Rejuvenation of Dry Paleochannels in Arid Regions in NE Africa: a Geological and Geomorphological Study

Total Page:16

File Type:pdf, Size:1020Kb

Rejuvenation of Dry Paleochannels in Arid Regions in NE Africa: a Geological and Geomorphological Study Arab J Geosci (2017) 10:14 DOI 10.1007/s12517-016-2793-z ARABGU2016 Rejuvenation of dry paleochannels in arid regions in NE Africa: a geological and geomorphological study Bahay Issawi1 & Emad S. Sallam2 Received: 20 June 2016 /Accepted: 5 December 2016 # Saudi Society for Geosciences 2016 Abstract Although the River Nile Basin receives annually ca. and west of Aswan. The nearly flat Sahara west of the Nile 1600 billion cubic meters of rainfall, yet some countries within Valley rises gradually westward until it reaches Gebel the Basin are suffering much from lack of water. The great Uweinat in the triple junction between Egypt, Sudan, and changes in the physiography of the Nile Basin are well Libya. Gebel Uweinat has an elevation of 1900 m.a.s.l. sloping displayed on its many high mountains, mostly basement rocks northward towards the Gilf Kebir Plateau, which is that are overlain by clastic sediments and capped by volcanics 1100 m.a.s.l. The high mountains and plateaus in the southern in eastern and western Sudan. The central part of the Nile Basin and western Egypt slope gradually northward where the Qattara is nearly flat including volcanics in the Bayuda Mountains and Depression is located near the Mediterranean coast. The depres- volcanic cones and plateaus in southwestern Egypt. The high sion is −134 m.b.s.l., which is the lowest natural point in Africa. mountains bordering the Nile Basin range in elevation from All these physiographic features in Sudan and Egypt are related 3300 to 4600 m.a.s.l. in the Ethiopian volcanic plateau in the to (i) the separation of South America from Africa, which east to ca. 3070 m.a.s.l. in the western Gebel Marra, and started in the Late Paleozoic and continued up to the 1310 m.a.s.l. in the Ennedi Mountains in northwestern Sudan. Cretaceous, giving rise to several generally E–W-oriented tec- In central Sudan, the Nile Valley rises approximately 200– tonic features inside Africa, (ii) the uplift of the Red Sea 300 m.a.s.l. In Egypt, the River Nile is bounded by the Red Mountains and their continuation inside Africa resulted in the Sea Mountains in the east, assuming ca. 1000–2600 m.a.s.l., East African Rift System (EARS), (iii) the Guinea–Nubia mostly of basement rocks, which are covered to the north of Lineament crossing Africa from the Atlantic to the Red Sea Aswan by Phanerozoic sediments sloping to the west, passing where many havoc trends, mostly E–W-trending faults, and by the Nile Valley and continuing through the Western Desert. uplifted basement features pierce the overlying sediments, (iv) The Phanerozoic cover on both sides of the Nile is known as the parallel and longitudinal structures associated with volcanic Eastern and Western Limestone Plateaus. These plateaus as- plateaus and cones extend from west Sudan (Gebel Marra) to sume elevations varying from 300 to 350 m.a.s.l. near the east- Ethiopian Plateau, passing by volcanics and plume features in ern bank of the Nile to 400–500 m.a.s.l. south Luxor at Esna between and the basins in east Africa were subjected to wrench related inversions, and (v) the Sudd linear E–W area stretching This article is part of the Topical Collection on Current Advances in more than 1000 km between Gebel Marra in the west, passing Geology of North Africa by South Sudan and reaching southwestern Ethiopia. Here, fluviatile and subsurface waters led to ponds, lakes, and wet * Emad S. Sallam areas that are hard to exploit. The impact of these features led to [email protected] the present south to north River Nile, but passing by many Bahay Issawi changes in the direction of its many tributaries and slope rever- [email protected] sal of some of the major extinct rivers, either sectors of the main Nile or the rivers once flowed into the main river. The paleo- 1 Geological Survey of Egypt, Cairo, Egypt climatic changes during the Quaternary period: wet and dry 2 Department of Geology, Faculty of Science, Benha University, have a great effect on the physiographic features and slope Benha, Egypt reversal of the Nile Basin drainage system. 14 Page 2 of 20 Arab J Geosci (2017) 10:14 Keywords The Nile Basin . Geology . Stratigraphy . river channel and the desert beyond. This setting stimulated a Geomorphology . Hydrogeology . NE Africa close co-existence of people and aurochs to become accustomed to each other (Wendorf et al. 1987a, 1987b; Wendorf et al. 2001). The gradual spread of humans and animal domestication Introduction throughout the Nile Valley increased rapidly within an unbeliev- able high percentage. From 10,000 (Early Holocene) to From time immemorial, before the Nile reached Egypt at 600– 5000 years ago when Egypt became under Pharaonic rule, 700 ka ago, Egyptians lived in NE Africa depending on rainfall Egyptians spread on almost every square meter of the Nile water (Wendorf and Schild 1980; Hassan 1981; Wendorf et al. Valley and an exponential increase in human population became 2001). Egypt then was not a desert area as it is now, but it was evident. Over time, the population of Egypt increased by an humid covered by different plants, fruitful trees, and many dif- unexpected rate reaching yearly by more than 2.5% (according ferent species of wild and tamed animals (Wendorf and Schild to the Egyptian Central Agency for Public Mobilization and 1976;Wendorfetal.1993). Rainfall decreases gradually since Statistics; August 2015). the Oligocene, reaching 1500 mm/year (Simons 1972, 1987)to The many radar images reveal the occurrence of many old dry 1200 mm/year during the late Miocene (Pickford et al. 2008)to channels crossing African Sahara from the south to north and 600 mm/year in the early Quaternary (Williams 2009; Williams also rare channels from the north to south. In the work of Issawi et al. 2010). Rainfall built many pools, lakes, and local rivers et al. (2016), the central African waters (Congo River and White mostly trending E–W consequent to the uplift of the Red Sea Nile River) have shown to pass through old dry channels in the Mountains (Priabonian–Burdigalian). The main water stream Western Deserts of Sudan and Egypt. The present study confirms was the north–south Qena River, which drains the northern sector the importance of the two main drainage systems in the Eastern of the Red Sea Mountains. Southwards, the main river was the Desert (Wadi Gabgaba–Allaqi) and in the Western Desert (Wadi Gabgaba–Allaqi, trending north to northwest, draining northeast- Gilf). These two dry wadis were important drainage systems, ern Sudan and southeastern Egypt before joining the Qena River, carrying waters from rainy areas in Ethiopia through the Blue 120 km south of Aswan (Issawi and McCauley 1992, 1993). The Nile and from high mountains in Uweinat and Gilf Kebir. The plants and water were enough to keep a limited number of man- Gilf and Gabgaba–Allaqi are now dry channels since dry condi- kind and animals to live happily together though man avoided to tions dominated over the Gilf area and over all the Western live on the banks of the many rivers traversing old Egypt. The Desert of Egypt. On the other hand, the Gabgaba lost its connec- shrubs and pushes were a good hiding place for dangerous tion with the Blue Nile by the rising of the Bayuda volcanics, beasts. Gradually, over time, rainwater diminished; hence, man which blocked its connections with Ethiopian water. In the pres- had to go further south probably even to what is now Sudan, ent work, it is suggested that these two dry paleochannels can be where water was available. The Egyptian migration to the south rejuvenated, adding a good supply of water to the thirsty Egypt. continued until they encountered the Kush people in north Sudan. Thence, the Egyptians were compelled to dig water wells in the Nabta area west of Abu Simbel (Wendorf et al. 1985; Study area Wendorf et al. 1987a, 1987b; Wendorf and Close 1992; Wendorf et al. 2001) and in many other places in southern The River Nile Basin occupies an area of approximately three Egypt. The present Nile Delta was soft, muddy, and susceptible million square kilometers. The river generally trends S–Nfor for marine invasions during the Neogene and the Quaternary. about 6800 km, passing through tropical to Mediterranean In southern Egypt, the beginning of a permanent society climatic zones (Fig. 1). The Nile Basin displays a broad diver- started to develop, enhanced by the discovery of animal domes- sity in geology, physiography, climate, and fluvial tication (ca. 8000 BP) and probably with cultivation of some lands environments reflected in five discrete landscape sectors. around water wells a bit earlier (Wendorf et al. 1985; Wendorf These sectors have been adopted by Said (1981) and outlined and Close 1992; Wendorf et al. 2001). In the Nabta area, by Woodward et al. (2007)asfollows: archeologists discovered Late Neolithic Tumuli ceremonial com- plex, several megaliths, old houses, and a solar calendar 1. The densely forested equatorial lake region at the southern (Wendorf et al. 1985; Wendorf et al. 1987a,1987b;Wendorf headwaters of the White Nile, with tropical catchments and Close 1992; Wendorf et al. 2001). The close co-existence and perennial flow regimes. of cattle and humans in Nabta Valley was related to what was 2. The swampy areas of Sudd and central Sudan with low- then (during the Holocene) the floodplain of the Nile bordered by gradient floodplains, broad channel belts, and low- low and high deserts, lacking vegetation.
Recommended publications
  • No More Hills Ahead?
    No More Hills Ahead? The Sudan’s Tortuous Ascent to Heights of Peace Emeric Rogier August 2005 NETHERLANDS INSTITUTE OF INTERNATIONAL RELATIONS CLINGENDAEL CIP-Data Koninklijke bibliotheek, The Hague Rogier, Emeric No More Hills Ahead? The Sudan’s Tortuous Ascent to Heights of Peace / E. Rogier – The Hague, Netherlands Institute of International Relations Clingendael. Clingendael Security Paper No. 1 ISBN 90-5031-102-4 Language-editing by Rebecca Solheim Desk top publishing by Birgit Leiteritz Netherlands Institute of International Relations Clingendael Clingendael Security and Conflict Programme Clingendael 7 2597 VH The Hague Phonenumber +31(0)70 - 3245384 Telefax +31(0)70 - 3282002 P.O. Box 93080 2509 AB The Hague E-mail: [email protected] Website: http://www.clingendael.nl The Netherlands Institute of International Relations Clingendael is an independent institute for research, training and public information on international affairs. It publishes the results of its own research projects and the monthly ‘Internationale Spectator’ and offers a broad range of courses and conferences covering a wide variety of international issues. It also maintains a library and documentation centre. © Netherlands Institute of International Relations Clingendael. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyrightholders. Clingendael Institute, P.O. Box 93080, 2509 AB The Hague, The Netherlands. Contents Foreword i Glossary of Abbreviations iii Executive Summary v Map of Sudan viii Introduction 1 Chapter 1 The Sudan: A State of War 5 I.
    [Show full text]
  • Minerals Potential and Resources in Sudan
    UNCTAD 17th Africa OILGASMINE, Khartoum, 23-26 November 2015 Extractive Industries and Sustainable Job Creation Minerals potential and resources in Sudan By Dr. Yousif Elsamani Director General of Geological Research Authority of Sudan (GRAS), Ministry of Minerals, Sudan The views expressed are those of the author and do not necessarily reflect the views of UNCTAD. Republic of Sudan Ministry of Minerals Geological Research Authority of Sudan (GRAS) Dr. Yousif Elsamani 1 of 51 Jul 15th; 2014 Outlines - Introduction - General Geology - Mineral Potentials - Investments - The Mineral wealth of the Sudan - Present Status - Small Scale Mining - Advantages of the Sudanese mining Sector 2 of 51 Jul 15th; 2014 Introduction • Sudan is the largest country in Africa, covering about two millions squared Km. It falls between latitudes 4-22 N and longitudes 22-38 E. It is inhabited by 40 millions population. • With such big area and diversified geology which merges across the boundaries between nine countries Sudan has a huge mineral potential yet to be evaluated and developed. • The Ministry of Minerals, through the Geological Researches Authority of the Sudan (GRAS), the State Geological Survey, is the guardian of all metals and minerals within the lands, rivers and the continental shelf of the Sudan. • The over-riding function of the Ministry is to organize, promote and develop the mining sector and the mineral resources of the Sudan in order to enhance the national economy and contribute in the sustainable development. • This is generally achieved through the identification and systematic inventory of the available resources as a result of geological mapping, geophysical and geochemical exploration programs.
    [Show full text]
  • In Wadi Allaqi, Egypt
    ENVIRONMENTAL VALUATION AND MANAGEMENT OF PLANTS IN WADI ALLAQI, EGYPT FINAL REPORT IDRC OQ w W1.44 Trent University AUGUST 1998 ENVIRONMENTAL VALUATION AND-MANAGEMENT OF PLANTS IN WADI ALLAQI, EGYPT Final report Editors: Belal, A.E. , B. Leith, J. Solway and 1. Springuel Submitted To INTERNATIONAL DEVELOPMENT RESEARCH CENTRE (IDRC) CANADA File: 95-100"1/02 127-01 UNIT OF ENVIRONMENTAL STUDIES AND DEVELOPMENT, SOUTH VALLEY UNIVERSITY, ASWAN, EGYPT A-RC hf v 5 91, 5 7 By Acknowledgements The Project team of both South Valley and Trent Universities wish to thank the International Development Research Center (IDRC) Ottawa, Canada, for supporting the project with funding and for visiting the site. We also thank the staff of the IDRC Cairo Office for their assistance. This report is based upon the knowledge, hard work, and support of many people and institutions. We thank the British Council for the support they have provided in training many members of the team and UNESCO for providing support for the Allaqi project and Biosphere Reserve. We appreciate the good working relationship that we have developed with the Egyptian Environment Affairs Agency. Dr. M. Kassas of Cairo University has provided valuable intellectual direction for the project. We thank C. Fararldi who has assisted the project in numerous ways and Gordon Dickinson for writing notes on establishing the visitor center in Wadi Allaqi We wish to thank the research offices of Trent University and South Valley University. We are deeply grateful to the residents of Wadi Allaqi for their help and continued support and patience towards our project.
    [Show full text]
  • Evaporation from Salty Lagoons (Case Study: Qattara Depression)
    The British University in Egypt BUE Scholar Civil Engineering Engineering Spring 4-2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Mohamed Abdelhamid Eizeldin Dr. [email protected] Heba Abdelazim M.Sc Sherif Eldidy Prof. Cairo University Follow this and additional works at: https://buescholar.bue.edu.eg/civil_eng Part of the Civil Engineering Commons, and the Hydraulic Engineering Commons Recommended Citation Eizeldin, Mohamed Abdelhamid Dr.; Abdelazim, Heba M.Sc; and Eldidy, Sherif Prof., "Evaporation from Salty Lagoons (Case Study: Qattara Depression)" (2017). Civil Engineering. 7. https://buescholar.bue.edu.eg/civil_eng/7 This Conference Proceeding is brought to you for free and open access by the Engineering at BUE Scholar. It has been accepted for inclusion in Civil Engineering by an authorized administrator of BUE Scholar. For more information, please contact [email protected]. Al-Azhar University Civil Engineering Research Magazine (CERM) Vol. (39) No. (2) April, 2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Abdel Azeem, H.S1, El-Didy, S.M2, Eizeldin, M.A3, and Helmi, A.M4 ﻣﻠﺨﺺ ﻋﺮﺑﻲ ﺗﻢ إﻋﺪاد اﻟﻌﺪﯾﺪ ﻣﻦ اﻟﺪراﺳﺎت - ﻓﻲ ﺑﺪاﯾﺔ اﻟﻘﺮن اﻟﻌﺸﺮﯾﻦ - ﻟﺪراﺳﺔ ﺗﻮﺻﯿﻞ ﻣﯿﺎه اﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ﻣﻦ ﺧﻼل ﻗﻨﺎة ﺗﻮﺻﯿﻞ ﻟﻤﻨﺨﻔﺾ اﻟﻘﻄﺎرة ﺑﮭﺪف ﺗﻮﻟﯿﺪ اﻟﻄﺎﻗﺔ اﻟﻜﮭﺮﺑﺎﺋﯿﺔ وذﻟﻚ ﺑﺈﺳﺘﻐﻼل ﻓﺮق اﻟﻤﻨﺎﺳﯿﺐ ﺑﯿﻦ اﻟﻤﻨﺨﻔﺾ واﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ، وﺗﮭﺪف اﻟﺪراﺳﺔ اﻟﺤﺎﻟﯿﺔ إﻟﻰ :-أ) إﻧﺸﺎء ﻣﻨﻈﻮﻣﺔ ﻣﻌﻠﻮﻣﺎت ھﯿﺪروﻟﻮﺟﯿﺔ ﻟﻠﻤﻨﺨﻔﺾ ب) ﺣﺴﺎب ﻣﻌﺪﻻت اﻟﺒﺨﺮ اﻟﻤﺘﻮﻗﻊ ﻣﻦ اﻟﻤﯿﺎه اﻟﻤﺎﻟﺤﺔ اﻟﻤﺠﻤﻌﺔ ﻓﻲ ﺑﺤﯿﺮة اﻟﻤﻨﺨﻔﺾ. وﻗﺪ ﺗﻢ إﻋﺪاد ﻣﻨﮭﺞ اﻟﺪراﺳﺔ ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮاﻣﺞ اﻟﺤﺪﯾﺜﺔ اﻟﺘﻲ ﻟﻢ ﺗﻜﻦ ﻣﺘﺎﺣﺔ ﻟﻠﺪراﺳﺎت اﻟﺴﺎﺑﻘﺔ ﻟﻠﻤﺸﺮوع ﺣﯿﻨﮭﺎ، وھﺬه اﻟﺒﺮاﻣﺞ ﻣﺜﻞ اﻟﻨﻤﺎذج اﻟﻌﺪدﯾﺔ اﻟﻔﻌﺎﻟﺔ، ﻧﻈﺎم اﻟﻤﻌﻠﻮﻣﺎت اﻟﻌﺪدﯾﺔ ( GIS) ، وﻧﻤﺎذج اﻹرﺗﻔﺎﻋﺎت اﻟﺮﻗﻤﯿﺔ (DEM).
    [Show full text]
  • Assessment of Rock Mass Instability of Es-Sileitat Quarries, Eastern Khartoum State, Sudan
    AL NEELAIN UNIVERSITY Graduate Collage Assessment of Rock Mass Instability of Es-Sileitat Quarries, Eastern Khartoum State, Sudan By: Eltayeb Bashir Hassan Hamid B. Sc. (Hons.) 2014, Al Neelain University A Dissertation submitted to the Graduate Collage, Al Neelain University for the partial fulfilment of the Master Degree of Geology (Engineering Geology) Jan.2020 AL NEELAIN UNIVERSITY Graduate Collage Assessment of Rock Mass Instability of Es-Sileitat Quarries, Eastern Khartoum State, Sudan By: Eltayeb Bashir Hassan Hamid B. Sc. (Hons.) 2014, Al Neelain University A Dissertation submitted to the Graduate Collage, Al Neelain University for the partial fulfilment of the Master Degree of Geology (Engineering Geology) Supervisor: Dr. Esamaldeen Ali M. Ahmed Signature:…............ External Examiner: Dr. Mohammd Aljack Signature:………... Internal Examiner: Dr. Ibrahim Abdelgadir Signature:……….... قال تعالى: ) َوا ْذ ُك ُروا إِ ْذ َج َعلَ ُك ْم ُخلَفَا َء ِم ْن بَ ْع ِد َعا ٍد َوبَ َّوأَ ُك ْم فِي ا ْْلَ ْر ِض تَتَّ ِخ ُذو َن ِم ْن ُسهُولِهَا قُ ُصو ًرا َوت َ ْن ِحتُو َن ا ْل ِجبَا َل بُيُوتًا ۖ فَا ْذ ُك ُروا آ ََل َء ََّّللاِ َو ََل تَ ْعثَ ْوا فِي ا ْْلَ ْر ِض ُم ْف ِس ِدي َن ( صدق هللا العظيم سورة اْلعراف- آية رقم )74( Dedication I dedicate this humble work to: My father My mother My brothers (Hassan and Omer) My sisters My wife My daughter My friends To every one helped me To everyone love Knowledge. I ACKNOWLEDGEMENTS Praise Allah for helping me to finish this work. I would like to express my deepest gratitude and thanks to Dr.
    [Show full text]
  • National Report of Egypt
    EGYPT / EGYPTE / EGIPTO 1 2 UNEP/CMS/Inf. 7.14.35 National Report of the Arab Republic of Egypt to the Convention of Migratory Species of Wild Animals (CMS) 1 Nature Conservation Sector (NCS) Egyptian Environmental Affairs Agency (EEAA) July 2002 Prepared by: Mohamed Ibrahim Mohamed, Director General, Natural Protectorates Dept. Nature Conservation Sector (NCS), EEAA. Dr. Shrief Baha el-Din, Advisor, Nature Conservation Sector (NCS), EEAA Revised by: Dr. Moustafa Fouda, Director Natural Conservation Sector (NCS)-(EEAA). 1 According to reporting format agreed by the Standing Committee at its 23rd meeting (Bonn, December 2001) 3 Which agency has been primarily responsible for the preparation of this report? Nature Conservation Sector (NCS), Egyptian Environmental Affairs Agency (EEAA) List any other agencies that have provided input: Nil I(a). General Information Please complete any unfilled boxes and amend and/or update as appropriate the information provided in the table below: Reports submitted: Egyptian Environmental Affairs Agency (EEAA) Period covered by this report: 99 / 2002 Date of entry into force of the Convention in Egypt: 1 - 11 -1983 Territory to which the Convention applies: Arab Republic of Egypt, its territories and territorial waters. Reservations (against species listings): None Designated Focal Point: Appointment to the Scientific Council: Nature Conservation Sector (NCS) Dr. Moustafa Fouda Address: 30 Misr Helwan- Zyrae Rd. Maadi, Cairo, Egypt. Director, Nature Conservation Sector (NCS), EEAA Tel: (00202) 5248792, 5271391 (00202) 5248792 Fax: (00202) 5248792, 5256490 5271391 E-mail: [email protected] E-mail: [email protected] Membership of the Standing Committee: Competent authority: EEAA Implementing legislation: - The law for Natural Protectorates 102/1983 - The law for the Environment 4/1994 - the Law of Catching fishing and aquatic life 124/1983 - The law of Agriculture 33/1966.
    [Show full text]
  • Egypt: National Strategy and Action Plan for Biodiversity Conservation
    i,_._ ' Ministry of State for the Environment Egyptian Environmental Affairs Agency Department of Nature Conservation National Biodiversity Unit Egypt: National Strategy and Action Plan for Biodiversity Conservation January, 1998 Egypt: National Strategy and Action Plan for Biodiversity Conservation* Part 1: Introduction Part 2: Goals and Guiding Principles Part 3: Components of the National Plan of Action Part 4: The National Programmes of Action Annex: Programmes, fact sheets Illl_llIBl_l_l_lllIM MWmIllm _ WBlllllIBlllllllIBllll_llll_lllllllllllllllllIBl_l * This document incorporates the outcome of sessions of extensive discussion held at Aswan, Qena, Sohag, Assyut, EI-Minya, Beni Suef, Faiyum, Cairo, Ain Shams, Helwan, Tanta, Zagazig, Benha, Mansoura and Damietta between March and May, 1997, and a national conference held in Cairo: 26 -27 November 1997. 3 FOREWORD Concern with, and interest in, the study of wild species of plants and animals and observing their life cycles and ecological behaviour as related to natural phenomena was part of the cultural traditions of Egypt throughout its long history. In Pharaonic Egypt certain species were sacramented (e.g. the sacred ibis, sacred scarab, etc.) or protected as public property because of their economic importance (e.g. papyrus: material for state monopolized paper industry). In recent history laws protected certain species of animals, but protection of natural habitats with their ecological attributes and assemblages of plants and animals (nature reserves) remained beyond the interest of government. The United Nations, with the assistance of the International Union for Conservation of Nature and Natural Resources (IUCN) published lists of nature reserves worldwide, and Egypt was not mentioned in these lists till the late 1970s.
    [Show full text]
  • Climate Change Adaptation and Natural Disasters Preparedness in the Coastal Cities of North Africa
    Arab Republic of Egypt Kingdom of Morocco THE WORLD Republic of Tunisia BANK Climate Change Adaptation and Natural Disasters Preparedness in the Coastal Cities of North Africa Phase 1 : Risk Assessment for the Present Situation and Horizon 2030 – Alexandria Area Draft Final Version 31 January 2011 Project Web Site: http://www.egis-bceominternational.com/pbm/ AASTMT / Egis Bceom Int. / IAU-IDF / BRGM Document quality information Document quality information General information Author(s) AASTMT / Egis BCEOM International Project name Climate Change Adaptation and Natural Disasters Preparedness in the Coastal Cities of North Africa Document name Phase 1 : Risk Assessment for the Present Situation and Horizon 2030 – Alexandria Area Date 31 January 2011 Reference GED 80823T Addressee(s) Sent to: Name Organization Sent on (date): A. Bigio The World Bank 31 January 2011 Copy to: Name Organization Sent on (date): S. Rouhana The World Bank 31 January 2011 A. Tiwari The World Bank 31 January 2011 A. Amasha AASTMT 31 January 2011 History of modifications Version Date Written by Approved & signed by: AASTMT / Egis BCEOM Version 1 13 June 2010 International AASTMT / Egis BCEOM Version 2 06 August 2010 International 05 December AASTMT / Egis BCEOM Version 3 2010 International Climate Change Adaptation and Natural Disasters Preparedness Page 2 in the Coastal Cities of North Africa Draft Final Version AASTMT / Egis Bceom Int. / IAU-IDF / BRGM Document quality information Supervision and Management of the Study The present study is financed by the World Bank as well as the following fiduciary funds: NTF- PSI, TFESSD and GFDRR, which are administered by the World Bank.
    [Show full text]
  • Mathematics in Ancient Egypt and Mesopotamia
    Mathematics in Ancient Egypt and Mesopotamia Mathematics in Ancient Egypt and Mesopotamia Waseda University, SILS, History of Mathematics Mathematics in Ancient Egypt and Mesopotamia Outline Introduction Egyptian mathematics Egyptian numbers Egyptian computation Some example problems Babylonian Mathematics Babylonian numbers Babylonian computation Some example problems Mathematics in Ancient Egypt and Mesopotamia Introduction How do historians divide up history? The large scale periodization used for (Western) history is the following: I Ancient: the distant past to, say, 5th or 6th century ce I Medieval: 6th to, say, 15th or 16th century I Modern: 16th century to the present Mathematics in Ancient Egypt and Mesopotamia Introduction Ancient cultures around the Mediterranean Mathematics in Ancient Egypt and Mesopotamia Introduction How do we study ancient history? I What are our ancient sources? I material objects I images I texts a. found as ancient material objects b. transmitted by tradition I What is the condition of the sources? I Wherever possible, we focus on reading and understanding texts. I When we study objects, without any textual support or evidence, it is very easy to be mislead, or to have very open-ended and unverifiable interpretations. Mathematics in Ancient Egypt and Mesopotamia Introduction How can we interpret these objects without texts?1 1 The pyramids of Giza. Mathematics in Ancient Egypt and Mesopotamia Introduction Or how about these?2 2 Stonehenge in Wiltshire, England. Mathematics in Ancient Egypt and Mesopotamia
    [Show full text]
  • Egypt State of Environment Report 2008
    Egypt State of Environment Report Egypt State of Environment Report 2008 1 Egypt State of Environment Report 2 Egypt State of Environment Report Acknowledgment I would like to extend my thanks and appreciation to all who contributed in producing this report whether from the Ministry,s staff, other ministries, institutions or experts who contributed to the preparation of various parts of this report as well as their distinguished efforts to finalize it. Particular thanks go to Prof. Dr Mustafa Kamal Tolba, president of the International Center for Environment and Development; Whom EEAA Board of Directors is honored with his membership; as well as for his valuable recommendations and supervision in the development of this report . May God be our Guide,,, Minister of State for Environmental Affairs Eng. Maged George Elias 7 Egypt State of Environment Report 8 Egypt State of Environment Report Foreword It gives me great pleasure to foreword State of Environment Report -2008 of the Arab Republic of Egypt, which is issued for the fifth year successively as a significant step of the political environmental commitment of Government of Egypt “GoE”. This comes in the framework of law no.4 /1994 on Environment and its amendment law no.9/2009, which stipulates in its Chapter Two on developing an annual State of Environment Report to be submitted to the president of the Republic and the Cabinet with a copy lodged in the People’s Assembly ; as well as keenness of Egypt’s political leadership to integrate environmental dimension in all fields to achieve sustainable development , which springs from its belief that protecting the environment has become a necessary requirement to protect People’s health and increased production through the optimum utilization of resources .
    [Show full text]
  • Index of Sources
    Cambridge University Press 0521819245 - Land and Power in Ptolemaic Egypt: The Structure of Land Tenure J. G. Manning Index More information Index of sources GREEK PAPYRI P. Grenf. i 10 187 BGU 11 171 1374 188 P. Grenf. ii 1730 47 23 157, 198 C.Ord. Ptol. 5-10 179 P. Hal. 196 P. Adler P. Haun. Inv. 407 46, 76, 81, 88, 90, 97, 152, 387 160, 196 787 P. Hibeh 22 887 29 187 9 224 P. K oln¨ 12 89 4 186 169 P. Amh. 7 313 169 33 53 P. Lille 40 185 1 112 44 157 3 157 49 94, 155 10 55 P. Bingen 36 57 11 107 P. Cairo Zen. 1 59001 179 47 112 P. Cairo Zen. 2 P. Lond. 881 174 59155 112 P. Lond. Inv. 2850 173 59245 109 P. Lond. iii 59292 113 206 224 P. Col. Zen. 1206 224 83 139 P. Lond. vii 120 178 1954 108, 113, 115 P. Dion. 18 191 2015 179 P. Edfou 886, 160 P. Magd. 253 P. Elephantine P. Mich. Zen. 168 25 112 10 85, 163 111 114 11 163 P. Oxy. 12 84, 163 xlvi 3285 19 14 161 P. Paris 19 85 63 180 20 78 65 172 28 84, 157 P. Petr. P. Gen. iii ii 4 (11) 107 128 170 ii 6 107 132 137 ii 9 (4) 107 P. Gr. Dublin ined. 167 ii 13, 18a 104 325 © Cambridge University Press www.cambridge.org Cambridge University Press 0521819245 - Land and Power in Ptolemaic Egypt: The Structure of Land Tenure J.
    [Show full text]
  • 2002-04-07 ASSOCIATE PARLIAMENTARY GROUP On
    ASSOCIATE PARLIAMENTARY GROUP ON SUDAN Visit to Sudan 7th - 12th April 2002 Facilitated by Christian Aid, Oxfam GB, Save the Children, Tearfund, and the British Embassy, Khartoum ASSOCIATE PARLIAMENTARY GROUP ON SUDAN Visit to Sudan 7th - 12th April 2002 Facilitated by Christian Aid, Oxfam GB, Save the Children, Tearfund, and the British Embassy, Khartoum Associate Parliamentary Group on Sudan 1 ACKNOWLEDGEMENTS We visited Sudan between April 6th and 13th 2002 under the auspices of the Associate Parliamentary Group for Sudan accompanied by HM Ambassador to Sudan Richard Makepeace, Dan Silvey of Christian Aid and the Group co-ordinator Colin Robertson. Our grateful thanks go to Colin and Dan for their superb organisation, tolerance and patience, to Christian Aid, Oxfam GB, Save the Children and Tearfund for their financial and logistical support, and to Ambassador Makepeace for his unfailing courtesy, deep knowledge of the current situation and crucial introductions. Our visit to southern Sudan could not have gone ahead without the hospitality and support of Susan from Unicef in Rumbek and Julie from Tearfund at Maluakon. As well as being grateful to them and their organisations we are enormously impressed by their courage and commitment to helping people in such difficult and challenging circumstances. Thanks to the efforts of these and many others we were able to pack a huge number of meetings and discussions into a few days, across several hundred miles of the largest country in Africa. The primary purpose of our visit was to listen and learn. Everyone talked to us of peace, and of their ideas about the sort of political settlement needed to ensure that such a peace would be sustainable, with every part of the country developed for the benefit of all of its people.
    [Show full text]