People's Republic of China: Jiangxi Pingxiang Integrated Rural-Urban

Total Page:16

File Type:pdf, Size:1020Kb

People's Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Environmental Impact Assessment Project Number: 47030-002 September 2015 People’s Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Infrastructure Development Project Prepared by the Pingxiang Municipal Government for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 4 September 2015) Currency unit – Chinese yuan (CNY) CNY1.00 = $0.16 $1.00 = CNY6.22 ABBREVIATIONS AAD – annual average damage ADB – Asian Development Bank A2/O – aerobic-anoxic-oxic AP – affected person AQG – air quality guideline As – arsenic B – boron BHC – benzene hexachloride, (=Lindane) BOD5 – 5-day biochemical oxygen demand Cd – cadmium CN – cyanide CNY – Chinese yuan CO – carbon monoxide CO2 – carbon dioxide CO2eq – carbon dioxide equivalent COD – chemical oxygen demand Cr – chromium CR – critically endangered CRVA – climate risk and vulnerability assessment Cu – copper DDT – dichloro-diphenyl-trichloroethane DEP – Department of Environmental Protection DFR – draft final report DO – dissolved oxygen EA – executing agency EEM – external environmental monitor EHS – environmental, health and safety EIA – environmental impact assessment EIR – environmental impact report EIRF – environmental impact registration form EIT – environmental impact table EMP – environmental management plan - 1 - EMS – Environmental Monitoring Station EN – endangered EPB – Environmental Protection Bureau ESE – environmental supervision engineer EW – extinct in the wild F¯ – fluoride FSR – feasibility study report FYP – five year plan GDP – gross domestic product GHG – greenhouse gas GRM – grievance redress mechanism HC – hydrocarbon HDD – horizontal directional drill HDPE – high density polyethylene Hg – mercury IMn – permanganate index IA – implementing agency IUCN – International Union for Conservation of Nature JPEPSRI – Jiangxi Provincial Environmental Protection Science Research Institute LAS – linear alkylbenzene sulfonate LC – least concern LDI – local design institute LIC – loan implementation consultant LIEC – loan implementation environmental consultant MEP – Ministry of Environmental Protection MSW – municipal solid waste NH3-N – ammonia nitrogen Ni – nickel NO2 – nitrogen dioxide NOx – nitrogen oxides NT – near threatened O&M – operation and maintenance PAH – poly-aromatic hydrocarbons PAM – polyacryl amide PAM – project administration manual Pb – lead PCP – pre-stressed concrete pipe PCR – project completion report PIU – project implementation unit PLG – project leading group - 2 - PM – particulate matter PM2.5 – particulate matter with diameter ≤ 2.5 μm PM10 – particulate matter with diameter ≤ 10 μm PME – powered mechanical equipment PMG – Pingxiang municipal government PMO – project management office PMSPAPT – Pingxiang Municipal Station for Promotion of Aquatic Product Technology PMO – Pingxiang project management office PPTA – project preparation technical assistance PRC – People’s Republic of China PSA – poverty and social assessment PUCIDC – Pingxiang Urban Construction Investment and Development Corporation REA – rapid environmental assessment RPMP – reinforced plastic mortar pipe Se – selenium SEMP – site-specific environmental management plan SO2 – sulfur dioxide SOE – state owned enterprise SPS – safeguard policy statement SWCR – soil and water conservation report TN – total nitrogen TP – total phosphorus TPH – total petroleum hydrocarbon TSP – total suspended particulate UPVC – Un-plasticized polyvinyl chloride UV – ultra-violet VOC – volatile organic compound VU – vulnerable WAB – Water Affairs Bureau WBG – World Bank Group WHO – World Health Organization WTP – water treatment plant WWTP – wastewater treatment plant Zn – zinc - 3 - WEIGHTS AND MEASURES dB – decibel oC – degree Centigrade cm – centimeter gm – gram ha – hectare km – kilometer km/h – kilometer per hour km2 – square kilometer Kwh – kilowatt hour L – liter m – meter m/s – meter per second m2 – square meter m3 – cubic meter m3/d – cubic meter per day masl – meters above sea level mg/kg – milligram per kilogram mg/L – milligram per liter mg/m3 – milligram per cubic meter mm – millimeter pcu – passenger car unit pcu/d – passenger car unit per day pH – a measure of acidity / alkalinity t – metric ton t/a – metric ton per annum t/d – metric ton per day μg/m3 – microgram per cubic meter μm – micron or micrometer - 4 - NOTE In this report, "$" refers to US dollars unless otherwise stated. This environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. - 5 - CONTENTS I. EXECUTIVE SUMMARY .......................................................................................................................... 10 A. BACKGROUND ................................................................................................................................................. 10 B. PROJECT DESIGN ........................................................................................................................................... 12 C. PROJECT BENEFITS ........................................................................................................................................ 12 D. BASELINE ENVIRONMENT ............................................................................................................................... 14 E. CONSTRUCTION IMPACTS AND MITIGATION MEASURES ................................................................................ 16 F. OPERATION IMPACTS AND MITIGATION MEASURES ....................................................................................... 17 G. INFORMATION DISCLOSURE, CONSULTATION AND PARTICIPATION ................................................................ 18 H. GRIEVANCE REDRESS MECHANISM ............................................................................................................... 19 I. KEY EMP IMPLEMENTATION RESPONSIBILITIES ............................................................................................ 19 J. RISKS AND KEY ASSURANCES........................................................................................................................ 19 II. POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK AND STANDARDS ................................. 21 A. POLICY FRAMEWORK ..................................................................................................................................... 21 B. LEGAL AND ADMINISTRATIVE FRAMEWORK FOR ENVIRONMENTAL IMPACT ASSESSMENT ............................ 23 C. LAWS, REGULATIONS, GUIDELINES AND STANDARDS ................................................................................... 23 D. EVALUATION STANDARDS ............................................................................................................................... 27 E. ASSESSMENT PERIOD .................................................................................................................................... 34 III. DESCRIPTION OF THE PROJECT .................................................................................................... 36 A. PROJECT RATIONALE ..................................................................................................................................... 36 B. COMPONENT 1: INTEGRATED RIVER REHABILITATION AND FLOOD RISK MANAGEMENT .............................. 41 C. COMPONENT 2: WASTEWATER COLLECTION AND TREATMENT ..................................................................... 54 D. COMPONENT 3: RURAL URBAN TRANSPORT ................................................................................................. 61 E. COMPONENT 4: CAPACITY DEVELOPMENT .................................................................................................... 66 F. INSTITUTIONAL ARRANGEMENT FOR CONSTRUCTION AND OPERATION ........................................................ 66 G. ASSOCIATED AND/OR LINKED FACILITIES ....................................................................................................... 67 IV. BASELINE ENVIRONMENT ................................................................................................................ 69 A. SUB-REGIONAL ENVIRONMENTAL SETTING .................................................................................................... 69 B. PHYSICAL ENVIRONMENT ............................................................................................................................... 78 C. BIOLOGICAL RESOURCES ............................................................................................................................... 86 D. SOCIO-ECONOMIC ENVIRONMENT ............................................................................................................... 104 V. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES ............................... 110 A. POSITIVE IMPACTS AND ENVIRONMENTAL BENEFITS ................................................................................... 110 B. SCREENING OF ENVIRONMENTAL IMPACTS RELATED TO PROJECT IMPLEMENTATION AND OPERATION .... 114 C. MEASURES DURING DETAILED
Recommended publications
  • Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China
    JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY 15, 237±288 (1996) ARTICLE NO. 0010 Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China LI LIU School of Archaeology, La Trobe University, Melbourne, Australia Received June 12, 1995; revision received May 17, 1996; accepted May 26, 1996 In the third millennium B.C., the Longshan culture in the Central Plains of northern China was the crucial matrix in which the ®rst states evolved from the basis of earlier Neolithic societies. By adopting the theoretical concept of the chiefdom and by employing the methods of settlement archaeology, especially regional settlement hierarchy and rank-size analysis, this paper introduces a new approach to research on the Longshan culture and to inquiring about the development of the early states in China. Three models of regional settlement pattern correlating to different types of chiefdom systems are identi®ed. These are: (1) the centripetal regional system in circumscribed regions representing the most complex chiefdom organizations, (2) the centrifugal regional system in semi-circumscribed regions indicating less integrated chiefdom organization, and (3) the decentral- ized regional system in noncircumscribed regions implying competing and the least complex chief- dom organizations. Both external and internal factors, including geographical condition, climatic ¯uctuation, Yellow River's changing course, population movement, and intergroup con¯ict, played important roles in the development of complex societies in the Longshan culture. As in many cultures in other parts of the world, the early states in China emerged from a system of competing chiefdoms, which was characterized by intensive intergroup con¯ict and frequent shifting of political centers.
    [Show full text]
  • Henan Wastewater Management and Water Supply Sector Project (11 Wastewater Management and Water Supply Subprojects)
    Environmental Assessment Report Summary Environmental Impact Assessment Project Number: 34473-01 February 2006 PRC: Henan Wastewater Management and Water Supply Sector Project (11 Wastewater Management and Water Supply Subprojects) Prepared by Henan Provincial Government for the Asian Development Bank (ADB). The summary environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. CURRENCY EQUIVALENTS (as of 02 February 2006) Currency Unit – yuan (CNY) CNY1.00 = $0.12 $1.00 = CNY8.06 The CNY exchange rate is determined by a floating exchange rate system. In this report a rate of $1.00 = CNY8.27 is used. ABBREVIATIONS ADB – Asian Development Bank BOD – biochemical oxygen demand COD – chemical oxygen demand CSC – construction supervision company DI – design institute EIA – environmental impact assessment EIRR – economic internal rate of return EMC – environmental management consultant EMP – environmental management plan EPB – environmental protection bureau GDP – gross domestic product HPG – Henan provincial government HPMO – Henan project management office HPEPB – Henan Provincial Environmental Protection Bureau HRB – Hai River Basin H2S – hydrogen sulfide IA – implementing agency LEPB – local environmental protection bureau N – nitrogen NH3 – ammonia O&G – oil and grease O&M – operation and maintenance P – phosphorus pH – factor of acidity PMO – project management office PM10 – particulate
    [Show full text]
  • Inland Fisheries Resource Enhancement and Conservation in Asia Xi RAP PUBLICATION 2010/22
    RAP PUBLICATION 2010/22 Inland fisheries resource enhancement and conservation in Asia xi RAP PUBLICATION 2010/22 INLAND FISHERIES RESOURCE ENHANCEMENT AND CONSERVATION IN ASIA Edited by Miao Weimin Sena De Silva Brian Davy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2010 i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-106751-2 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2010 For copies please write to: Aquaculture Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion, 39 Phra Athit Road Bangkok 10200 THAILAND Tel: (+66) 2 697 4119 Fax: (+66) 2 697 4445 E-mail: [email protected] For bibliographic purposes, please reference this publication as: Miao W., Silva S.D., Davy B.
    [Show full text]
  • Environmental Impact Assessment
    Technical Assistance Consultant’s Report Project Number: 47030-001 November 2015 People's Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Infrastructure Development— Final Report SD5: Environmental Impact Assessment and Environmental Management Plan (Financed by the ADB's Technical Assistance Special Fund and Cofinanced by the Multi-Donor Trust Fund under the Water Financing Partnership Facility) Prepared by AECOM Asia Company Ltd. Hong Kong, China For Pingxiang Municipal Government This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. Environmental Impact Assessment (DRAFT) Project Number: 47030-002 May 2015 People’s Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Infrastructure Development Project Prepared by the Pingxiang Municipal Government for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 4 May 2015) Currency unit – Chinese yuan (CNY) CNY1.00 = $0.16 $1.00 = CNY6.22 ABBREVIATIONS AAD – annual average damage ADB – Asian Development Bank 2 A /O – aerobic-anoxic-oxic AP – affected person AQG – air quality guideline As – arsenic B – boron BHC – benzene hexachloride, (=Lindane) BOD5 – 5-day biochemical oxygen demand Cd – cadmium CN – cyanide CNY – Chinese yuan CO – carbon monoxide CO2 – carbon dioxide CO2eq – carbon dioxide equivalent COD – chemical oxygen
    [Show full text]
  • Arbuscular Mycorrhizas in a Hot and Arid Ecosystem in Southwest China
    Applied Soil Ecology 29 (2005) 135–141 www.elsevier.com/locate/apsoil Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China Li Tao, Zhao Zhiwei* Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, PR China Accepted 19 November 2004 Abstract The colonization by arbuscular mycorrhizal fungi, arbuscular mycorrhizal fungal spore abundance and community were investigated in a valley-type semi-savanna vegetation of Yuan River in southwest China. Of the 62 plants representing 33 families surveyed, 59 plant species (about 95%) were arbuscular mycorrhizal and 3 species (5%) were possibly arbuscular mycorrhizal. Rhizosphere soils harbored abundant arbuscular mycorrhizal fungal spores in a range of 240–6430 per 100 g soil with an average of 2096, and most spores were small with diameter less than 70 mm (about 78%). The fungi most frequently found were members of the genera Acaulospora and Glomus. Acaulospora spinosa, A. denticulata, A. tuberculata, Glomus sinuosa, G. clarum, G. intraradices and G. microaggregatum were the most common species. These results revealed that arbuscular mycorrhizas are a common and important component in this semi-savanna vegetation; the high spore density and colonization were presumably a selective adaptation toward the hot and arid ecosystem. # 2004 Elsevier B.V. All rights reserved. Keywords: Hot and arid ecosystem; Arbuscular mycorrhiza; Valley-type semi-savanna vegetation 1. Introduction critical link between the aboveground plant and the soil by influencing plant nutrient cycling and soil Over the past several years there has been a structure (Korb et al., 2003) and make a large direct growing appreciation of the importance of plant/ contribution to soil fertility and quality through soil fungal interactions, especially arbuscular mycorrhi- organic matter (Rillig et al., 2001).
    [Show full text]
  • The Neolithic Ofsouthern China-Origin, Development, and Dispersal
    The Neolithic ofSouthern China-Origin, Development, and Dispersal ZHANG CHI AND HSIAO-CHUN HUNG INTRODUCTION SANDWICHED BETWEEN THE YELLOW RIVER and Mainland Southeast Asia, southern China1 lies centrally within eastern Asia. This geographical area can be divided into three geomorphological terrains: the middle and lower Yangtze allu­ vial plain, the Lingnan (southern Nanling Mountains)-Fujian region,2 and the Yungui Plateau3 (Fig. 1). During the past 30 years, abundant archaeological dis­ coveries have stimulated a rethinking of the role ofsouthern China in the prehis­ tory of China and Southeast Asia. This article aims to outline briefly the Neolithic cultural developments in the middle and lower Yangtze alluvial plain, to discuss cultural influences over adjacent regions and, most importantly, to examine the issue of southward population dispersal during this time period. First, we give an overview of some significant prehistoric discoveries in south­ ern China. With the discovery of Hemudu in the mid-1970s as the divide, the history of archaeology in this region can be divided into two phases. The first phase (c. 1920s-1970s) involved extensive discovery, when archaeologists un­ earthed Pleistocene human remains at Yuanmou, Ziyang, Liujiang, Maba, and Changyang, and Palaeolithic industries in many caves. The major Neolithic cul­ tures, including Daxi, Qujialing, Shijiahe, Majiabang, Songze, Liangzhu, and Beiyinyangying in the middle and lower Yangtze, and several shell midden sites in Lingnan, were also discovered in this phase. During the systematic research phase (1970s to the present), ongoing major ex­ cavation at many sites contributed significantly to our understanding of prehis­ toric southern China. Additional early human remains at Wushan, Jianshi, Yun­ xian, Nanjing, and Hexian were recovered together with Palaeolithic assemblages from Yuanmou, the Baise basin, Jianshi Longgu cave, Hanzhong, the Li and Yuan valleys, Dadong and Jigongshan.
    [Show full text]
  • Recent Developments in the Application of Water Resource Dispatching Systems in China
    water Article Recent Developments in the Application of Water Resource Dispatching Systems in China Xinfeng Xiang 1, Lingzhong Kong 2, Huaiwei Sun 3, Xiaohui Lei 4,*, Ji Liang 3 and Yueqiang Li 5 1 Business school of Hohai University, Hohai University, Nanjing 210098, China; [email protected] 2 College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; [email protected] 3 School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430072, China; [email protected] (H.S.); [email protected] (J.L.) 4 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China 5 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-882-067-56 Abstract: This paper addresses recent developments in the application of water Resource dispatching systems (WRDSs) in China. Through a survey of watershed managers and a literature analysis, it was found that water diversion projects should be the top priority of water resource management by considering the recovery construction of water diversion projects. Case studies of WRDSs in the South-to-North Water Diversion (SNWD) and Pearl River Basin are discussed in this article. The results show that total water consumption management (WCM), water quality monitoring and management (WQMM), minimum discharge flow management (MDFM), and water dispatch management (WDM) modules should be considered in WRDSs. Finally, strategies and needs for resolving water resource management problems are discussed, along with other applications of WRDSs in China.
    [Show full text]
  • The Extent and Composition of Disaster Relief After China's 1823 Flood: New Archival Evidence
    The extent and composition of disaster relief after China's 1823 flood: New archival evidence Ni Yuping History Department, Tsinghua University Martin Uebele Faculty of Arts, University of Groningen Abstract: In 1823, large parts of China were drowned in one of the heaviest floods of the whole Qing dynasty (1644-1911), but detailed data on its impact and government responses have so far been scattered. Due to a recent reorganization of China’s First Historical Archives, however, this paper is able to provide new evidence about the flood’s impact as well as the extent and composition of central government disaster relief. This matters especially because many scholars believe that because of this flood, China entered into the “Daoguang Depression” providing the background for China’s “lost century” in connection with interior and exterior security issues such as the First Opium War (1839-42), and the Taiping rebellion (1850-64). Our evidence thus may help to understand if these combined challenges exceeded state capacity when modernization would have required internal reform more than ever. We find that in the 17 provinces for which we have data at least 20 percent of all counties were flooded, half of them seriously. The combination of tax relief, water works and direct payments grew proportionally with the share of counties affected by the flood and totaled to about 26 million taels of silver, more than half of annual fiscal revenue of the Qing state. Key words: Daoguang Depression, disaster relief, China, 19th century, state capacity 1. Introduction No matter if from the perspective of meteorological, disaster or economic history, the year of 1823 (the third year of the Daoguang emperor’s rule) was an all-important node.
    [Show full text]
  • Summary of Research on Ancient Water Conservancy Facilities in Wulongkou, Jiyuan City
    Journal of Frontiers of Society, Science and Technology DOI: 10.23977/jfsst.2021.010401 Clausius Scientific Press, Canada Volume 1, Number 4, 2021 Summary of Research on Ancient Water Conservancy Facilities in Wulongkou, Jiyuan City Zhang Pengqi Cultural Relics Conservation and Management Institute of Nanxun District, Huzhou 313010, China Keywords: Wulongkou, Ancient water conservancy facilities, Qin river Abstract: The ancient water conservancy facilities in Wulongkou, Jiyuan, as the most important water diversion irrigation system in northwestern Henan, are an integral part of the research on the history of irrigation and engineering technology in China. As the material carrier of people's irrigation activities in this area in history, the ancient water conservancy facilities of Wulongkou in Jiyuan condensed the marks of different times, reflecting the technological level and irrigation ideas of different times. Sorting out related researches on ancient water conservancy facilities in Wulongkou will help us understand and clarify its historical, scientific, and artistic values, and clarify the situation and tasks of its protection and development. This is important for establishing a scientific outlook on water conservancy development with Chinese characteristics. Promoting the modernization of water conservancy has important practical significance. 1. Introduction China is a large agricultural country, and water conservancy is the lifeblood of agriculture and the national economy. Since ancient times, the establishment of water conservancy projects has been regarded as one of the strategic measures for Anbang, the country, and the people. For this purpose, numerous water conservancy irrigation projects have been built and abundant farmland irrigation technologies have been accumulated. As early as the Neolithic Age, the ancestors began to use bone ploughs, stone ploughs and earthbreakers in low-lying areas to build ridges, drain fields, and divert water for irrigation.
    [Show full text]
  • The Runoff Variation Characteristics of Dongting Lake, China
    The runoff variation characteristics of Dongting Lake, China • Dehua Mao* • Chang Feng • Hunan Normal University, China *Corresponding author • Hui Zhou • Hunan Normal University/Hydrology and Water Resources Survey Bureau of Hunan Province, China • Guangwei Hu • Hunan Industry University • Zhengzui Li • Hydrology and Water Resources Survey Bureau of Hunan Province, China • Ruizhi Guo • Hunan Normal University, China Abstract Resumen Mao, D., Feng, C., Zhou, H., Hu, G., Li, Z., & Guo, R. (March- Mao, D., Feng, C., Zhou, H., Hu, G., Li, Z., & Guo, R. (marzo- April, 2017). The runoff variation characteristics of Dongting abril, 2017). Características de la variación de escurrimiento del Lake, China. Water Technology and Sciences (in Spanish), 8(2), lago Dongting, China. Tecnología y Ciencias del Agua, 8(2), 77 77-91. 77-91. The runoff variation characteristics of Dongting Lake Se analizaron las características de la variación de escurrimiento were analyzed by applying the methods of concentration del lago Dongting mediante la aplicación de los métodos de grado degree, concentration period, Mann-Kendall trend test, de concentración, periodo de concentración, análisis de tendencias and variation coefficient. The analysis showed that: 1) The de Mann-Kendall y coeficiente de variación. El análisis mostró runoff concentration period of Dongting Lake occurs mainly que 1) el periodo de concentración de escurrimiento del lago between June and July of each year, with the peak time in Dongting ocurre principalmente entre junio y julio de cada año, late June–early July, and the composite vector directions presentándose el tiempo máximo entre finales de junio y principios in concentration period range from 103.2° to 190.2°; 2) The de julio y las direcciones de los vectores compuestos en el periodo de runoff variation coefficient ranges from 0.194 to 0.761, which concentración van de 103.2° a 190.2°; 2) el coeficiente de variación indicates the instability of runoff.
    [Show full text]
  • The Water Status in China and an Adaptive Governance Frame for Water Management
    International Journal of Environmental Research and Public Health Article The Water Status in China and an Adaptive Governance Frame for Water Management Jiahong Li 1,2 , Xiaohui Lei 2,*, Yu Qiao 2,3, Aiqing Kang 2 and Peiru Yan 1 1 School of Civil Engineering, Tianjin University, Tianjin 300354, China; [email protected] (J.L.); [email protected] (P.Y.) 2 Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] (Y.Q.); [email protected] (A.K.) 3 Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Beijing 100038, China * Correspondence: [email protected]; Tel.: +86-010-68785503; Fax:+86-010-68483366 Received: 10 January 2020; Accepted: 18 March 2020; Published: 21 March 2020 Abstract: China is increasingly facing water-related problems, such as water scarcity, pollution, and overexploitation of groundwater. This paper discusses the water status in China and claims that governance is the cause of water-related problems. The structure of the current water management is analyzed to conclude that the control-command is a static approach which is less capable of dealing with the uncertainty in the water resources system. An adaptive governance frame is introduced, which highlights the learning process and participation. The learning process avoids making the same mistake twice and the participation ensures the diversity of information, which are both necessary for water resources management. Keywords: water status; adaptive governance; water management frame; adaptive water resource management 1. Introduction Sustainable water management is of fundamental importance for society but remains an extraordinary challenge across the world, with many pressing issues to be addressed, such as the lack of sanitation, the depletion of water resources, and the financial loss associated with hydrological extremes such as floods and droughts [1].
    [Show full text]
  • Archaeology of Asia
    BLACKWELL STUDIES IN GLOBAL ARCHAEOLOGY archaeology of asia Edited by Miriam T. Stark Archaeology of Asia BLACKWELL STUDIES IN GLOBAL ARCHAEOLOGY Series Editors: Lynn Meskell and Rosemary A. Joyce Blackwell Studies in Global Archaeology is a series of contemporary texts, each care- fully designed to meet the needs of archaeology instructors and students seeking volumes that treat key regional and thematic areas of archaeological study. Each volume in the series, compiled by its own editor, includes 12–15 newly commis- sioned articles by top scholars within the volume’s thematic, regional, or temporal area of focus. What sets the Blackwell Studies in Global Archaeology apart from other available texts is that their approach is accessible, yet does not sacrifice theoretical sophistication. The series editors are committed to the idea that usable teaching texts need not lack ambition. To the contrary, the Blackwell Studies in Global Archaeology aim to immerse readers in fundamental archaeological ideas and concepts, but also to illu- minate more advanced concepts, thereby exposing readers to some of the most exciting contemporary developments in the field. Inasmuch, these volumes are designed not only as classic texts, but as guides to the vital and exciting nature of archaeology as a discipline. 1. Mesoamerican Archaeology: Theory and Practice Edited by Julia A. Hendon and Rosemary A. Joyce 2. Andean Archaeology Edited by Helaine Silverman 3. African Archaeology: A Critical Introduction Edited by Ann Brower Stahl 4. Archaeologies of the Middle East: Critical Perspectives Edited by Susan Pollock and Reinhard Bernbeck 5. North American Archaeology Edited by Timothy R. Pauketat and Diana DiPaolo Loren 6.
    [Show full text]