-core drilling .................................................................................................................... 47 2.3.3 Ice-core dating ..................................................................................................................... 48 2.3.4 Previous studies ................................................................................................................... 49 2.4 Tsambagarav, Mongolian Altai................................................................................................... 49 2.4.1 Regional settings .................................................................................................................. 49 2.4.2 Ice-core drilling .................................................................................................................... 51 2.4.3 Ice-core dating ..................................................................................................................... 51 2.4.4 Previous studies ................................................................................................................... 52 2.5 Summary ..................................................................................................................................... 53 References ......................................................................................................................................... 54 3 Methods ............................................................................................................................................. 59 3.1 Ice-core processing ..................................................................................................................... 59 3.1.1 General procedure ................................................................................................................ 59 3.1.2 Within the PaleoFire project ............................................................................................... 59 3.2 Black carbon analysis ................................................................................................................. 61 3.2.1 The Single Particle Soot Photometer (SP2) ......................................................................... 61 3.2.2 Setup for ice-core analysis ................................................................................................... 63 3.2.3 Routine measurements ......................................................................................................... 64 3.2.4 Optimization with autosampler ............................................................................................ 65 3.3 Major ion analysis ....................................................................................................................... 66 3.4 Water stable isotope analysis ...................................................................................................... 67 3.5 Summary of the analytical work ................................................................................................. 69 References ......................................................................................................................................... 70 4 An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard . 72 Abstract ............................................................................................................................................. 72 4.1 Introduction ................................................................................................................................. 72 4.2 Methods....................................................................................................................................... 75 4.2.1 Drilling site and ice core characteristics .............................................................................. 75 4.2.2 Sampling, chemical analyses and dating .............................................................................. 75 4.2.3 rBC analysis ......................................................................................................................... 76 4.2.4 BC emission inventories ...................................................................................................... 77 4.2.5 Paleofire detection................................................................................................................ 77 4.3 Results and discussion ...............................................................................................................
Recommended publications
  • U.S. National Black Carbon and Methane Emissions a Report to the Arctic Council
    U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 TABLE OF CONTENTS EXECUTIVE SUMMARY. 1 ABOUT THIS REPORT. 1 SUMMARY OF CURRENT BLACK CARBON EMISSIONS AND FUTURE PROJECTIONS . 2 SUMMARY OF CURRENT METHANE EMISSIONS AND FUTURE PROJECTIONS. 4 SUMMARY OF NATIONAL MITIGATION ACTIONS BY POLLUTANT AND SECTOR . 6 BLACK CARBON . .6 METHANE . 11 HIGHLIGHTS OF BEST PRACTICES AND LESSONS LEARNED FOR KEY SECTORS . .16 TRANSPORT/MOBILE . 16 OPEN BIOMASS BURNING (INCLUDING WILDFIRES) . 16 RESIDENTIAL/DOMESTIC . .17 OIL & NATURAL GAS. .17 OTHER . 17 PROJECTS RELEVANT FOR THE ARCTIC. .18 ARCTIC AIR QUALITY IMPACT ASSESSMENT MODELING. 18 BLACK CARBON DEPOSITION ON U.S. SNOW PACK . .18 EMISSIONS AND TRANSPORT FROM AGRICULTURAL BURNING AND FOREST FIRES . .18 MEASUREMENT OF BLACK CARBON AND METHANE IN THE ARCTIC. .18 MEASUREMENT OF MARITIME BLACK CARBON EMISSIONS AND DIESEL FUEL ALTERNATIVES. .18 REDUCTION OF BLACK CARBON IN THE RUSSIAN ARCTIC. .19 VALDAY CLUSTER UPGRADE FOR BLACK CARBON REDUCTION IN THE REPUBLIC OF KARELIA, RUSSIAN FEDERATION. 19 AVIATION CLIMATE CHANGE RESEARCH INITIATIVE. .20 TRACKING SOURCES OF BLACK CARBON IN THE ARCTIC . 20 OTHER INFORMATION. .20 APPENDIX 1: U.S. BLACK CARBON EMISSIONS . .22 APPENDIX 2: U.S. METHANE EMISSIONS (MMT CO2E), 1990–2013 . 24 EXECUTIVE SUMMARY U.S. black carbon emissions are declining and additional reductions are expected, largely through strategies to reduce the emissions from mobile diesel engines that account for roughly 40 percent of the U.S. total. A number of fine particulate matter (PM2.5) control strategies have proven successful in reducing black carbon emissions from mobile sources.
    [Show full text]
  • Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, Et Al
    Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, et al. Science 297, 2250 (2002); DOI: 10.1126/science.1075159 The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 3, 2008 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/297/5590/2250 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250#related-content This article cites 23 articles, 3 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles on October 3, 2008 This article has been cited by 251 article(s) on the ISI Web of Science. This article has been cited by 8 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles This article appears in the following subject collections: Atmospheric Science http://www.sciencemag.org/cgi/collection/atmos www.sciencemag.org Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
    [Show full text]
  • Aerosols, Their Direct and Indirect Effects
    5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect
    [Show full text]
  • Black Carbon-Induced Snow Albedo Reduction Over the Tibetan Plateau
    Atmos. Chem. Phys., 18, 11507–11527, 2018 https://doi.org/10.5194/acp-18-11507-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model Cenlin He1,2, Mark G. Flanner3, Fei Chen2,4, Michael Barlage2, Kuo-Nan Liou5, Shichang Kang6,7, Jing Ming8, and Yun Qian9 1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA 2Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA 4State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China 5Joint Institute for Regional Earth System Science and Engineering, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA 6State key laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 7CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China 8Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 9Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA Correspondence: Cenlin He ([email protected]) Received: 12 May 2018 – Discussion started: 22 May 2018 Revised: 31 July 2018 – Accepted: 4 August 2018 – Published: 15 August 2018 Abstract. We implement a set of new parameterizations into regional and seasonal variations, with higher values in the the widely used Snow, Ice, and Aerosol Radiative (SNICAR) non-monsoon season and low altitudes.
    [Show full text]
  • Black Carbon and Methane in the Norwegian Barents Region Black Carbon and Methane in the Norwegian Barents Region | M276
    REPORT M-276 | 2014 Black carbon and methane in the Norwegian Barents region Black carbon and methane in the Norwegian Barents region | M276 COLOPHON Executive institution The Norwegian Environment Agency Project manager for the contractor Contact person in the Norwegian Environment Agency Ingrid Lillehagen, The Ministry of Climate and Solrun Figenschau Skjellum Environment, section for polar affairs and the High North M-no Year Pages Contract number M-276 2014 15 Publisher The project is funded by The Norwegian Environment Agency The Norwegian Environment Agency Author(s) Maria Malene Kvalevåg, Vigdis Vestreng and Nina Holmengen Title – Norwegian and English Black carbon and methane in the Norwegian Barents Region Svart karbon og metan i den norske Barentsregionen Summary – sammendrag In 2011, land based emissions of black carbon and methane in the Norwegian Barents region were 400 tons and 23 700 tons, respectively. The largest emissions of black carbon originate from the transport sector and wood combustion in residential heating. For methane, the largest contributors to emissions are the agricultural sector and landfills. Different measures to reduce emissions from black carbon and methane can be implemented. Retrofitting of diesel particulate filters on light and heavy vehicles, tractors and construction machines will reduce black carbon emitted from the transport sector. Measures to reduce black carbon from residential heating are to accelerate the introduction of wood stoves with cleaner burning, improve burning techniques and inspect and maintain the wood stoves that are already in use. In the agricultural sector, methane emissions from food production can be reduced by using manure or food waste as raw material to biogas production.
    [Show full text]
  • Saving the Arctic the Urgent Need to Cut Black Carbon Emissions and Slow Climate Change
    AP PHOTO/IAN JOUGHIN PHOTO/IAN AP Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 WWW.AMERICANPROGRESS.ORG Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 Contents 1 Introduction and summary 3 Where does black carbon come from? 6 Future black carbon emissions in the Arctic 9 Why cutting black carbon outside the Arctic matters 13 Recommendations 19 Conclusion 20 Appendix 24 Endnotes Introduction and summary The Arctic is warming at a rate twice as fast as the rest of the world, in part because of the harsh effects of black carbon pollution on the region, which is made up mostly of snow and ice.1 Black carbon—one of the main components of soot—is a deadly and widespread air pollutant and a potent driver of climate change, espe- cially in the near term and on a regional basis. In colder, icier regions such as the Arctic, it peppers the Arctic snow with heat-absorbing black particles, increasing the amount of heat absorbed and rapidly accelerating local warming. This accel- eration exposes darker ground or water, causing snow and ice melt and lowering the amount of heat reflected away from the Earth.2 Combating climate change requires immediate and long-term cuts in heat-trap- ping carbon pollution, or CO2, around the globe. But reducing carbon pollution alone will not be enough to avoid the worst effects of a rapidly warming Arctic— slashing black carbon emissions near the Arctic and globally must also be part of the solution.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Black Carbon's Properties and Role in the Environment
    Sustainability 2010, 2, 294-320; doi:10.3390/su2010294 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Black Carbon’s Properties and Role in the Environment: A Comprehensive Review Gyami Shrestha 1,*, Samuel J. Traina 1 and Christopher W. Swanston 2 1 Environmental Systems Program, Sierra Nevada Research Institute, University of California- Merced, 5200 N. Lake Road, Merced, CA 95343, USA; E-Mail: [email protected] 2 Northern Institute of Applied Carbon Science, Climate, Fire, & Carbon Cycle Science Research, Northern Research Station, USDA Forest Service, 410 MacInnes Drive, Houghton, MI 49931, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 13 November 2009 / Accepted: 7 January 2010 / Published: 15 January 2010 Abstract: Produced from incomplete combustion of biomass and fossil fuel in the absence of oxygen, black carbon (BC) is the collective term for a range of carbonaceous substances encompassing partly charred plant residues to highly graphitized soot. Depending on its form, condition of origin and storage (from the atmosphere to the geosphere), and surrounding environmental conditions, BC can influence the environment at local, regional and global scales in different ways. In this paper, we review and synthesize recent findings and discussions on the nature of these different forms of BC and their impacts, particularly in relation to pollution and climate change. We start by describing the different types of BCs and their mechanisms of formation. To elucidate their pollutant sorption properties, we present some models involving polycyclic aromatic hydrocarbons and organic carbon. Subsequently, we discuss the stability of BC in the environment, summarizing the results of studies that showed a lack of chemical degradation of BC in soil and those that exposed BC to severe oxidative reactions to degrade it.
    [Show full text]
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • Expedition Report January 2017
    Expedition Report January 2017 In memory of Jamie Gardiner 1994 - 2017 “We left punters and returned Arctic Legends” Spitsbergen Retraced Expedition Report - January 2017 1 ​ Table of Contents Expedition Leader’s Foreword 5 Introduction 6 1923 - 2016 6 A Note on Using the Report 6 Expedition Members 7 James Lam - Expedition Leader 7 Will Hartz - Medical Officer 7 Liam Garrison - Expedition Photographer and Filmmaker 8 Jamie Gardiner - Expedition Historian and Filmmaker 8 Endre - Local Guide 9 Giles Colclough - Home Agent 9 Aims: Overview 10 Route 12 Retracing 13 The 1923 Expedition 13 Researching the 1923 Expedition 14 Bibliography 14 Key Discoveries in the Field 15 Archaeological Discoveries 15 Historical Revelations 16 Rephotography 17 Methodology 17 Results 18 Conclusion 21 Scientific Research 22 Biological research 22 Background 22 Aim 22 Methodology 23 Results 23 Drone Mapping 24 Background 24 Aim 25 Methodology 25 Results 26 Discussion 27 Spitsbergen Retraced Expedition Report - January 2017 2 ​ Mountaineering 28 Poincarétoppen, 1448m 28 Irvinefjellet, 1561m 28 Laplacetoppen, 1584m 29 Newtontoppen, 1712m 29 Makarovtoppen, 1534m 30 Černyševfjellet, South East shoulder, 1220m 30 Robertfjellet, 1122m 31 Expedition Diary 32 Training 39 Filming 41 In the field 41 Production in the UK 42 Logistics 43 Local guide 43 Field Agent 43 Transport 43 Flights 43 Excess baggage 43 Boat transport 44 Permits 44 Navigation 45 Ground Conditions 45 Weather 46 Carbon Offsetting 46 Equipment and Campcraft 47 Skis 47 Tents 47 Campcraft 48 Food and Fuel
    [Show full text]
  • Where the Views Captivate Buh
    WIN GREAT PRODUCTS FROM BERGANS HIKING WHERE THE VIEWS CAPTIVATE SVALBARD Sjuøyane Nordkapp Norden- Kvitøya skiøld- bukta Storøya ORVIN LAND GUSTAV V n e W LAND d r i j d Nordaustlandet NORWAY o j ef H j o i oodf n ALBERT I r l GUSTAV W d o LAND en p ADOLF HAAKON ANDRÈE e t Gamvik B n LAND te VII re North Cape n LAND t s LAND NY en 1368 S s e A 1454 FRIESLAND t rik Hurtigruten re Kapp E ik d Eidsvollfjellet te Er ngsfjorde t Mohn Abeløya 34 n r R Ko 1717 Berlevåg Ny Ålesund KONG KARLS Honningsvåg Kirkenes o Hiking regions: 1225 Newtontoppen Wilhelmøya Ri LAND 1085 val Kongsøya Kjøllefjord j E Fo Tre Kroner en OLAV V LAND su f r 1068 n Båtsfjord l d an e t Havøysund a PRINS OSCAR II Backlundtoppen Svenskøya n Varanger- Vardø N d LAND Kåfjord n KARLS s O un Spitsbergen e FORLAND lg a n a halvøya d e Barentsøya Porsanger- T s T e ord SABINE tr g t fj e Is te Varangerhalvøya t SOUTHERN NORWAY Page 6-11 Grumantbyen Longyearbyen halvøya n LAND 665 33 Nasjonalpark S Barentsburg Ifjord Kapp Linné Haastberget a Sveagruva NORDENSKJØLD 1 Setesdal Hammerfest s LAND Vadsø r S Edgeøya det NATHORST r d e n lsun n V a r a nge r f j o 2 Grenland el LAND o B e aSørøy Tana bru Grense WEDEL d E P JARLSBERG r rden Skaidi Jakobselv TORELL o jo 3 Middle-Telemark LAND j f v LAND f A ju Halvmåneøya Seiland r T Tonefjellet o 933 t Tusenøyane 4 West-Telemark Hornsundtind S 1430 Kirkenes SØRKAPP 5 Gaustatoppen LAND Stabbursdalen Lakselv Hopen Nasjonalpark 6 Rauland & Haukeli Sørkappøya Alta FJORD NORWAY Page 12-16 Ringvassøya NORWEGIAN SEA Karasjok 7 Stavanger &
    [Show full text]
  • Polskie Nazwy Geograficzne ~ Swiata
    POLSKIE NAZWY GEOGRAFICZNE ~ SWIATA Część I EUROPA (BEZ EUROPY WSCHODNIEJ) KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI POLSKI przy MINISTERSTWIE EDUKACJI NARODOWEJ POLSKIE NAZWY GEOGRAFICZNE ~ SWIATA Część I EUROPA (BEZ EUROPY WSCHODNIEJ) PAŃSTWOWA SŁUŻBA GEODEZYJNA I KARTOGRAFICZNA GŁÓWNY GEODETA KRAJU Warszawa 1994 Komisja Standaryzacji Nazw Geograficznych poza granicami Polski Jerzy Kondraclci (przewodniczący), Władysław Lubaś (zastępca przewodniczącego), Izabella Krauze-Tomczyk (sekretarz), członkowie: Stanisław Bijak: (do1991 r.), Andrzej Czemy (od 1993 r.), Zbigniew Dobosiewicz, Marian Jurkowski, Sabina Kacieszczenko, Dariusz Kalisiewicz, Tadeusz Lankamer, Andrzej Marcinkiewicz (do1992 r.), Jerzy Ostrowski, Kazimierz Rozalicz (od 1992 r.), Elżbieta Rychter, Kazimierz Rymut, Andrzej Trysła(od 1992 r.), Stanisław Urbańczyk, Bogodar Winid Opracowanie redakcyjne Izabella Krauze-Tomczyk, Jerzy Kondracki Konsultacja merytoryczna Jerzy Ostrowski © Copyright by Główny Geodeta Kraju ISBN 83-86339-50-0 Skład komputerowy i druk: Instytut Geodezji i Kartografii Warszawa, ul. Jasna 2/4 Spis treści Od Wydawcy. ....................................... .. V Wprowadzenie. ...................................... .. VII Objaśnienia skr6t6w ................................... .. IX l. Nazwy państw, jednostek politycznych i administracyjnych, krain historycznych oraz miejscowości , 1 n. Nazwy obiekt6w fizjograficznych , 24 1. Hydronimy. .............................. .. 24 Zatoki, cieśniny , 24 Jeziora, rzeki, kanały. ........................
    [Show full text]