Work-Relatedness of Disease

Total Page:16

File Type:pdf, Size:1020Kb

Work-Relatedness of Disease A GUIDE TO THE WORK-RELATEDNESS OF DISEASE Revised Edition Stanley Kusnetz, M.S. Marilyn K. Hutchison, M.D. Editors U.S. DEPARTMENT of HEALTH, EDUCATION,and WELFARE Public Health Service Center for Dteeeee Control National Institute for Occupati.onal Safety and Health Jan."" 1979 DISCLAIMER Mention of company name or product does not constitute endorsement by the National Institute for Occupational Safety and Health. This guide is based upon the reports submitted in accordance with NIOSH Contract No. 21Q-75-oo75 (J. E. Osterritter, M.D., Principal Investigator) and NIOSH Contract No. 210-77-0089 (Barbara M. O'Conner and George Christakis, M.D., authors). NIOSH Project Officers: Contract No. 21Q-75'()()75 Marilyn Hutchison, M.D. Stanley Kusnetz, M.S. NIOSH Project Officer: Contract No. 210-77.()()89 Stanley Kusnetz, M.S. DHEW (NIOSH) Publication No. 79-116 ii PREFACE The mission ofthe National Institutefor OccupationalSafety and Health (NIOSH) is to protect the health and safety of working men and women. Within the contextofits program are NIOSH efforts that are directed toward the identification of those disease conditions that are closely related to or caused by the work environment as a necessary prerequisite to their pre­ vention. This guide, originally published in part in 1976, has been revised and expanded to reflect new knowledge as well as suggestions submitted by users of the guide. The guide is designed primarily as an aid to state agencies and others con­ cerned with occupational disease compensation. It presents one method for assembling and evaluating evidence that may be relevant in determining the work-relatedness of a disease in an individual. Information on fourteen disease-producing agents is presented to illustrate the decision-making process. It should be noted thatsuchinformationmaynotbe complete and does not necessarily reflect the most recent data regarding health standards and epidemiologic studies. NIOSH will welcome suggestions from users of the guide for its improvement. III ABSTRACT This guide discusses various factors associated with es­ tablishing the relationship between disease and occupation. Prepared as an aid to state agencies, physicians, and others concerned with workers' compensation for occupational disease, the publication describes a method for collecting, organizing, and appraising medical, occupational, and other evidence with the aim of determining the probable work­ relatedness of a given disease. Illustrativematerial on fourteen disease-producing agents is included. The guide also contains a list of occupations with potential exposure to selected agents, and other information that may be useful to those with decision-making responsibility in cases of occupa­ tional disease. iv CONTENTS Preface __ iii Abstract _ _iv Acknowledgments _.. _.. _. _.. _ _. _. _ vi Introduction _.. _. __ _. __ 1 Chapter I-An Approach to Decision-Making 3 Chapter II-Evidence of Disease _. .. 5 Chapter III-Epidemiology ._ __ . 9 Chapter IV-Evidence of Exposure 11 Chapter V-Aggravation of Preexisting Conditions 15 Chapter VI-Validity of Testimony _.. _ _........... 21 Chapter VII-Conclusions __ . __ _ __ 25 Chapter VIII-Examples ofthe Method 27 Antimony. _ _ __ 28 Inorganic Arsenic _.............. .. 40 Asbes tos 54 Benzene _._.............................. .. 63 Carbon Monoxide _ _................. .. 73 Coke Oven Emissions _ _.......... .. 80 Cotton Dust _ __ . __ . _. .. 88 Inorganic Lead _ _. .. 99 Inorganic Mercury _ _. .. 117 Nitrogen Dioxide , _. .. .. 134 Noise _.. _. _. _ _ _. _.. 146 Crystalline Silica __ 155 Sulfur Dioxide _ __ 168 Toluene Diisocyanate _.. _ _.. _ _. 177 Appendix A-I-Epidemiologic References 185 Appendix A-2-Bibliography 191 Appendix B-Case Histories _ 201 Appendix C-Respiratory Questionnaire __ . 213 Appendix D-Occupations and Selected Potential Exposures _ _ _ _ 219 Appendix E-Glossary __ _ _ 241 Appendix F-Sample OSHA Regulations for Mandatory Physical Examinations and Medical and Biological Monitoring _.. 269 v ACKNOWLEDGMENTS We wish to express appreciation to the following members of the advisory committee for their contributions during this program: Gabriel R Blumenthal Workmen's Compensation Attorney Florida Elmer O. Friday, Jr. Chairman Florida Industrial Relations Commission Florida James E. Harlow Senior Safety Engineer The Bendix Corporation Florida Marge Lehner Claims Adjuster Underwriting Adjusting Company Florida Bart F. O'Brien Assistant Vice President Johnson & Higgins Michigan Nonna J. Wagner Workmen's Compensation Judge Florida Austin F. Henschel, Ph.D.; Larice Ede; and Jim Carpenter of the Division of Technical Services, NIOSH, contributed substantially to reviewing, editing, and preparing the manuscript for publication. vi INTRODUCTION Background Until this century, suing the employer was the only way for disabled workers or their families to obtain compensation for on-the-job injuries. Under common law, workers had to prove the employer's negligence in order to be compensated for work injuries. The injured worker, because ofthis narrow interpreta­ tion of law, found that compensation through the courts was seldom satisfactory. By 1920, all but six states had passed workers' compensation statutes that sought to remedy past deficiencies and to avoid costly litigation by making employers responsible for the economic loss to workers due to injuries sustained at work. Although the new laws established a more equitablecompensa­ tion system, the system has not kept pace with the substantial changes that have taken place in the last half century in the labor force, in medical knowledge and techniques, and in industrial toxicology. In 1970, Congress established a National Commission on State Workmen's Compensation Laws to reexamine the adequacy of the compensation system inlightof these changes. The Commission's published report to the Congress in 1972 lists the objectives of a modern workers' compensation program. Included is a statement that all work­ related injuries or diseases should be covered by the compensa­ tion system. The report also states that coverage restricted to a list ofspecified occupational diseases is incompatible with complete protection. 1 Decision-Making In order for the compensation system to treat both injury and disease in a uniform manner, disease must be related to the workplace as effectively as injury. For the decision-maker, however, establishing the causality ofa disease is often a diffi­ cult task, especially when it becomes necessary to decide if an employee's disease resulted from, or was aggravated by, employment-related factors. In contrast to a traumatic injury, which is readily apparent to the affected employee and to those around him, a cause-effect relationship between disease and an agent or conditions in the workplace may not be clear. Occupational disease may be slow to develop. Symptoms ofdisease may be confused with changes that are due to the aging process, or with the effectsofsmoking or alcohol abuse. Additionally, information on'past work expo­ sures is often unavailable, inadequate, or incomplete. Not all individuals react in the same way to similar exposures to disease-producing agents. Off-the-job exposures may contri­ bute or be a primary cause ofillnesses and accidents. Theseare but some of the factors which must be considered in the decision-making process. The decision of the person responsible for determining the work-relatedness ofa disease must be based on anevaluationof the available information. When appropriate evidence is presented in a logical and orderly sequence, when major issues are identified, and the basis for any presumption is defined, then the decision-making process is facilitated andanequitable decision is likely to result. The following text outlines and describes a method for the collection, presentation, and evaluation of medical, occupa­ tional, and other evidence of occupational disease; presents selected information on fourteen disease-producing agents to illustrate the methodology; and discusses some problem areas associated with decision-making. 2 CHAPTER I-AN APPROACH TO DECISION-MAKING Rationale In the current workers' compensation system, the end result of the adjudicatory process is a decision that the claimant (employee) has or has not established that he has an occupa­ tional disease, that is, a disease condition resulting from, or aggravated by, his employment. In general, a disease is occupa­ tional if: 1. The medical findings ofdisease are compatible with the effects of a disease-producing agent or agents to which the worker has been exposed; 2. there exists in the worker's occupational environment (past or present) exposure to an agent or agents sufficient to have caused the disease; and 3. the weight of evidence supports that the disease is of occupational rather than non-occupational origin. It would be convenient if a method could be devised which invariably led to a correctand unequivocal descision regarding the presence ofan occupational disease. However, itis doubtful that such a system could be developed. A case in which the relationship of an illness to a documented agent exposure is clearly evident is not apt to be contested or to require the mechanism of a formal claims inquiry. The element of judgment is minimal and decision-making is relatively simple. On the other hand, decision-making may be extremely difficult in many contested claims. Honest differences of opinion are common, "facts" may be subject to different interpretations, 3 and considerablejudgmentis necessary when data arelacking or incomplete. This guide is an effort to define a step-by-step method for assembling and appraising evidence for the purpose of aiding the decision-making process. It is intended to be ofparticular assistance in cases where the suspected agent is not generally known to produce disease, and in those in which nonoccupa­ tional exposures must be considered. The Method This guide presents a suggested approach to decision-making that consists of six basic steps: 1. Consideration of evidence of disease, 2. consideration of epidemiologic data, 3. consideration of evidence of exposure, 4. consideration of validity of testimony, 5. consideration of other relevant factors, and 6.
Recommended publications
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Recreational Noise-Induced Hearing Loss
    Hearing loss due to recreational exposure to loud sounds A review World Health Organization Hearing loss due to recreational exposure to loud sounds A review World Health Organization Contributors: Etienne Krug, Maria Alarcos Cieza, Shelly Chadha, Laura Sminkey, Thais Morata, DeWet Swanepoel, Adrian Fuente, Warwick Williams, Joseph Cerquone, Ricardo Martinez, Gretchen Stevens, Margie Peden, Sowmya Rao, Paras Agarwal, Eighmey Zeeck, Anna Bladey, Malachi Arunda, Aileen Ncube. Graphics Credits: INIS Communications WHO Library Cataloguing-in-Publication Data Hearing loss due to recreational exposure to loud sounds: a review. 1.Hearing Loss, Noise-Induced. 2.Music. 3.Noise. 4.Recreation. 5.Noise. Transportation. 6.Adolescent. I.World Health Organization. ISBN 978 92 4 150851 3 (NLM classification: WV 270) © World Health Organization 2015 All rights reserved. Publications of the World Health Organization are available on the WHO website (http://www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non- commercial distribution – should be addressed to WHO Press through the WHO website (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Creation of Thin Film Cusbse2 Through Closed Space Vapor Transport Deposition
    UPTEC Q 18004 Examensarbete 30 hp Mars 2018 Creation of thin film CuSbSe2 through closed space vapor transport deposition Malin Eriksen Abstract Creation of thin film CuSbSe2 through closed space vapor transport deposition Malin Eriksen Teknisk- naturvetenskaplig fakultet UTH-enheten With an increasing demand for fossil-free energy the development of efficient solar cells made from sustainable and abundant materials is needed. A promising group of Besöksadress: new absorber materials are the chalcogenide materials, including the chalcostibnite Ångströmlaboratoriet Lägerhyddsvägen 1 compounds copper antimony selenide, CuSbSe2. The few studies that have been Hus 4, Plan 0 carried out on this material show promising properties with an absorption coefficient higher than 7 x 104 cm-1 in the visible region and a band gap around 1.5-1.1 eV, Postadress: which theoretically can be tuned by creating an alloy with the more studied and Box 536 751 21 Uppsala higher band gap material CuSbS2. Telefon: This project has focused on creating CuSbSe2 using closed space vapor transport 018 – 471 30 03 (CSVT) depositions. Three different approaches have been used; Telefax: i. deposition of antimony selenide, Sb2Se3, on pre-sputtered copper films, 018 – 471 30 00 ii. deposition of antimony and selenium in two steps on pre-sputtered copper films and Hemsida: iii. deposition of selenium on pre-sputtered stacked films of copper and antimony. The http://www.teknat.uu.se/student films were analyzed using optical imaging, SEM, EDS, XRD, and UV-Vis spectroscopy. It was found that the Cu-Sb-Se system is complicated, containing numerous phases with low crystallographic symmetry compared with chalcopyrite materials.
    [Show full text]
  • As2se3)100 – X(Sb2se3)X Glasses by Raman and 77Se MAS NMR Using a Multivariate Curve Resolution Approach Eva Cernoˇskov´A,J.ˇ Holubov´A,B
    CORE Metadata, citation and similar papers at core.ac.uk Provided by HAL-Rennes 1 Thermoanalytical properties and structure of (As2Se3)100 { x(Sb2Se3)x glasses by Raman and 77Se MAS NMR using a multivariate curve resolution approach Eva Cernoˇskov´a,J.ˇ Holubov´a,B. Bureau, C. Roiland, V. Nazabal, R. Todorov, Z Cernoˇsekˇ To cite this version: Eva Cernoˇskov´a,J.ˇ Holubov´a,B. Bureau, C. Roiland, V. Nazabal, et al.. Thermoanalytical properties and structure of (As2Se3)100 { x(Sb2Se3)x glasses by Raman and 77Se MAS NMR using a multivariate curve resolution approach. Journal of Non-Crystalline Solids, Elsevier, 2016, 432 (B), pp.426-431. <10.1016/j.jnoncrysol.2015.10.044>. <hal-01231157> HAL Id: hal-01231157 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01231157 Submitted on 20 May 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Thermoanalytical properties and structure of (As2Se3)100-x(Sb2Se3)x glasses by Raman and 77Se MAS NMR using a multivariate curve resolution approach E. Černošková1, J. Holubová3, B. Bureau2, C. Roiland2, V. Nazabal2, R. Todorov4, Z. Černošek3 1Joint Laboratory of Solid State Chemistry of IMC CAS, v.v.i., and University of Pardubice, Faculty of Chemical Technology, Studentská 84, 532 10 Pardubice, Czech Republic, [email protected] 2ISCR, UMR-CNRS 6226, University of Rennes 1, France.
    [Show full text]
  • Can Other People Hear the Noise in My Ears? Not Usually, but Sometimes They Are Able to Hear a (Ertant Type Oftinnitus
    Not at all. Tinnitus is the name for these head noises, and they are very common. Nearly 36 million Americans suffer from this discomfort. Tinnitus mav come and go, or you may be aware of a continuous sound. It can vary in pitch from a low roar to a high squeal or whine, and you may hear it in one or both ears. When the ringing is constant, It can be annoying and distracting. More than seven million people are afflicted so severely that they cannot lead normal lives. Can other people hear the noise in my ears? Not usually, but sometimes they are able to hear a (ertant type oftinnitus. This is called objective tinnitus, and it is caused either by abnormalities in blood vessels around the outside of the ear or by muscle spasms, which may sound like clicks or crackling illside the middle ear. There are many causes for subjective tinnitus, the nOlSC only you can hear. Some causes are not serious (a small plug of wax in the ear canal might cause temporary tinnitus). Tinnitus can also be a symptom of more serious middle ear problems such as infection, a hole in the eardrum, an accumulation of fluid, or stiffening (otosclerosis) of the middle ear bones. Tinnitus may also be caused by allergy, high or 10\V blood pressure (blood circulation problems), OUTER EAR MIDDLE EAR INNER EAR \ a tumor, diabetes, thyroid problems, injury to the head or neck, and a variety of other causes including medications such as anti-inflammatories, antibiotics, sedatives/antidepressants, and aspirin.
    [Show full text]
  • A Short History of Occupational Disease: 2. Asbestos, Chemicals
    Ulster Med J 2021;90(1):32-34 Medical History A SHORT HISTORY OF OCCUPATIONAL DISEASE: 2. ASBESTOS, CHEMICALS, RADIUM AND BEYOND Petts D, Wren MWD, Nation BR, Guthrie G, Kyle B, Peters L, Mortlock S, Clarke S, Burt C. ABSTRACT OCCUPATIONAL CANCER Historically, the weighing out and manipulation of dangerous Towards the end of the 18th century, a possible causal link chemicals frequently occurred without adequate protection between chemicals and cancer was reported by two London from inhalation or accidental ingestion. The use of gloves, surgeons. In 1761, John Hill reported an association between eye protection using goggles, masks or visors was scant. snuff, a tobacco product, and nasopharyngeal cancer, From Canary Girls and chimney sweeps to miners, stone and, in 1775, Percival Pott described a high incidence of cutters and silo fillers, these are classic exemplars of the subtle scrotal cancer in chimney sweeps. Pott, a surgeon at St (and in some cases not so subtle) effects that substances, Bartholomew’s Hospital in London, published his findings,6 environments and practices can have on individual health. which he attributed to contamination with soot. This excellent INTRODUCTION epidemiological study is considered to be the first report of a potential carcinogen. Pott’s work led to the foundation of It has been known for many centuries that certain diseases occupational medicine and to the Chimney Sweep Act of were associated with particular occupations (i.e. wool- 1788. In 1895, Ludwig Reyn reported that aromatic amines sorters disease in the textile industry, cowpox in milk maids used in certain dye industries in Germany were linked and respiratory problems in miners and stone workers).
    [Show full text]
  • Electrochemical Deposition of Sb2se3 Thin Films Semiconductor from Tartaric Acid Solution V
    Bulgarian Chemical Communications, Volume 52, Special Issue E (pp. 62 - 67) 2020 Electrochemical deposition of Sb2Se3 thin films semiconductor from tartaric acid solution V. A. Majidzade*, A. Sh. Aliyev, D. B. Tagiyev Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, H.Javid ave., 113, AZ 1143, Baku, Azerbaijan Received November 16, 2019; Accepted January 27, 2020 The proffered work has been dedicated to the electrochemical deposition of Sb-Se layers from tartaric acid as an electrolyte. In the course of research, the cyclic voltammetric polarization curves have been diagrammed by the potentiodynamic method. Sb-Se films have been deposited on different metals by potentiostatic and galvanostatic methods. The analysis of polarization curves and X-ray analysis of obtained samples indicate that Sb2Se3 was formed as a result of our research. Keywords: Antimony-selenide, electrodeposition, polarization, tartaric acid, semiconductive layers INTRODUCTION phase and defects of Sb2Se3 can be easy to control), Binary chalcogenide semiconductors have favorable band gap value (1.1~ 1.2 eV) [37-39]. attracted considerable attention in the past few Sb2Se3 semiconductive layers are obtained using years owing to their applications in various methods: vacuum thermal evaporation [40], photoelectrochemical devices, optoelectronic rapid thermal evaporation [41], chemical bath devices, switching devices, thermoelectric coolers, deposition [42, 43], spin coating [44], decorative coatings etc [1-12]. The aim of the electrodeposition [45], arrested precipitation production of these thin layers is to enhance technique [46], pulsed laser deposition [47], stability and effectiveness of solar batteries [13]. photoelectrochemical deposition [48] and etc. Antimony Triselenide (Sb2Se3) is a member of Some researchers [17, 18] got thin layers of the V-VI semiconductor family [14-23].
    [Show full text]
  • 123. Antimony
    1998:11 The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 123. Antimony John Erik Berg Knut Skyberg Nordic Council of Ministers arbete och hälsa vetenskaplig skriftserie ISBN 91–7045–471–x ISSN 0346–7821 http://www.niwl.se/ah/ah.htm National Institute for Working Life National Institute for Working Life The National Institute for Working Life is Sweden's center for research and development on labour market, working life and work environment. Diffusion of infor- mation, training and teaching, local development and international collaboration are other important issues for the Institute. The R&D competence will be found in the following areas: Labour market and labour legislation, work organization and production technology, psychosocial working conditions, occupational medicine, allergy, effects on the nervous system, ergonomics, work environment technology and musculoskeletal disorders, chemical hazards and toxicology. A total of about 470 people work at the Institute, around 370 with research and development. The Institute’s staff includes 32 professors and in total 122 persons with a postdoctoral degree. The National Institute for Working Life has a large international collaboration in R&D, including a number of projects within the EC Framework Programme for Research and Technology Development. ARBETE OCH HÄLSA Redaktör: Anders Kjellberg Redaktionskommitté: Anders Colmsjö och Ewa Wigaeus Hjelm © Arbetslivsinstitutet & författarna 1998 Arbetslivsinstitutet, 171 84 Solna, Sverige ISBN 91–7045–471–X ISSN 0346-7821 Tryckt hos CM Gruppen Preface The Nordic Council is an intergovernmental collaborative body for the five countries, Denmark, Finland, Iceland, Norway and Sweden. One of the committees, the Nordic Senior Executive Committee for Occupational Environmental Matters, initiated a project in order to produce criteria documents to be used by the regulatory authorities in the Nordic countries as a scientific basis for the setting of national occupational exposure limits.
    [Show full text]
  • Material Safety Data Sheet
    MATERIAL SAFETY DATA SHEET Prepared to U.S. OSHA, CMA, ANSI and Canadian WHMIS Standards PART I What is the material and what do I need to know in an emergency? 1. PRODUCT IDENTIFICATION TRADE NAME (AS LABELED) : MERCURY CHEMICAL NAME/CLASS : Mercury; Element SYNONYMS: Colloidal Mercury, Quick Silver; Liquid Silver; NCI-C60399; Hydrargyrum PRODUCT USE : Variety of industrial, analytical, and research applications. SUPPLIER/MANUFACTURER'S NAME : COMPANY ADDRESS : DFG MERCURY CORP 909 pitner Evanston Ill 60202 EMERGENCY PHONE : 1 800 424 9300 BUSINESS PHONE : 1 847 869 7800 DATE OF PREPARATION : May 20, 1997 DATE OF REVISION : October 7, 2013 2. COMPOSITION and INFORMATION ON INGREDIENTS CHEMICAL NAME CAS # %w/w EXPOSURE LIMITS IN AIR ACGIH-TLV OSHA-PEL OTHER TWA STEL TWA STEL IDLH mg/m 3 mg/m 3 mg/m 3 mg/m 3 mg/m 3 mg/m 3 Mercury 7439-97-6 100 0.025, (skin) NE Mercury 0.1 (ceiling) 10 NIOSH REL: Exposure limits are A4 (Not Vapor: 0.5, STEL = 0.1 (ceiling, for Mercury, Classifiable Skin; Non-alkyl Mercury skin) Inorganic as a Human (Vacated Compounds: 0.1 DFG MAKs: Compounds Carcinogen) 1989 PEL) Ceiling, skin TWA = 0.1 (Vacated 1989 PEAK = 10 •MAK 30 PEL) min., momentary value Carcinogen: EPA-D; IARC-3, TLV-A4 NE = Not Established. See Section 16 for Definitions of Terms Used. NOTE: ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.
    [Show full text]
  • Complete Issue (PDF)
    Abstracts Eliminating Occupational Disease: areas in the country. The study studied 40 small scale industries, and collected 40 water samples (potable) for cyanide and mer- Translating Research into Action cury which are used in mining. Questionnaire-guided interviews EPICOH 2017 and work analysis covering mining practices and risk exposures were conducted, as well as chemical analysis through gas chro- 28–31 August 2017, Edinburgh, UK matography. Results of the study showed unsafe conditions in the industries such as risk of fall during erection and dismantling of scaffolds, guard rails were not provided in scaffoldings, man- Poster Presentation ual extraction of underground ores, use of explosives, poor visi- bility in looking for ores to take out to surface, exposure to Pesticides noise from explosives, and to dust from the demolished struc- tures. Mine waste was drained into soil or ground and/or rivers and streams. The most common health problems among miners 0007 ASSESSMENT OF PESTICIDE EXPOSURE AND were hypertension (62%), followed by hypertensive cardiovascu- OCCUPATIONAL SAFETY AND HEALTH OF FARMERS IN lar disease due to left wall ischemia (14%). Health symptoms THE PHILIPPINES such as dermatitis, and peripheral neuropathy were noted and Jinky Leilanie Lu. National Institutes of Health, Institute of Health Policy and Development these can be considered as manifestations of chronic cyanide poi- Studies, University of the Philippines Manila, Manila, The Philippines soning, further, aggravated by improper use of protective equip- ment. For the environmental samples of potable water, 88% and 10.1136/oemed-2017-104636.1 98% were positive with mercury and cyanide respectively. About 52% of drinking water samples exceeded the TLV for mercury Aims This is a study conducted among 534 farmers in an while 2% exceeded the TLV for cyanide.
    [Show full text]
  • At Work in the World
    Perspectives in Medical Humanities At Work in the World Proceedings of the Fourth International Conference on the History of Occupational and Environmental Health Edited by Paul D. Blanc, MD and Brian Dolan, PhD Page Intentionally Left Blank At Work in the World Proceedings of the Fourth International Conference on the History of Occupational and Environmental Health Perspectives in Medical Humanities Perspectives in Medical Humanities publishes scholarship produced or reviewed under the auspices of the University of California Medical Humanities Consortium, a multi-campus collaborative of faculty, students and trainees in the humanities, medi- cine, and health sciences. Our series invites scholars from the humanities and health care professions to share narratives and analysis on health, healing, and the contexts of our beliefs and practices that impact biomedical inquiry. General Editor Brian Dolan, PhD, Professor of Social Medicine and Medical Humanities, University of California, San Francisco (ucsf) Recent Monograph Titles Health Citizenship: Essays in Social Medicine and Biomedical Politics By Dorothy Porter (Fall 2011) Paths to Innovation: Discovering Recombinant DNA, Oncogenes and Prions, In One Medical School, Over One Decade By Henry Bourne (Fall 2011) The Remarkables: Endocrine Abnormalities in Art By Carol Clark and Orlo Clark (Winter 2011) Clowns and Jokers Can Heal Us: Comedy and Medicine By Albert Howard Carter iii (Winter 2011) www.medicalhumanities.ucsf.edu [email protected] This series is made possible by the generous support of the Dean of the School of Medicine at ucsf, the Center for Humanities and Health Sciences at ucsf, and a Multi-Campus Research Program grant from the University of California Office of the President.
    [Show full text]
  • Hearing Loss
    Integrated care for older people (ICOPE) Guidelines on community-level interventions to manage declines in intrinsic capacity Evidence profile: hearing loss Scoping question: Does case finding and provision of hearing aids or assistive listening devices produce any benefit or harm for older people 60 years of age and over with hearing loss? The full ICOPE guidelines and complete set of evidence profiles are available at who.int/ageing/publications/guidelines-icope Painting: “Wet in Wet” by Gusta van der Meer. At 75 years of age, Gusta has an artistic style that is fresh, distinctive and vibrant. A long-time lover of art, she finds that dementia is no barrier to her artistic expression. Appreciated not just for her art but also for the support and encouragement she gives to other artists with dementia, Gusta participates in a weekly art class. Copyright by Gusta van der Meer. All rights reserved Evidence profile: hearing loss Contents Background ....................................................................................................................................................................................................... 1 Part 1: Evidence review .................................................................................................................................................................................... 2 Scoping question in PICO format (population, intervention, comparison, outcome) ............................................................................................. 2 Search strategy
    [Show full text]