Mouse Tprn Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tprn Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tprn Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tprn conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tprn gene (NCBI Reference Sequence: NM_175286 ; Ensembl: ENSMUSG00000048707 ) is located on Mouse chromosome 2. 4 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 4 (Transcript: ENSMUST00000114336). Exon 1 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tprn gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-132N23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit hearing loss and degeneration of hair cell stereocilia. Exon 1 covers 83.04% of the coding region. Start codon is in exon 1, and stop codon is in exon 4. The size of intron 1 for 3'-loxP site insertion: 4278 bp. The size of effective cKO region: ~2126 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele A T 5' G gRNA region 3' 1 4 Targeting vector A T G Targeted allele A T G Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Tprn cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8366bp) | A(23.33% 1952) | C(26.13% 2186) | T(23.33% 1952) | G(27.21% 2276) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 25259689 25262688 3000 browser details YourSeq 855 427 1447 3000 92.5% chr14 - 103566376 103567419 1044 browser details YourSeq 847 433 1444 3000 93.6% chr11 + 52465390 52466422 1033 browser details YourSeq 835 468 1441 3000 94.1% chr16 + 17533485 17534469 985 browser details YourSeq 832 433 1441 3000 92.1% chr17 - 55168718 55169735 1018 browser details YourSeq 829 468 1441 3000 93.3% chr5 + 28804015 28805012 998 browser details YourSeq 827 468 1441 3000 93.7% chr19 - 60635768 60636758 991 browser details YourSeq 827 427 1422 3000 92.1% chr14 - 47522712 47523723 1012 browser details YourSeq 824 427 1440 3000 91.6% chr1 + 118225362 118226401 1040 browser details YourSeq 823 427 1433 3000 92.4% chr10 + 21249407 21250597 1191 browser details YourSeq 822 432 1431 3000 92.0% chr5 - 130486434 130487443 1010 browser details YourSeq 820 433 1427 3000 92.1% chr19 - 25885773 25886777 1005 browser details YourSeq 820 468 1427 3000 93.9% chr11 + 80721949 80722923 975 browser details YourSeq 818 427 1448 3000 92.2% chr10 + 78532352 78533396 1045 browser details YourSeq 817 433 1433 3000 91.4% chr2 - 94644560 94645580 1021 browser details YourSeq 817 427 1422 3000 92.8% chr10 + 74786824 74787838 1015 browser details YourSeq 816 468 1421 3000 93.4% chr13 - 15174930 15217171 42242 browser details YourSeq 816 427 1426 3000 91.4% chr10 - 88840220 88841239 1020 browser details YourSeq 815 427 1427 3000 93.7% chr12 - 98665496 98666500 1005 browser details YourSeq 815 468 1422 3000 93.8% chr14 + 13987382 13988355 974 Note: The 3000 bp section upstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 25264805 25267804 3000 browser details YourSeq 23 1878 1904 3000 92.6% chr1 + 143675125 143675151 27 Note: The 3000 bp section downstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Tprn taperin [ Mus musculus (house mouse) ] Gene ID: 97031, updated on 10-Oct-2019 Gene summary Official Symbol Tprn provided by MGI Official Full Name taperin provided by MGI Primary source MGI:MGI:2139535 See related Ensembl:ENSMUSG00000048707 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as C87750; C430004E15Rik Expression Biased expression in testis adult (RPKM 57.5), small intestine adult (RPKM 53.4) and 14 other tissues See more Orthologs human all Genomic context Location: 2; 2 A3 See Tprn in Genome Data Viewer Exon count: 4 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 2 NC_000068.7 (25262598..25269886) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 2 NC_000068.6 (25118118..25125406) Chromosome 2 - NC_000068.7 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Tprn ENSMUSG00000048707 Description taperin [Source:MGI Symbol;Acc:MGI:2139535] Gene Synonyms C430004E15Rik Location Chromosome 2: 25,262,618-25,269,885 forward strand. GRCm38:CM000995.2 About this gene This gene has 4 transcripts (splice variants), 167 orthologues, 1 paralogue, is a member of 1 Ensembl protein family and is associated with 13 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tprn-201 ENSMUST00000114336.3 2787 749aa ENSMUSP00000109975.3 Protein coding CCDS15759 A2AI08 TSL:1 GENCODE basic APPRIS P1 Tprn-204 ENSMUST00000155738.1 464 No protein - lncRNA - - TSL:3 Tprn-202 ENSMUST00000137361.1 441 No protein - lncRNA - - TSL:5 Tprn-203 ENSMUST00000141509.1 311 No protein - lncRNA - - TSL:3 Page 6 of 8 https://www.alphaknockout.com 27.27 kb Forward strand 25.255Mb 25.260Mb 25.265Mb 25.270Mb 25.275Mb Genes (Comprehensive set... Tmem203-201 >protein coding Tprn-201 >protein coding Anapc2-201 >protein coding Tprn-202 >lncRNA Anapc2-203 >lncRNA Anapc2-202 >lncRNA Tprn-203 >lncRNA Anapc2-204 >protein coding Tprn-204 >lncRNA Contigs AL732309.9 > Genes < Ndor1-211protein coding < Ssna1-201protein coding (Comprehensive set... < Ndor1-201protein coding < Ssna1-203lncRNA < Ndor1-202protein coding < Ssna1-204lncRNA < Ndor1-210nonsense mediated decay < Ssna1-202lncRNA < Ndor1-208protein coding < Ndor1-209protein coding < Ndor1-206lncRNA < Ndor1-207retained intron < Ndor1-205nonsense mediated decay Regulatory Build 25.255Mb 25.260Mb 25.265Mb 25.270Mb 25.275Mb Reverse strand 27.27 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding RNA gene processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000114336 7.27 kb Forward strand Tprn-201 >protein coding ENSMUSP00000109... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Pfam Phostensin/Taperin N-terminal domain Phostensin/Taperin PP1-binding domain PANTHER Phostensin/Taperin Taperin All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend frameshift variant inframe deletion missense variant synonymous variant Scale bar 0 80 160 240 320 400 480 560 640 749 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name NADPH dependent diflavin oxidoreductase 1 Gene Symbol NDOR1 Organism Human Gene Summary This gene encodes an NADPH-dependent diflavin reductase that contains both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) binding domains. The encoded protein catalyzes the transfer of electrons from NADPH through FAD and FMN cofactors to potential redox partners. Alternative splicing results in multiple transcript variants. Gene Aliases MGC138148, NR1, bA350O14.9 RefSeq Accession No. NC_000009.11, NG_027801.1, NT_024000.16 UniGene ID Hs.512564 Ensembl Gene ID ENSG00000188566 Entrez Gene ID 27158 Assay Information Unique Assay ID qHsaCED0004821 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000371521, ENST00000344894, ENST00000458322, ENST00000427047 Amplicon Context Sequence CATGAGCTGGAGCGGGAGAAGCTGCTGGAGTTCAGTTCTGCCCAAGGCCAGGA GGAGCTCTTTGAATACTGCAACCGGCCCCGCAGGACCATC Amplicon Length (bp) 63 Chromosome Location 9:140109372-140109464 Assay Design Exonic Purification Desalted Validation Results Efficiency (%) 97 R2 0.9996 cDNA Cq 22.5 cDNA Tm (Celsius) 82 gDNA Cq 24.37 Page 1/5 PrimePCR™Assay Validation Report Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 2/5 PrimePCR™Assay Validation Report NDOR1, Human Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 3/5 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Human Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Biochemical and Structural
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Biochemical and Structural Characterization of the NEET Protein Family and their Role in Iron Homeostasis and Disease A Dissertation submitted in partial satisfaction of the requirements of the degree Doctor of Philosophy in Chemistry by Colin Harrison Lipper Committee in charge: Professor Patricia A. Jennings, Chair Professor Joseph A. Adams Professor Michael Galperin Professor Stanley J. Opella Professor Navtej Toor 2017 Copyright Colin Harrison Lipper, 2017 All rights reserved The dissertation of Colin Harrison Lipper is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair UNIVERSITY OF CALIFORNIA, SAN DIEGO 2017 iii DEDICATION To my wife Hope. Thank you for all of your love and support. I could not have done this without you. iv TABLE OF CONTENTS Signature Page ................................................................................................ iii Dedication ....................................................................................................... iv Table of Contents ............................................................................................. v List of Figures .................................................................................................. vi List of Tables ................................................................................................... ix List of Abbreviations ..............................................................................……... x Acknowledgements .......................................................................................
    [Show full text]
  • Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review
    molecules Review Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review 1, 1, 1 1 Trnka Daniel y , Hossain Md Faruq y , Jordt Laura Magdalena , Gellert Manuela and Lillig Christopher Horst 2,* 1 Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; [email protected] (T.D.); [email protected] (H.M.F.); [email protected] (J.L.M.); [email protected] (G.M.) 2 Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-865407; Fax: +49-3834-865402 These authors contributed equally to this work. y Academic Editor: Pál Perjési Received: 29 July 2020; Accepted: 22 August 2020; Published: 25 August 2020 Abstract: Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
    [Show full text]
  • Genomic and Transcriptomic Investigations Into the Feed Efficiency Phenotype of Beef Cattle
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Genomic and transcriptomic investigations into the feed efficiency phenotype of beef cattle Author(s) Higgins, Marc Publication Date 2019-03-06 Publisher NUI Galway Item record http://hdl.handle.net/10379/15008 Downloaded 2021-09-25T18:07:39Z Some rights reserved. For more information, please see the item record link above. Genomic and Transcriptomic Investigations into the Feed Efficiency Phenotype of Beef Cattle Marc Higgins, B.Sc., M.Sc. A thesis submitted for the Degree of Doctor of Philosophy to the Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway. Supervisor: Dr. Derek Morris Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway. Supervisor: Dr. Sinéad Waters Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange. Submitted November 2018 Table of Contents Declaration ................................................................................................................ vii Funding .................................................................................................................... viii Acknowledgements .................................................................................................... ix Abstract ......................................................................................................................
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Fe-S Protein Synthesis in Green Algae Mitochondria
    plants Review Fe-S Protein Synthesis in Green Algae Mitochondria Diego F. Gomez-Casati * , Maria V. Busi *, Julieta Barchiesi, Maria A. Pagani , Noelia S. Marchetti-Acosta and Agustina Terenzi Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000 Rosario, Argentina; [email protected] (J.B.); [email protected] (M.A.P.); [email protected] (N.S.M.-A.); [email protected] (A.T.) * Correspondence: [email protected] (D.F.G.-C.); [email protected] (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.) Abstract: Iron and sulfur are two essential elements for all organisms. These elements form the Fe-S clusters that are present as cofactors in numerous proteins and protein complexes related to key processes in cells, such as respiration and photosynthesis, and participate in numerous enzymatic reactions. In photosynthetic organisms, the ISC and SUF Fe-S cluster synthesis pathways are located in organelles, mitochondria, and chloroplasts, respectively. There is also a third biosynthetic machinery in the cytosol (CIA) that is dependent on the mitochondria for its function. The genes and proteins that participate in these assembly pathways have been described mainly in bacteria, yeasts, humans, and recently in higher plants. However, little is known about the proteins that participate in these processes in algae. This review work is mainly focused on releasing the information on the existence of genes and proteins of green algae (chlorophytes) that could participate in the assembly process of Fe-S groups, especially in the mitochondrial ISC and CIA pathways.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Large-Scale Discovery of Mouse Transgenic Integration Sites Reveals Frequent Structural Variation and Insertional Mutagenesis
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis Leslie O. Goodwin,1 Erik Splinter,2 Tiffany L. Davis,1 Rachel Urban,1 Hao He,3 Robert E. Braun,1 Elissa J. Chesler,1 Vivek Kumar,1 Max van Min,2 Juliet Ndukum,1 Vivek M. Philip,1 Laura G. Reinholdt,1 Karen Svenson,1 Jacqueline K. White,1 Michael Sasner,1 Cathleen Lutz,1 and Stephen A. Murray1 1The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 2Cergentis B.V., 3584 CM Utrecht, The Netherlands; 3The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA Transgenesis has been a mainstay of mouse genetics for over 30 yr, providing numerous models of human disease and critical genetic tools in widespread use today. Generated through the random integration of DNA fragments into the host genome, transgenesis can lead to insertional mutagenesis if a coding gene or an essential element is disrupted, and there is evidence that larger scale structural variation can accompany the integration. The insertion sites of only a tiny fraction of the thousands of transgenic lines in existence have been discovered and reported, due in part to limitations in the discovery tools. Targeted locus amplification (TLA) provides a robust and efficient means to identify both the insertion site and content of transgenes through deep sequencing of genomic loci linked to specific known transgene cassettes. Here, we report the first large-scale analysis of transgene insertion sites from 40 highly used transgenic mouse lines.
    [Show full text]
  • Supporting Information
    Supporting information Banci et al. 10.1073/pnas.1302378110 SI Materials and Methods Electrospray Ionization-MS, Circular Dichroism, and EPR. Electrospray Cloning and Protein Production of the FMN-Binding Domain of NADPH- ionization (ESI)-MS spectra were recorded by direct introduction dependent diflavin oxidoreductase 1. The FMN-binding domain of of the samples at 5 μL/min flow rate in an LTQ-Orbitrap high- NADPH-dependent diflavin oxidoreductase 1 (Ndor1), encoding resolution mass spectrometer (Thermo), equipped with a con- residues 1–161 or 1–174, was PCR amplified from a commercially ventional ESI source. For acquisition, Xcalibur 2.0. software acquired plasmid (IMAGE Full Length cDNA clone IRAT- (Thermo) was used and monoisotopic and average deconvo- p970E05127D) encoding human Ndor1 and inserted in Gateway luted masses were obtained by using the integrated Xtract tool. pEntr-TEV-d-Topo vector. The protein constructs were expressed For spectra acquisition a nominal resolution (at m/z 400) of with an N-terminal protein G β1 domain (GB1)-His-tag in BL21 100,000 was used. – (DE3)pLysS cells. The cultures were grown at 37 °C overnight in Circular dichroism spectra (290 340 nm) were run at 298 K with LB or minimal medium containing 100 μg/mL ampicillin, 34 μg/mL a JASCO Jasco-810 spectropolarimeter, using a 1-cm cell and chloramphenicol, and 100 μMriboflavin and grown further at 37 °C bandwidth of 1 nm. Spectra were accumulated 10 times and the values were corrected for buffer contributions. The CDPro soft- until OD600 reached 0.6–0.8. The culture was transferred to 17 °C and protein expression was induced by addition of isopropyl-β-D- ware package was used to determine the secondary structure thiogalactopyranosid (IPTG) to a final concentration of 0.5 mM content, considering reference dataset 1 (http://lamar.colostate.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]