Special Edition: Understanding Methane's Potential to Amplify Or
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Reforestation in Carbon Sequestration
New Forests (2019) 50:115–137 https://doi.org/10.1007/s11056-018-9655-3 The role of reforestation in carbon sequestration L. E. Nave1,2 · B. F. Walters3 · K. L. Hofmeister4 · C. H. Perry3 · U. Mishra5 · G. M. Domke3 · C. W. Swanston6 Received: 12 October 2017 / Accepted: 24 June 2018 / Published online: 9 July 2018 © Springer Nature B.V. 2018 Abstract In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. More broadly, reforestation following harvesting, recent or historic disturbances can enhance numerous carbon (C)-based ecosystem services and functions. These include production of woody biomass for forest products, and mitigation of atmos- pheric CO2 pollution and climate change by sequestering C into ecosystem pools where it can be stored for long timescales. Nonetheless, a range of assessments and analyses indicate that reforestation in the U.S. lags behind its potential, with the continuation of ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration, from ecosystems up to regional and national levels. Here, we describe the methods and report the fndings of a large-scale data synthesis aimed at four objectives: (1) estimate C storage in major ecosystem pools in forest and other land cover types; (2) quan- tify sources of variation in ecosystem C pools; (3) compare the impacts of reforestation and aforestation on C pools; (4) assess whether these results hold or diverge across ecore- gions. -
Long-Term Carbon Sink in Borneo's Forests Halted by Drought
Corrected: Publisher correction ARTICLE DOI: 10.1038/s41467-017-01997-0 OPEN Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects Lan Qie et al. Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records fi −1 1234567890 of up to half a century, we nd that intact forests in Borneo gained 0.43 Mg C ha per year (95% CI 0.14–0.72, mean period 1988–2010) in above-ground live biomass carbon. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere. Correspondence and requests for materials should be addressed to L.Q. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | 8: 1966 | DOI: 10.1038/s41467-017-01997-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01997-0 ver the past half-century land and ocean carbon sinks Nevertheless, crucial evidence required to establish whether the have removed ~55% of anthropogenic CO2 emissions to forest sink is pan-tropical remains missing. -
U.S. National Black Carbon and Methane Emissions a Report to the Arctic Council
U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 TABLE OF CONTENTS EXECUTIVE SUMMARY. 1 ABOUT THIS REPORT. 1 SUMMARY OF CURRENT BLACK CARBON EMISSIONS AND FUTURE PROJECTIONS . 2 SUMMARY OF CURRENT METHANE EMISSIONS AND FUTURE PROJECTIONS. 4 SUMMARY OF NATIONAL MITIGATION ACTIONS BY POLLUTANT AND SECTOR . 6 BLACK CARBON . .6 METHANE . 11 HIGHLIGHTS OF BEST PRACTICES AND LESSONS LEARNED FOR KEY SECTORS . .16 TRANSPORT/MOBILE . 16 OPEN BIOMASS BURNING (INCLUDING WILDFIRES) . 16 RESIDENTIAL/DOMESTIC . .17 OIL & NATURAL GAS. .17 OTHER . 17 PROJECTS RELEVANT FOR THE ARCTIC. .18 ARCTIC AIR QUALITY IMPACT ASSESSMENT MODELING. 18 BLACK CARBON DEPOSITION ON U.S. SNOW PACK . .18 EMISSIONS AND TRANSPORT FROM AGRICULTURAL BURNING AND FOREST FIRES . .18 MEASUREMENT OF BLACK CARBON AND METHANE IN THE ARCTIC. .18 MEASUREMENT OF MARITIME BLACK CARBON EMISSIONS AND DIESEL FUEL ALTERNATIVES. .18 REDUCTION OF BLACK CARBON IN THE RUSSIAN ARCTIC. .19 VALDAY CLUSTER UPGRADE FOR BLACK CARBON REDUCTION IN THE REPUBLIC OF KARELIA, RUSSIAN FEDERATION. 19 AVIATION CLIMATE CHANGE RESEARCH INITIATIVE. .20 TRACKING SOURCES OF BLACK CARBON IN THE ARCTIC . 20 OTHER INFORMATION. .20 APPENDIX 1: U.S. BLACK CARBON EMISSIONS . .22 APPENDIX 2: U.S. METHANE EMISSIONS (MMT CO2E), 1990–2013 . 24 EXECUTIVE SUMMARY U.S. black carbon emissions are declining and additional reductions are expected, largely through strategies to reduce the emissions from mobile diesel engines that account for roughly 40 percent of the U.S. total. A number of fine particulate matter (PM2.5) control strategies have proven successful in reducing black carbon emissions from mobile sources. -
Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, Et Al
Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, et al. Science 297, 2250 (2002); DOI: 10.1126/science.1075159 The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 3, 2008 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/297/5590/2250 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250#related-content This article cites 23 articles, 3 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles on October 3, 2008 This article has been cited by 251 article(s) on the ISI Web of Science. This article has been cited by 8 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles This article appears in the following subject collections: Atmospheric Science http://www.sciencemag.org/cgi/collection/atmos www.sciencemag.org Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. -
Carbon Dynamics of Subtropical Wetland Communities in South Florida DISSERTATION Presented in Partial Fulfillment of the Require
Carbon Dynamics of Subtropical Wetland Communities in South Florida DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jorge Andres Villa Betancur Graduate Program in Environmental Science The Ohio State University 2014 Dissertation Committee: William J. Mitsch, Co-advisor Gil Bohrer, Co-advisor James Bauer Jay Martin Copyrighted by Jorge Andres Villa Betancur 2014 Abstract Emission and uptake of greenhouse gases and the production and transport of dissolved organic matter in different wetland plant communities are key wetland functions determining two important ecosystem services, climate regulation and nutrient cycling. The objective of this dissertation was to study the variation of methane emissions, carbon sequestration and exports of dissolved organic carbon in wetland plant communities of a subtropical climate in south Florida. The plant communities selected for the study of methane emissions and carbon sequestration were located in a natural wetland landscape and corresponded to a gradient of inundation duration. Going from the wettest to the driest conditions, the communities were designated as: deep slough, bald cypress, wet prairie, pond cypress and hydric pine flatwood. In the first methane emissions study, non-steady-state rigid chambers were deployed at each community sequentially at three different times of the day during a 24- month period. Methane fluxes from the different communities did not show a discernible daily pattern, in contrast to a marked increase in seasonal emissions during inundation. All communities acted at times as temporary sinks for methane, but overall were net -2 -1 sources. Median and mean + standard error fluxes in g CH4-C.m .d were higher in the deep slough (11 and 56.2 + 22.1), followed by the wet prairie (9.01 and 53.3 + 26.6), bald cypress (3.31 and 5.54 + 2.51) and pond cypress (1.49, 4.55 + 3.35) communities. -
Aerosols, Their Direct and Indirect Effects
5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect -
Black Carbon-Induced Snow Albedo Reduction Over the Tibetan Plateau
Atmos. Chem. Phys., 18, 11507–11527, 2018 https://doi.org/10.5194/acp-18-11507-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model Cenlin He1,2, Mark G. Flanner3, Fei Chen2,4, Michael Barlage2, Kuo-Nan Liou5, Shichang Kang6,7, Jing Ming8, and Yun Qian9 1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA 2Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA 4State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China 5Joint Institute for Regional Earth System Science and Engineering, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA 6State key laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 7CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China 8Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 9Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA Correspondence: Cenlin He ([email protected]) Received: 12 May 2018 – Discussion started: 22 May 2018 Revised: 31 July 2018 – Accepted: 4 August 2018 – Published: 15 August 2018 Abstract. We implement a set of new parameterizations into regional and seasonal variations, with higher values in the the widely used Snow, Ice, and Aerosol Radiative (SNICAR) non-monsoon season and low altitudes. -
Soil Carbon Sequestration and Greenhouse Gas Mitigation: a Role
Soil Carbon Sequestration and Greenhouse Gas Mitigation: A Role for American Agriculture Dr. Charles W. Rice and Debbie Reed, MSc. Professor of Agronomy Kansas State University Department of Agronomy Manhattan, KS Agriculture and Climate Change Specialist DRD Associates Arlington, VA March 2007 1 TABLE OF CONTENTS Executive Summary (pg. 5) Global Climate Change (7) Greenhouse Gases and American Agriculture (8) The Role of Agriculture in Combating Rising Greenhouse Gas Emissions and Climate Change (8) Agricultural Practices that Combat Climate Change (10) Decreasing emissions (10) Enhancing sinks (10) Displacing emissions (11) How American Agriculture Can Reduce U.S. GHG Emissions and Combat Climate Change (multi-page spread: 12-14) Building Carbon Sinks: Soil Carbon Sequestration (12) Cropland (12) Agronomy (12) Nutrient Management (12) Tillage/Residue Management (13) Land cover/land use change (13) Grazingland management and pasture improvement (13) Grazing intensity (13) Increased productivity (including fertilization) (13) Nutrient management (13) Fire management (13) Restoration of degraded lands (13) Decreasing GHG Emissions: Manure Management (14) Displacing GHG Emissions: Biofuels (14) Table 1: Estimates of potential carbon sequestration of agricultural practices (14) Economic Benefits of Conservation Tillage and No-Till Systems (15) Table 2: Change in yield, net dollar returns, emissions, and soil carbon when converting from conventional tillage to no tillage corn production in Northeast Kansas (15) Co-Benefits of Soil Carbon Sequestration: “Charismatic Carbon” (16) Table 3: Plant nutrients supplied by soil organic matter (SOM) (16) 2 New Technologies to Further Enhance Soil Carbon Storage (16) Biochar (16) Modification of the Plant-Soil System (17) Meeting the Climate Challenge: The Role of Carbon Markets (17) Mandatory v. -
Black Carbon and Methane in the Norwegian Barents Region Black Carbon and Methane in the Norwegian Barents Region | M276
REPORT M-276 | 2014 Black carbon and methane in the Norwegian Barents region Black carbon and methane in the Norwegian Barents region | M276 COLOPHON Executive institution The Norwegian Environment Agency Project manager for the contractor Contact person in the Norwegian Environment Agency Ingrid Lillehagen, The Ministry of Climate and Solrun Figenschau Skjellum Environment, section for polar affairs and the High North M-no Year Pages Contract number M-276 2014 15 Publisher The project is funded by The Norwegian Environment Agency The Norwegian Environment Agency Author(s) Maria Malene Kvalevåg, Vigdis Vestreng and Nina Holmengen Title – Norwegian and English Black carbon and methane in the Norwegian Barents Region Svart karbon og metan i den norske Barentsregionen Summary – sammendrag In 2011, land based emissions of black carbon and methane in the Norwegian Barents region were 400 tons and 23 700 tons, respectively. The largest emissions of black carbon originate from the transport sector and wood combustion in residential heating. For methane, the largest contributors to emissions are the agricultural sector and landfills. Different measures to reduce emissions from black carbon and methane can be implemented. Retrofitting of diesel particulate filters on light and heavy vehicles, tractors and construction machines will reduce black carbon emitted from the transport sector. Measures to reduce black carbon from residential heating are to accelerate the introduction of wood stoves with cleaner burning, improve burning techniques and inspect and maintain the wood stoves that are already in use. In the agricultural sector, methane emissions from food production can be reduced by using manure or food waste as raw material to biogas production. -
Saving the Arctic the Urgent Need to Cut Black Carbon Emissions and Slow Climate Change
AP PHOTO/IAN JOUGHIN PHOTO/IAN AP Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 WWW.AMERICANPROGRESS.ORG Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 Contents 1 Introduction and summary 3 Where does black carbon come from? 6 Future black carbon emissions in the Arctic 9 Why cutting black carbon outside the Arctic matters 13 Recommendations 19 Conclusion 20 Appendix 24 Endnotes Introduction and summary The Arctic is warming at a rate twice as fast as the rest of the world, in part because of the harsh effects of black carbon pollution on the region, which is made up mostly of snow and ice.1 Black carbon—one of the main components of soot—is a deadly and widespread air pollutant and a potent driver of climate change, espe- cially in the near term and on a regional basis. In colder, icier regions such as the Arctic, it peppers the Arctic snow with heat-absorbing black particles, increasing the amount of heat absorbed and rapidly accelerating local warming. This accel- eration exposes darker ground or water, causing snow and ice melt and lowering the amount of heat reflected away from the Earth.2 Combating climate change requires immediate and long-term cuts in heat-trap- ping carbon pollution, or CO2, around the globe. But reducing carbon pollution alone will not be enough to avoid the worst effects of a rapidly warming Arctic— slashing black carbon emissions near the Arctic and globally must also be part of the solution. -
Ocean Storage
277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained -
Long-Term Carbon Sink in Borneo’S Forests Halted By
ARTICLE DOI: 10.1038/s41467-017-01997-0 OPEN Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects Lan Qie et al. Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records fi −1 1234567890 of up to half a century, we nd that intact forests in Borneo gained 0.43 Mg C ha per year (95% CI 0.14–0.72, mean period 1988–2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan- tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere. Correspondence and requests for materials should be addressed to L.Q. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | 8: 1966 | DOI: 10.1038/s41467-017-01997-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01997-0 ver the past half-century land and ocean carbon sinks Nevertheless, crucial evidence required to establish whether the have removed ~55% of anthropogenic CO2 emissions to forest sink is pan-tropical remains missing.