Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China

Total Page:16

File Type:pdf, Size:1020Kb

Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY 15, 237±288 (1996) ARTICLE NO. 0010 Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China LI LIU School of Archaeology, La Trobe University, Melbourne, Australia Received June 12, 1995; revision received May 17, 1996; accepted May 26, 1996 In the third millennium B.C., the Longshan culture in the Central Plains of northern China was the crucial matrix in which the ®rst states evolved from the basis of earlier Neolithic societies. By adopting the theoretical concept of the chiefdom and by employing the methods of settlement archaeology, especially regional settlement hierarchy and rank-size analysis, this paper introduces a new approach to research on the Longshan culture and to inquiring about the development of the early states in China. Three models of regional settlement pattern correlating to different types of chiefdom systems are identi®ed. These are: (1) the centripetal regional system in circumscribed regions representing the most complex chiefdom organizations, (2) the centrifugal regional system in semi-circumscribed regions indicating less integrated chiefdom organization, and (3) the decentral- ized regional system in noncircumscribed regions implying competing and the least complex chief- dom organizations. Both external and internal factors, including geographical condition, climatic ¯uctuation, Yellow River's changing course, population movement, and intergroup con¯ict, played important roles in the development of complex societies in the Longshan culture. As in many cultures in other parts of the world, the early states in China emerged from a system of competing chiefdoms, which was characterized by intensive intergroup con¯ict and frequent shifting of political centers. However, what is unusual about the Chinese case is the fact that the earliest states did not develop from the most complex of the chiefdom organizations, but from the least complex chiefdom systems then existing there. q 1996 Academic Press, Inc. CHIEFDOM THEORIES AND itarian and bureaucratic state societies (Fein- REGIONAL SETTLEMENT PATTERNS man & Neitzel 1984:39). In the typological classi®cation of inter- mediate societies, at least a dozen descrip- The process of social development leading tive subtypes have been identi®ed since to the emergence of ``civilization'' has been Morgan's time a century ago (Feinman & seen as an evolutionary one (Child 1951; Neitzel 1984:40). Among these subtypes, the Engels 1972 [orig. 1884]; Flannery 1972; concept of ``chiefdom'' proposed by Service Fried 1960, 1967; Johnson & Earle 1987; Mor- (1962) has occurred most frequently in the gan 1963 [orig. 1877]; Service 1962; Steward archaeological literature. 1955; White 1959; Wright 1977a,b). A basic tendencyÐthat societies develop from early The Study of Chiefdoms small-scale groups to later complex organi- zationsÐhas been demonstrated by archae- Adopting White's (1959) general evolu- ological ®ndings from all continents (Wenke tionary approach, Service (1962) proposed a 1980). In recent years, the effort to under- social developmental scheme with four main stand evolutionary processes underlying the levels of social integration involving a pro- development of complex societies has cre- gression from the band through the tribe ated a growing interest in societies that are (both egalitarian societies) to the chiefdom organizationally intermediate between egal- to the state (both hierarchical societies). 237 0278-4165/96 $18.00 Copyright q 1996 by Academic Press, Inc. All rights of reproduction in any form reserved. AID JAA 0299 / ai01$$$$61 08-24-96 02:47:58 jaaa AP: JAA 238 LI LIU Based primarily on Sahlins's (1958) descrip- tion of society. Indeed, for the most part, tion of Polynesian societies, Service exchange normally involved status goods (1962:144) suggested that redistribution was which were used to create alliances and mo- the most crucial factor among all other char- bilize support to increase the chief's powers acteristics of chiefdoms, including great (Earle 1977, 1978; Helms 1979; Feinman and population density, social strati®cation, craft Neitzel 1984). specialization, and large public works. These critiques have seriously challenged The interest in the notion of chiefdoms, as not only Service's original concept of chief- proposed by Service, has grown, and a large dom, but also, the typological approach to number of articles concerning this topic social evolution. Some scholars (Blanton et have appeared in the archaeological litera- al. 1981; Hill 1977; Kehoe 1981; Plog & ture (e.g., Carneiro 1981; Drennan & Uribe Upham 1979: 1±3; Tainter 1978; Feinman & 1987; Earle 1978, 1987, 1991a; Flannery 1972; Neitzel 1984) have opposed the approach's Johnson & Earle 1987; Kirch 1984; Peebles & primary focus on the classi®cation of speci®c Kus 1977; Renfrew 1973; Wright 1984). societies into ideal organizational types us- Several problems with this approach have ing a few key attributes to infer the presence also been remarked upon, however, such as of all aspects traditionally associated with a some general weaknesses in the Service ty- typical paradigm. A historical-particularistic pology of social development. Cordy view which emphasizes the differences be- (1981:27±29) has summarized these de®- tween developmental trajectories has be- ciencies as follows. First, many traits of the come in¯uential, and some scholars propose various stages are not easily measured em- abandoning evolutionary theory (e.g., Hod- pirically. Second, lack of clarity about the der 1986; Shanks & Tilley 1987; Yoffee 1993). differences between chiefdoms and states is The most recent critiques of the concept of especially apparent when attempting to clas- chiefdom primarily reject a model of holistic sify bordering societies which are between change in evolutionary stages, and empha- stages. Third, among societies which are size a heterarchical approach to complex so- classi®ed as chiefdoms, there are variations cieties (Ehrenreich et al. 1995). in degrees of social complexity in terms of In spite of this, many anthropologists still their populations, territories, and social ech- believe that complex societies have evolved elons. Fourth, there is no systems-oriented through a series of general developmental approach to classi®cation; all the methods stages, and similarities may have been for classifying societies are based on the shared by societies cross-culturally within presence or absence of speci®c traits which each stage (e.g., Rothman 1994; Spencer do not re¯ect the relation between parts and 1987). The chiefdom concept is still alive, but the whole. Fifth, the basic tenetÐthat social it has evolved into something quite different criteria change as an entire, qualitative setÐ from Service's original formulation. is incorrect; rather, social change occurs as Recent rede®nitions of the concept of spurts and lags in different dimensions of chiefdom tend to focus on political and ad- societal organization. ministrative criteria (Spencer 1987:369). For The most recurring criticism of Service's example, Carneiro (1981:45) has de®ned the concept of chiefdoms has focused on the role chiefdom as ``an autonomous political unit of the chief as the focal point in a redistribu- comprising a number of villages or commu- tive network through which subsistence nities . .'' Redistribution is no longer re- goods moved, and united diverse, ecologi- garded as a central characteristic of the cally specialized villages. In many areas of chiefdom. the world, the position of the chief in food In recent years, a shift has occurred from distribution was not essential to the integra- the analysis of formal characteristics shared AID JAA 0299 / ai01$$$$62 08-24-96 02:47:58 jaaa AP: JAA CHIEFDOMS IN NORTH CHINA 239 by chiefdoms to a concern with aspects such 1978; Wright 1977a; Wright & Johnson 1975). as variability between chiefdoms and the According to Johnson (1973:4±12), tribes evolutionary processes by which chiefdoms and chiefdoms have one and two adminis- were created and maintained (Earle 1991b). trative tiers, respectively, while a state Discussions about chiefdom variability have should have at least three levels of decision- focused on the following schemes: (1) the making hierarchy. structure of chiefdoms can be distinguished Opinions about the correlation between the as group-oriented vs individualizing (Ren- number of decision-making levels and the de- frew 1974), (2) the economic basis of chief- grees of social complexity vary among schol- doms may be characterized as staple vs ars. For example, Steponaitis (1978:420) has ar- wealth (Brum®el & Earle 1987; D'Altroy & gued that simple chiefdoms have one level Earle 1985), and (3) the level of the develop- of decision-making authority, while complex ment of chiefdoms may be dichotomized as chiefdoms have two or three tiers of political simple vs complex. This third scheme of hierarchy. By contrast, Wright (1984:42) has analysis is particularly emphasized in this demonstrated that simple chiefdoms have one study. level of control hierarchy above the level of the local community, while complex chief- Simple vs Complex Chiefdoms and Decision- doms cycle between one and two levels of Making Hierarchy control hierarchy. Combining information about population size with analysis of political Because chiefdoms varied greatly ac- hierarchy, Earle (1991b:3) also outlined some cording to degree of social complexity, sev- critical features of these two types of chief-
Recommended publications
  • Water and Nitrogen Management in Wheat-​Maize Production on The
    WATER AND NITROGEN MANAGEMENT IN WHEAT–MAIZE PRODUCTION ON THE NORTH CHINA PLAIN LWR1/1996/164 David Harris D.N. Harris & Associates October 2004 The Australian Centre for International Agricultural Research (ACIAR) operates as part of Australia’s international development cooperation program, with a mission to achieve more-productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. ACIAR seeks to ensure that the outputs of its funded research are adopted by farmers, policy makers, quarantine officers and other intended beneficiaries. In order to monitor the effects of its projects, ACIAR commissions independent assessments of selected projects. This series reports the results of these independent studies. Communications regarding any aspects of this series should be directed to: The Manager Impact Assessment Unit ACIAR GPO Box 1571 Canberra ACT 2601 Australia tel +612 62170500 email [email protected] © 2004 Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601 David Harris, Water and nitrogen management in wheat–maize production on the North China Plain, Impact Assessment Series Report No. 28, September 2004. This report may be downloaded and printed from <www.aciar.gov.au>. ISBN 1 86320 407 5 (printed) ISBN 1 86320 408 3 (electronic) Editing and typesetting by Clarus Design WATER AND NITROGEN MANAGEMENT ON THE NORTH CHINA PLAIN 3 Foreword ACIAR’s impact assessment reports provide information on project impacts which helps to guide future research activities.
    [Show full text]
  • Loan Agreement
    CONFORMED COPY LOAN NUMBER 4829-CHA Public Disclosure Authorized Loan Agreement (Henan Towns Water Supply and Sanitation Project) Public Disclosure Authorized between PEOPLE’S REPUBLIC OF CHINA and Public Disclosure Authorized INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT Dated September 1, 2006 Public Disclosure Authorized LOAN NUMBER 4829-CHA LOAN AGREEMENT AGREEMENT, dated September 1, 2006, between PEOPLE’S REPUBLIC OF CHINA (the Borrower) and INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT (the Bank). WHEREAS (A) the Borrower, having satisfied itself as to the feasibility and priority of the project described in Schedule 2 to this Agreement (the Project), has requested the Bank to assist in the financing of the Project; (B) the Project will be carried out by Henan (as defined in Section 1.02) with the Borrower’s assistance and, as part of such assistance, the Borrower will make the proceeds of the loan provided for in Article II of this Agreement (the Loan) available to Henan, as set forth in this Agreement; and WHEREAS the Bank has agreed, on the basis, inter alia, of the foregoing, to extend the Loan to the Borrower upon the terms and conditions set forth in this Agreement and in the Project Agreement of even date herewith between the Bank and Henan (the Project Agreement); NOW THEREFORE the parties hereto hereby agree as follows: ARTICLE I General Conditions; Definitions Section 1.01. The “General Conditions Applicable to Loan and Guarantee Agreements for Single Currency Loans” of the Bank, dated May 30, 1995 (as amended through May 1, 2004) with the following modifications (the General Conditions), constitute an integral part of this Agreement: (a) Section 5.08 of the General Conditions is amended to read as follows: “Section 5.08.
    [Show full text]
  • World Bank Document
    WEN CHUAN EARTHQUAKE RECOVERY PROJECT Cheng County Moba Gorge Water Source Project in Gansu Province Public Disclosure Authorized Environmental Impact Assessment Public Disclosure Authorized Public Disclosure Authorized Moba Gorge Water Source Engineering Construction Management Department of Cheng County Lanzhou University Public Disclosure Authorized May 2012 1 Content 1 General Instructions ........................................................................................................................... 5 1.1 Project Background .................................................................................................................. 5 1.2 Evaluation Basis ....................................................................................................................... 6 1.3 Assessment Aim, Principles and Keys .................................................................................... 9 1.4 Functional Division of Assessment Area ............................................................................... 10 1.5 Assessment Time Intervals and Factors................................................................................ 11 1.6 Assessment Rating and Scope .............................................................................................. 11 1.7 Environmental Protection Goal .............................................................................................. 12 1.8 Assessment Standards .........................................................................................................
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Ceramic's Influence on Chinese Bronze Development
    Ceramic’s Influence on Chinese Bronze Development Behzad Bavarian and Lisa Reiner Dept. of MSEM College of Engineering and Computer Science September 2007 Photos on cover page Jue from late Shang period decorated with Painted clay gang with bird, fish and axe whorl and thunder patterns and taotie design from the Neolithic Yangshao creatures, H: 20.3 cm [34]. culture, H: 47 cm [14]. Flat-based jue from early Shang culture Pou vessel from late Shang period decorated decorated with taotie beasts. This vessel with taotie creatures and thunder patterns, H: is characteristic of the Erligang period, 24.5 cm [34]. H: 14 cm [34]. ii Table of Contents Abstract Approximate timeline 1 Introduction 2 Map of Chinese Provinces 3 Neolithic culture 4 Bronze Development 10 Clay Mold Production at Houma Foundry 15 Coins 16 Mining and Smelting at Tonglushan 18 China’s First Emperor 19 Conclusion 21 References 22 iii The transition from the Neolithic pottery making to the emergence of metalworking around 2000 BC held significant importance for the Chinese metal workers. Chinese techniques sharply contrasted with the Middle Eastern and European bronze development that relied on annealing, cold working and hammering. The bronze alloys were difficult to shape by hammering due to the alloy combination of the natural ores found in China. Furthermore, China had an abundance of clay and loess materials and the Chinese had spent the Neolithic period working with and mastering clay, to the point that it has been said that bronze casting was made possible only because the bronze makers had access to superior ceramic technology.
    [Show full text]
  • Social Complexity in North China During the Early Bronze Age: a Comparative Study of the Erlitou and Lower Xiajiadian Cultures
    Social Complexity in North China during the Early Bronze Age: A Comparative Study of the Erlitou and Lower Xiajiadian Cultures GIDEON SHELACH ACCORDING TO TRADITIONAL Chinese historiography, the earliest Chinese state was the Xia dynasty (twenty-first-seventeenth centuries B.C.), which was lo­ cated in the Zhongyuan area (the Central Plain). The traditional viewpoint also relates that, over the next two millennia, complex societies emerged in other parts of present-day China through the process of political expansion and cul­ tural diffusion from the Zhongyuan. Some scholars recently have challenged this model because it is unilinear and does not allow for significant contributions to the emergence of social compleXity from areas outside the Zhongyuan. Recent syntheses usually view the archaeological landscape of the late Neolithic Period (the second half of the third millennium B.C.) as a mosaic of cultures of compar­ able social complexity that interacted and influenced each other (Chang 1986; Tong 1981). Nevertheless, when dealing with the Early Bronze Age, the period identified with the Xia dynasty, most archaeologists still accept the main premises of the traditional model. They regard the culture or cultures of the Zhongyuan as the most developed and see intercultural interaction as occurring, if at all, only within the boundaries of that area. One of the most heated debates among Chinese archaeologists in recent years has been over the archaeological identification of the Xia dynasty. The partici­ pants in this debate accept the authenticity of the historical documents, most of which were written more than a thousand years after the events, and try to cor­ relate names of historical places and peoples to known archaeological sites and cultures.
    [Show full text]
  • Resettlement Monitoring Report: People's Republic of China: Henan
    Resettlement Monitoring Report Project Number: 34473 December 2010 PRC: Henan Wastewater Management and Water Supply Sector Project – Resettlement Monitoring Report No. 8 Prepared by: Environment School, Beijing Normal University For: Henan Province Project Management Office This report has been submitted to ADB by Henan Province Project Management Office and is made publicly available in accordance with ADB’s public communications policy (2005). It does not necessarily reflect the views of ADB. Henan Wastewater Management and Water Supply Sector Project Financed by Asian Development Bank Monitoring and Evaluation Report on the Resettlement of Henan Wastewater Management and Water Supply Sector Project (No. 8) Environment School Beijing Normal University, Beijing,China December , 2010 Persons in Charge : Liu Jingling Independent Monitoring and : Liu Jingling Evaluation Staff Report Writers : Liu Jingling Independent Monitoring and : Environment School, Beijing Normal University Evaluation Institute Environment School, Address : Beijing Normal University, Beijing, China Post Code : 100875 Telephone : 0086-10-58805092 Fax : 0086-10-58805092 E-mail : jingling @bnu .edu.cn Content CONTENT ...........................................................................................................................................................I 1 REVIEW .................................................................................................................................................... 1 1.1 PROJECT INTRODUCTION ..................................................................................................................
    [Show full text]
  • Originally, the Descendants of Hua Xia Were Not the Descendants of Yan Huang
    E-Leader Brno 2019 Originally, the Descendants of Hua Xia were not the Descendants of Yan Huang Soleilmavis Liu, Activist Peacepink, Yantai, Shandong, China Many Chinese people claimed that they are descendants of Yan Huang, while claiming that they are descendants of Hua Xia. (Yan refers to Yan Di, Huang refers to Huang Di and Xia refers to the Xia Dynasty). Are these true or false? We will find out from Shanhaijing ’s records and modern archaeological discoveries. Abstract Shanhaijing (Classic of Mountains and Seas ) records many ancient groups of people in Neolithic China. The five biggest were: Yan Di, Huang Di, Zhuan Xu, Di Jun and Shao Hao. These were not only the names of groups, but also the names of individuals, who were regarded by many groups as common male ancestors. These groups first lived in the Pamirs Plateau, soon gathered in the north of the Tibetan Plateau and west of the Qinghai Lake and learned from each other advanced sciences and technologies, later spread out to other places of China and built their unique ancient cultures during the Neolithic Age. The Yan Di’s offspring spread out to the west of the Taklamakan Desert;The Huang Di’s offspring spread out to the north of the Chishui River, Tianshan Mountains and further northern and northeastern areas;The Di Jun’s and Shao Hao’s offspring spread out to the middle and lower reaches of the Yellow River, where the Di Jun’s offspring lived in the west of the Shao Hao’s territories, which were near the sea or in the Shandong Peninsula.Modern archaeological discoveries have revealed the authenticity of Shanhaijing ’s records.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan
    International Journal of Environmental Research and Public Health Article Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan Tatiana Chizhova 1,*, Yuliya Koudryashova 1, Natalia Prokuda 2, Pavel Tishchenko 1 and Kazuichi Hayakawa 3 1 V.I.Il’ichev Pacific Oceanological Institute FEB RAS, 43 Baltiyskaya Str., Vladivostok 690041, Russia; [email protected] (Y.K.); [email protected] (P.T.) 2 Institute of Chemistry FEB RAS, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia; [email protected] 3 Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] * Correspondence: [email protected]; Tel.: +7-914-332-40-50 Received: 11 June 2020; Accepted: 16 August 2020; Published: 19 August 2020 Abstract: The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries.
    [Show full text]
  • LCSH Section W
    W., D. (Fictitious character) William Kerr Scott Lake (N.C.) Waaddah Island (Wash.) USE D. W. (Fictitious character) William Kerr Scott Reservoir (N.C.) BT Islands—Washington (State) W.12 (Military aircraft) BT Reservoirs—North Carolina Waaddah Island (Wash.) USE Hansa Brandenburg W.12 (Military aircraft) W particles USE Waadah Island (Wash.) W.13 (Seaplane) USE W bosons Waag family USE Hansa Brandenburg W.13 (Seaplane) W-platform cars USE Waaga family W.29 (Military aircraft) USE General Motors W-cars Waag River (Slovakia) USE Hansa Brandenburg W.29 (Military aircraft) W. R. Holway Reservoir (Okla.) USE Váh River (Slovakia) W.A. Blount Building (Pensacola, Fla.) UF Chimney Rock Reservoir (Okla.) Waaga family (Not Subd Geog) UF Blount Building (Pensacola, Fla.) Holway Reservoir (Okla.) UF Vaaga family BT Office buildings—Florida BT Lakes—Oklahoma Waag family W Award Reservoirs—Oklahoma Waage family USE Prix W W. R. Motherwell Farmstead National Historic Park Waage family W.B. Umstead State Park (N.C.) (Sask.) USE Waaga family USE William B. Umstead State Park (N.C.) USE Motherwell Homestead National Historic Site Waahi, Lake (N.Z.) W bosons (Sask.) UF Lake Rotongaru (N.Z.) [QC793.5.B62-QC793.5.B629] W. R. Motherwell Stone House (Sask.) Lake Waahi (N.Z.) UF W particles UF Motherwell House (Sask.) Lake Wahi (N.Z.) BT Bosons Motherwell Stone House (Sask.) Rotongaru, Lake (N.Z.) W. Burling Cocks Memorial Race Course at Radnor BT Dwellings—Saskatchewan Wahi, Lake (N.Z.) Hunt (Malvern, Pa.) W.S. Payne Medical Arts Building (Pensacola, Fla.) BT Lakes—New Zealand UF Cocks Memorial Race Course at Radnor Hunt UF Medical Arts Building (Pensacola, Fla.) Waʻahila Ridge (Hawaii) (Malvern, Pa.) Payne Medical Arts Building (Pensacola, Fla.) BT Mountains—Hawaii BT Racetracks (Horse racing)—Pennsylvania BT Office buildings—Florida Waaihoek (KwaZulu-Natal, South Africa) W-cars W star algebras USE Waay Hoek (KwaZulu-Natal, South Africa : USE General Motors W-cars USE C*-algebras Farm) W.
    [Show full text]
  • Silk Road Fashion, China. the City and a Gate, the Pass and a Road – Four Components That Make Luoyang the Capital of the Silk Roads Between 1St and 7Th Century AD
    https://publications.dainst.org iDAI.publications ELEKTRONISCHE PUBLIKATIONEN DES DEUTSCHEN ARCHÄOLOGISCHEN INSTITUTS Dies ist ein digitaler Sonderdruck des Beitrags / This is a digital offprint of the article Patrick Wertmann Silk Road Fashion, China. The City and a Gate, the Pass and a Road – Four components that make Luoyang the capital of the Silk Roads between 1st and 7th century AD. The year 2018 aus / from e-Forschungsberichte Ausgabe / Issue Seite / Page 19–37 https://publications.dainst.org/journals/efb/2178/6591 • urn:nbn:de:0048-dai-edai-f.2019-0-2178 Verantwortliche Redaktion / Publishing editor Redaktion e-Jahresberichte und e-Forschungsberichte | Deutsches Archäologisches Institut Weitere Informationen unter / For further information see https://publications.dainst.org/journals/efb ISSN der Online-Ausgabe / ISSN of the online edition ISSN der gedruckten Ausgabe / ISSN of the printed edition Redaktion und Satz / Annika Busching ([email protected]) Gestalterisches Konzept: Hawemann & Mosch Länderkarten: © 2017 www.mapbox.com ©2019 Deutsches Archäologisches Institut Deutsches Archäologisches Institut, Zentrale, Podbielskiallee 69–71, 14195 Berlin, Tel: +49 30 187711-0 Email: [email protected] / Web: dainst.org Nutzungsbedingungen: Die e-Forschungsberichte 2019-0 des Deutschen Archäologischen Instituts stehen unter der Creative-Commons-Lizenz Namensnennung – Nicht kommerziell – Keine Bearbeitungen 4.0 International. Um eine Kopie dieser Lizenz zu sehen, besuchen Sie bitte http://creativecommons.org/licenses/by-nc-nd/4.0/
    [Show full text]
  • An Indian Journal FULL PAPER BTAIJ, 10(24), 2014 [15149-15157]
    [Type text] ISSN : [Type0974 -text] 7435 Volume 10[Type Issue text] 24 2014 BioTechnology An Indian Journal FULL PAPER BTAIJ, 10(24), 2014 [15149-15157] Adaptability between agricultural water use and water resource characteristics Zhongpei Liu, Yuting Zhao, Yuping Han* College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, 450045, (CHINA) E-mail: [email protected] ABSTRACT Based on analysis of characteristic of agricultural water, water requirement characteristic of main water-intensive crops and effective precipitation throughout each city in Henan Province, agricultural water deficit and crop irrigation water productivity under the condition of natural precipitation and manual irrigation are calculated and the adaptability between agricultural water and water resources characteristic are revealed. The results show that under the condition of natural precipitation, water deficit in Henan Province is 240.5mm and falls to 76.3 mm after manual irrigation. The deficit period is concentrated mostly in March ~ June, accounting for more than 65% of annual water deficit. Spatially water deficit is gradually decreasing from north to south, and agricultural irrigation water productivity is relatively high in central China and relatively low in the south and north. Thereby, the region with full irrigation (the south) and the region with large crop water deficit (the north) have a relatively low irrigation water productivity; a certain degree of water deficit (in central China) is conductive to improvement of crop irrigation water productivity. And then the adaptability between regional agricultural water and water resource characteristic shall not be balanced simply based on the degree of crop water deficit, instead, it shall be closely combined with irrigation water productivity.
    [Show full text]