Black Carbon's Properties and Role in the Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. National Black Carbon and Methane Emissions a Report to the Arctic Council
U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS A REPORT TO THE ARCTIC COUNCIL AUGUST 2015 TABLE OF CONTENTS EXECUTIVE SUMMARY. 1 ABOUT THIS REPORT. 1 SUMMARY OF CURRENT BLACK CARBON EMISSIONS AND FUTURE PROJECTIONS . 2 SUMMARY OF CURRENT METHANE EMISSIONS AND FUTURE PROJECTIONS. 4 SUMMARY OF NATIONAL MITIGATION ACTIONS BY POLLUTANT AND SECTOR . 6 BLACK CARBON . .6 METHANE . 11 HIGHLIGHTS OF BEST PRACTICES AND LESSONS LEARNED FOR KEY SECTORS . .16 TRANSPORT/MOBILE . 16 OPEN BIOMASS BURNING (INCLUDING WILDFIRES) . 16 RESIDENTIAL/DOMESTIC . .17 OIL & NATURAL GAS. .17 OTHER . 17 PROJECTS RELEVANT FOR THE ARCTIC. .18 ARCTIC AIR QUALITY IMPACT ASSESSMENT MODELING. 18 BLACK CARBON DEPOSITION ON U.S. SNOW PACK . .18 EMISSIONS AND TRANSPORT FROM AGRICULTURAL BURNING AND FOREST FIRES . .18 MEASUREMENT OF BLACK CARBON AND METHANE IN THE ARCTIC. .18 MEASUREMENT OF MARITIME BLACK CARBON EMISSIONS AND DIESEL FUEL ALTERNATIVES. .18 REDUCTION OF BLACK CARBON IN THE RUSSIAN ARCTIC. .19 VALDAY CLUSTER UPGRADE FOR BLACK CARBON REDUCTION IN THE REPUBLIC OF KARELIA, RUSSIAN FEDERATION. 19 AVIATION CLIMATE CHANGE RESEARCH INITIATIVE. .20 TRACKING SOURCES OF BLACK CARBON IN THE ARCTIC . 20 OTHER INFORMATION. .20 APPENDIX 1: U.S. BLACK CARBON EMISSIONS . .22 APPENDIX 2: U.S. METHANE EMISSIONS (MMT CO2E), 1990–2013 . 24 EXECUTIVE SUMMARY U.S. black carbon emissions are declining and additional reductions are expected, largely through strategies to reduce the emissions from mobile diesel engines that account for roughly 40 percent of the U.S. total. A number of fine particulate matter (PM2.5) control strategies have proven successful in reducing black carbon emissions from mobile sources. -
Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, Et Al
Climate Effects of Black Carbon Aerosols in China and India Surabi Menon, et al. Science 297, 2250 (2002); DOI: 10.1126/science.1075159 The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 3, 2008 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/297/5590/2250 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/297/5590/2250#related-content This article cites 23 articles, 3 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles on October 3, 2008 This article has been cited by 251 article(s) on the ISI Web of Science. This article has been cited by 8 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/297/5590/2250#otherarticles This article appears in the following subject collections: Atmospheric Science http://www.sciencemag.org/cgi/collection/atmos www.sciencemag.org Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. -
Developmental Study of Soot-Oxidation Catalysts for Fireplaces: the Effect of Binder and Preparation Techniques on Catalyst Texture and Activity
catalysts Article Developmental Study of Soot-Oxidation Catalysts for Fireplaces: The Effect of Binder and Preparation Techniques on Catalyst Texture and Activity Pauliina Nevalainen, Niko Kinnunen * and Mika Suvanto University of Eastern Finland, Department of Chemistry, P. O. Box 111, FI-80101, Joensuu, Finland; Pauliina.Nevalainen@uef.fi (P.N.); mika.suvanto@uef.fi (M.S.) * Correspondence: niko.kinnunen@uef.fi Received: 8 October 2019; Accepted: 13 November 2019; Published: 15 November 2019 Abstract: An awareness of increasing climate and health problems has driven the development of new functional and affordable soot-oxidation catalysts for stationary sources, such as fireplaces. In this study, Al(OH)3, water glass and acidic aluminium phosphate binder materials were mixed with soot-oxidation catalysts. The effect of the binder on the performance of the Ag/La-Al2O3 catalyst was examined, while the Pt/La-Al2O3 catalyst bound with Al(OH)3 was used as a reference. Soot was oxidised above 340 ◦C on the Ag/La-Al2O3 catalyst, but at 310 ◦C with same catalyst bound with Al(OH)3. The addition of water glass decreased the catalytic performance because large silver crystals and agglomeration resulted in a blockage of the support material’s pores. Pt/La-Al2O3 bound with Al(OH)3 was ineffective in a fireplace environment. We believe that AgOx is the active form of silver in the catalyst. Hence, Ag/La-Al2O3 was shown to be compatible with the Al(OH)3 binder as an effective catalyst for fireplace soot oxidation. Keywords: binder; silver; Al(OH)3; fireplace; soot emission 1. -
Are Black Carbon and Soot the Same? Title Page
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 24821–24846, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/24821/2012/ Chemistry ACPD doi:10.5194/acpd-12-24821-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions 12, 24821–24846, 2012 This discussion paper is/has been under review for the journal Atmospheric Chemistry Are black carbon and Physics (ACP). Please refer to the corresponding final paper in ACP if available. and soot the same? P. R. Buseck et al. Are black carbon and soot the same? Title Page P. R. Buseck1,2, K. Adachi1,2,3, A. Gelencser´ 4, E.´ Tompa4, and M. Posfai´ 4 Abstract Introduction 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, USA Conclusions References 2 Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85282, USA Tables Figures 3Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan 4Department of Earth and Environmental Sciences, University of Pannonia, Veszprem,´ J I Hungary J I Received: 1 September 2012 – Accepted: 3 September 2012 – Published: 21 September 2012 Back Close Correspondence to: P. R. Buseck ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 24821 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. 12, 24821–24846, 2012 Thus, there is uncertainty about its exact nature. -
Aerosols, Their Direct and Indirect Effects
5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect -
Black Carbon-Induced Snow Albedo Reduction Over the Tibetan Plateau
Atmos. Chem. Phys., 18, 11507–11527, 2018 https://doi.org/10.5194/acp-18-11507-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model Cenlin He1,2, Mark G. Flanner3, Fei Chen2,4, Michael Barlage2, Kuo-Nan Liou5, Shichang Kang6,7, Jing Ming8, and Yun Qian9 1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA 2Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA 4State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China 5Joint Institute for Regional Earth System Science and Engineering, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA 6State key laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 7CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China 8Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 9Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA Correspondence: Cenlin He ([email protected]) Received: 12 May 2018 – Discussion started: 22 May 2018 Revised: 31 July 2018 – Accepted: 4 August 2018 – Published: 15 August 2018 Abstract. We implement a set of new parameterizations into regional and seasonal variations, with higher values in the the widely used Snow, Ice, and Aerosol Radiative (SNICAR) non-monsoon season and low altitudes. -
2.2 Sewage Sludge Incineration
2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators. -
Black Carbon and Methane in the Norwegian Barents Region Black Carbon and Methane in the Norwegian Barents Region | M276
REPORT M-276 | 2014 Black carbon and methane in the Norwegian Barents region Black carbon and methane in the Norwegian Barents region | M276 COLOPHON Executive institution The Norwegian Environment Agency Project manager for the contractor Contact person in the Norwegian Environment Agency Ingrid Lillehagen, The Ministry of Climate and Solrun Figenschau Skjellum Environment, section for polar affairs and the High North M-no Year Pages Contract number M-276 2014 15 Publisher The project is funded by The Norwegian Environment Agency The Norwegian Environment Agency Author(s) Maria Malene Kvalevåg, Vigdis Vestreng and Nina Holmengen Title – Norwegian and English Black carbon and methane in the Norwegian Barents Region Svart karbon og metan i den norske Barentsregionen Summary – sammendrag In 2011, land based emissions of black carbon and methane in the Norwegian Barents region were 400 tons and 23 700 tons, respectively. The largest emissions of black carbon originate from the transport sector and wood combustion in residential heating. For methane, the largest contributors to emissions are the agricultural sector and landfills. Different measures to reduce emissions from black carbon and methane can be implemented. Retrofitting of diesel particulate filters on light and heavy vehicles, tractors and construction machines will reduce black carbon emitted from the transport sector. Measures to reduce black carbon from residential heating are to accelerate the introduction of wood stoves with cleaner burning, improve burning techniques and inspect and maintain the wood stoves that are already in use. In the agricultural sector, methane emissions from food production can be reduced by using manure or food waste as raw material to biogas production. -
Saving the Arctic the Urgent Need to Cut Black Carbon Emissions and Slow Climate Change
AP PHOTO/IAN JOUGHIN PHOTO/IAN AP Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 WWW.AMERICANPROGRESS.ORG Saving the Arctic The Urgent Need to Cut Black Carbon Emissions and Slow Climate Change By Rebecca Lefton and Cathleen Kelly August 2014 Contents 1 Introduction and summary 3 Where does black carbon come from? 6 Future black carbon emissions in the Arctic 9 Why cutting black carbon outside the Arctic matters 13 Recommendations 19 Conclusion 20 Appendix 24 Endnotes Introduction and summary The Arctic is warming at a rate twice as fast as the rest of the world, in part because of the harsh effects of black carbon pollution on the region, which is made up mostly of snow and ice.1 Black carbon—one of the main components of soot—is a deadly and widespread air pollutant and a potent driver of climate change, espe- cially in the near term and on a regional basis. In colder, icier regions such as the Arctic, it peppers the Arctic snow with heat-absorbing black particles, increasing the amount of heat absorbed and rapidly accelerating local warming. This accel- eration exposes darker ground or water, causing snow and ice melt and lowering the amount of heat reflected away from the Earth.2 Combating climate change requires immediate and long-term cuts in heat-trap- ping carbon pollution, or CO2, around the globe. But reducing carbon pollution alone will not be enough to avoid the worst effects of a rapidly warming Arctic— slashing black carbon emissions near the Arctic and globally must also be part of the solution. -
The Foundation for Global Action on Persistent Organic Pollutants: a United States Perspective
The Foundation for Global Action on Persistent Organic Pollutants: A United States Perspective Office of Research and Development Washington, DC 20460 EPA/600/P-01/003F NCEA-I-1200 March 2002 www.epa.gov Disclaimer Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Cover page credits: Bald eagle, U.S. FWS; mink, Joe McDonald/Corbis.com; child, family photo, Jesse Paul Nagaruk; polar bear, U.S. FWS; killer whales, Craig Matkin. Contents Contributors ................................................................................................. vii Executive Summary ....................................................................................... ix Chapter 1. Genesis of the Global Persistent Organic Pollutant Treaty ............ 1-1 Why Focus on POPs? ................................................................................................. 1-2 The Four POPs Parameters: Persistence, Bioaccumulation, Toxicity, Long-Range Environmental Transport ......................................................... 1-5 Persistence ......................................................................................................... 1-5 Bioaccumulation ................................................................................................. 1-6 Toxicity .............................................................................................................. 1-7 Long-Range Environmental Transport .................................................................. 1-7 POPs -
Addressing Persistent Organic Pollutants
Minnesota Journal of Law & Inequality Volume 30 Issue 1 Article 3 June 2012 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burleson Stephanie Dodson Dougherty Follow this and additional works at: https://lawandinequality.org/ Recommended Citation Elizabeth Burleson & Stephanie Dodson Dougherty, Arctic Justice: Addressing Persistent Organic Pollutants, 30(1) LAW & INEQ. 57 (2012). Available at: https://scholarship.law.umn.edu/lawineq/vol30/iss1/3 Minnesota Journal of Law & Inequality is published by the University of Minnesota Libraries Publishing. 57 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burlesont & Stephanie Dodson Doughertytt Introduction Persistent Organic Pollutants (POPs), anthropogenic chemicals produced for or by agricultural and industrial uses, contaminate all regions of the world.! There are three general categories of POPs: pesticides (including insecticides, herbicides, and fungicides), industrial chemicals, and unintentionally produced byproducts of certain chemical and combustion processes.2 The pesticide dichlorodiphenyltrichloroethane (DDT) is perhaps the most well known of the POPs.' It was heavily relied upon during World War II to control the spread of certain diseases and is still used to control malaria in several developing nations.' Another POP is a class of chemicals collectively known as polychlorinated biphenyls (PCBs), which are widely used as dielectric fluid in transformers and capacitors. Dioxins are an example of unintentionally produced POPs.' These are chemicals released by incomplete combustion or by the manufacture of certain pesticides.' Although these chemicals are produced for beneficial purposes (or as a byproduct), it has become apparent t. Professor Elizabeth Burleson has an LL.M. from the London School of Economics and Political Science and a J.D. from the University of Connecticut School of Law. -
Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators
sustainability Article Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators 1, 1, 1,2, Mingtao Jiang y, Adrian C. H. Lai y and Adrian Wing-Keung Law * 1 Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; [email protected] (M.J.); [email protected] (A.C.H.L.) 2 School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore * Correspondence: [email protected]; Tel./Fax: +65-6790-5296 Mingtao Jiang and Adrian C. H. Lai contributed equally to this work as first authors. y Received: 27 August 2020; Accepted: 22 September 2020; Published: 28 September 2020 Abstract: Currently, the design of advanced moving grate (AMG) incinerators for solid waste is aided by computational simulations. The simulation approach couples a waste bed model to characterize the incineration processes of the waste material on top of the moving grate, with a computational fluid dynamics (CFD) model to reproduce the heated air movement and reactions in the incinerator space above. However, the simulation results of AMG incinerators are rarely compared with actual field measurements for validation in the literature so far. In this study, we first examine the sensitivity of pyrolysis kinetics in the waste bed model using three existing alternatives. The predictions of combustion characteristics, including the bed height, flow and temperature distributions, composition of stack gases and gas emissions are obtained for the three alternatives and compared with measurements from a simple laboratory furnace. The results show that the pyrolysis kinetics mechanism can significantly affect the outputs from the waste bed model for incineration modelling.