Re-Examining Galileo's Theory of Tides

Total Page:16

File Type:pdf, Size:1020Kb

Re-Examining Galileo's Theory of Tides Arch. Hist. Exact Sci. 53 (1998) 223–375. c Springer-Verlag 1998 Re-examining Galileo’s Theory of Tides PAOLO PALMIERI Communicated by C. WILSON Contents Introduction .............................................................. 224 1. Galileo’s tide-generating acceleration ................................... 227 1.1 The woad-grindstone model .......................................... 227 1.2 Composition of speeds and relativity ................................... 234 1.3 Tide-generating acceleration as a historiographical stumbling block ..................................................... 243 2. Newton’s tide-generating force .......................................... 248 2.1 Newton’s dynamic model ............................................. 248 2.2 Asymmetric tide-generating force and asymmetric tide periods ........... 250 3. Galileo’s oscillatory model .............................................. 255 3.1 A simple oscillating system ........................................... 255 3.2 Galileo’s model: laws of basins and superimposition of waves ............ 263 4. The ‘warping’ of history ................................................ 275 4.1 Galileo’s claim: tides prove Copernicus ................................ 275 4.2 Galileo’s notions on bodies that move around a centre ................... 281 4.3 Tide equations: the quasi-Galilean term ................................ 295 4.4 Tides in a non-Newtonian universe .................................... 302 5. Simulate the winds and the sea .......................................... 305 5.1 Comets and winds ................................................... 305 5.2 Rotating buckets and the terrestrial atmosphere ......................... 314 5.3 Tide experiments: artificial vessels and tide-machines ................... 318 6. Celestial wheel clock ................................................... 326 6.1 Monthly and annual periodicities ...................................... 326 6.2 The celestial balance-stick regulator ................................... 335 7. Moon and waves ....................................................... 338 7.1 Lunar trepidations and tides: a new research programme ................. 338 7.2 A single great wave .................................................. 352 Appendix 1. Newton’s asymmetric tide generating force .................... 356 Appendix 2. The math of warps ........................................... 359 Appendix 3. The repetition of the spinning bucket experiments ............. 362 Appendix 4. The repetition of Galileo’s experiments on tides ................ 365 Appendix 5. The math of the wheel clock .................................. 371 224 P. P ALMIERI Introduction Some fifteen years ago, Stillman Drake pointed out in his article on History of Science and Tide Theories1 that the state of historical research at that time concerning Galileo’s theory of tides was highly unsatisfactory. More specifically, what deserved re-examining was the Italian scientist’s claim to having furnished a physical proof of the Copernican double motion of the Earth (the annual revolution and the diurnal rotation) by means of a model that explained the ebb and flow of the oceans as a consequence of the acceleration and retardation imparted to sea water by the composition of two speeds: that due to the annual motion of the terrestrial globe and that due to its diurnal rotation. Today, Drakes argument still holds true. On the one hand, owing to a lack of mathe- matical knowledge, many professional historians have tended to oversimplify Galileo’s theory, so that what has usually been presented as Galileo’s position is but ‘a parody or caricature of it’.2 On the other hand, the very few working scientists who have paid some desultory attention to the history of their chosen disciplines have drawn overly facile conclusions regarding Galileo’s conception of tide motions, probably without direct con- sultation of all the original sources. As a result, Galileo’s theory of tides has frequently been brushed aside as being an unfortunate episode, unable as it was to explain the flux and reflux of the sea and patently wrong in its claiming to demonstrate the double motion of the Earth, namely, the diurnal rotation about its polar axis and the annual revolution around the Sun. Yet, there is no getting away from the fact that precisely such a ‘bizarre’ theory was uppermost in Galileo’s mind throughout his long scientific career, for it was, in his view, the very ground upon which the Copernican world system was eventually to be founded and physically proved. In this study, I have therefore set myself the twin task of re-proposing the Galilean tide model in all its complexity by bringing to light its completely forgotten vision of the flux and reflux of the sea as a wave-like phenomenon and reassessing its claim to being a physical proof of the double motion which Copernicus had assigned to the Earth in his De Revolutionibus. During the course of my investigations I was on one occasion faced with an impasse. I had long been at a loss as to how to explain how Galileo could possibly have reached at least one of his two most insightful and surprising conclusions regarding the dependence of the reciprocation time – in modern terms, frequency of oscillation – of different sea basins on their different depths and lengths. He clearly formulates two laws: a) that frequency increases with depth (width remaining constant), and b) that frequency decreases with width (depth remaining constant). Amazing as it may seem, he gives us no clue to the specific research strategy which must have brought him to such discoveries, nor does he bother to justify his assertions. Why? I was baffled. The only thing which is clearly asserted, though not directly referring to the laws of oscillation, is that he had been trying in many ways to simulate tide-related phenomena by means of mechanical models. I therefore decided to repeat – re-invent, if you like – his experiments using a very simple parallelepipedal glass tank and, sure enough, found a possible answer 1 S. Drake, “History of Science and Tide Theories”, Physis, XXI, 1979, pp. 61–69. 2 Ibid.,p.63. Re-examining Galileo’s Theory of Tides 225 to my question. As we shall see, Galileo might possibly have observed much more in his experiments than his physics and mathematics were able to cope with. For, he must have found himself face to face with the formidable difficulties of wave motions and undulatory phenomena. At the very heart of this research programme lay his quest for a physical proof of Copernican astronomy. It was the idea of devising a periodic tide-generating cause whose law could be deduced from the kinematic principle of composition of uniform or quasi-uniform motions. The Earth-Moon system orbiting the Sun could be studied as a two-body system giving rise to periodic regularities in the rate of change of motion of the surface of the Earth that, on a first approximation, were comparable with the main periods of tides commonly accepted in Galileo’s time. The ‘crucible’ wherein this periodic cause was to be transformed into tidal ebb and flow was the ocean basin, the geometry of which became, in his theory, the key to the understanding of the striking variety that wave-like tide phenomena manifest, beyond their basic periodicities. This is the very key that has been lost by science historians, a loss that has so far precluded a more balanced assessment of the many aspects of Galileo’s tide theory. Galileo did not wholly succeed in cracking the code of the ‘chemistry’ of tidal waves. This would have required analytical methods much more powerful than the elementary theory of proportions, which was all the daily tools of his mathematical laboratory amounted to. He was nonetheless able to come up with a satisfactorily working ‘principle of superimposition of waves’. According to this principle, different periodic patterns of behaviour could be pre- dicted with some degree of numerical accuracy, and the absolute wave could be thought of as being the result of a wave induced by the ‘external’ cause due to the motions of the Earth-Moon system and a wave due to the ‘internal’ response of the basin. This re- sponse was regulated by the geometric characteristics of each particular sea basin. The global picture that emerges from my study indicates that the two laws of motion within artificial vessels and sea basins must have been regarded by the Pisan scientist as being only a partial success. They represent in all probability just the outcroppings of a more ambitious research programme. This ampler vision aimed to cast light on the multifaceted nature of the relationship between, on the one hand, the motions of sea water on the surface of the moving Earth and of the superficial air strata of the atmosphere girdling a rotating planet and, on the other, the Earth’s Copernican motions. In spite of Galileo’s long labouring at his intuition of the existence of such a complex relationship, his overall programme has hitherto been overlooked and his incomplete achievements dismissed virtually unanimously by science historians as being simply irrelevant and/or patently wrong. In order to illumine the background against which Galileo’s reasoning on the problem of tides evolved, I have also repeated a few extremely interesting experiments with rotating vessels (both closed and open) to test their ability to drag the air contained inside. One of these experiments is clearly described by Galileo himself, while the others are proposed by Galileo’s
Recommended publications
  • The Spectrumspectrum the Calendar 2 Membership Corner 3 the Newsletter for the Buffalo Astronomical a Letter from Mike 4
    Inside this issue: TheThe SpectrumSpectrum The Calendar 2 Membership Corner 3 The Newsletter for the Buffalo Astronomical A Letter from Mike 4 Obs Report 5 The Banquet 6 Stay Warm and 9 Cozy Astro Day Poster 11 March/April The Galileo Affair 12 Volume 17, Issue 2 Gallery 18 May Star Chart 19 March Star Chart 19 April Star Chart 20 Our Newly Redesigned Website is Live! If you haven’t checked out BuffaloAstronomy.com recently, it’s time for a visit. Our new site, designed by webmaster and club member Gene Timothy is up and running. The interface is clean and organized and much easier to update with club news and astronomy content. You can now register for the April Banquet, join the club and pay dues using a PayPal account or a major credit card. Coming soon is a new log-in area which will allow members to communicate with each other, share a profile and access special features, including BAA historical information and an archive of Spectrum issues dating back many decades. Come visit and share your comments, thoughts and ideas on how we can make the site better and more useful to the club. A BIG thank you to Gene and the BAA Board for their hard work and creativity! 1 BAA Schedule of Astronomy Fun for 2015 BAA Schedule of Astronomy Fun for 2015 Mar 13: BAA Meeting at 7:30pm at Buffalo State College Mar 20: New Moon Mar 20: Total Solar Eclipse (Arctic) Mar 21-22: Maple Syrup Festival at BMO 9am-3pm Need help for Solar viewing Mar 21: Messier Marathon Dusk till Dawn at Beaver Meadow Observatory Apr 4: First Public Night at Beaver Meadow Observatory April 4: Total Lunar Eclipse Apr 11: BAA Annual Dinner Meeting at Risottos April 18; New Moon Apr 18/19: NEAF who wants to car pool?? April 21-22: Lyrids Meteor Shower Apr 25: Astronomy Day at Buffalo Museum of Science details TBA May 2: Public Night BMO May 8: BAA Meeting at 7:30pm at Buffalo State College May 18: New Moon Jun 6: Public Night BMO Jun 12: BAA Meeting/Elections at 7:30pm at Buffalo State College Jun 17 New Moon July 4: Public Night BMO – I will need help as I have family obligations that day.
    [Show full text]
  • Galileo in Rome Galileo in Rome
    Galileo in Rome Galileo in Rome The Rise and Fall of a Troublesome Genius William R. Shea and Mariano Artigas Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Copyright © 2003 by Oxford University Press, Inc. First published by Oxford University Press, Inc., 2003 198 Madison Avenue, New York, New York 10016 www.oup.com Issued as an Oxford University Press paperback, 2004 ISBN 0-19-517758-4 (pbk) Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. The Library of Congress has catalogued the cloth edition as follows: Artigas, Mariano. Galileo in Rome : the rise and fall of a troublesome genius / Mariano Artigas and William R. Shea. p. cm. Includes bibliographical references and index. ISBN 0-19-516598-5 1. Galilei, Galileo, 1564-1642—Journeys—Italy—Rome. 2. Religion and science—History—16th century. 3. Astronomers—Italy—Biography. I. Shea, William R. II. Title. QB36.G2 A69 2003 520'.92—dc21 2003004247 Book design by planettheo.com 9 8 7 6 5 4 3 2 1 Printed in the United States of America on acid-free paper CONTENTS ACKNO W L E D G E M E N T S vii I N TRO D U C TIO N ix CHA P TER O N E Job Hunting and the Path
    [Show full text]
  • Of Universal Gravitation and of the Theory of Relativity
    ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY By HUGH OSCAR PEEBLES Bachelor of Science The University of Texas Austin, Texas 1955 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1960 ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY Report Approved: Dean of the Graduate School ii ACKNOWLEDGEMENT I express my deep appreciation to Dr. Leon w. Schroeder, Associate Professor of Physics, for his counsel, his criticisms, and his interest in the preparation of this study. My appre­ ciation is also extended to Dr. James H. Zant, Professor of Mathematics, for his guidance in the development of my graduate program. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. 1 II. THE EARTH-MOON T"EST OF THE LAW OF GRAVITATION 4 III. DERIVATION OF KEPLER'S LAWS OF PLAN.ET.ARY MOTION FROM THE LAW OF UNIVERSAL GRAVITATION. • • • • • • • • • 9 The First Law-Law of Elliptical Paths • • • • • 10 The Second Law-Law of Equal Areas • • • • • • • 15 The Third Law-Harmonic Law • • • • • • • 19 IV. DETERMINATION OF THE MASSES OF ASTRONOMICAL BODIES. 20 V. ELEMENTARY THEORY OF TIDES. • • • • • • • • • • • • 26 VI. ELEMENTARY THEORY OF THE EQUATORIAL BULGE OF PLANETS 33 VII. THE DISCOVERY OF NEW PLANETS. • • • • • • • • • 36 VIII. ASTRONOMICAL TESTS OF THE THEORY OF RELATIVITY. 40 BIBLIOGRAPHY . 45 iv LIST OF FIGURES Figure Page 1. Fall of the Uoon Toward the Earth • • • • • • • • • • 6 2. Newton's Calculation of the Earth's Gravitational Ef- fect on the Moon.
    [Show full text]
  • The Jesuits and the Galileo Affair Author(S): Nicholas Overgaard Source: Prandium - the Journal of Historical Studies, Vol
    Early Modern Catholic Defense of Copernicanism: The Jesuits and the Galileo Affair Author(s): Nicholas Overgaard Source: Prandium - The Journal of Historical Studies, Vol. 2, No. 1 (Spring, 2013), pp. 29-36 Published by: The Department of Historical Studies, University of Toronto Mississauga Stable URL: http://jps.library.utoronto.ca/index.php/prandium/article/view/19654 Prandium: The Journal of Historical Studies Vol. 2, No. 1, (2013) Early Modern Catholic Defense of Copernicanism: The Jesuits and the Galileo Affair Nicholas Overgaard “Obedience should be blind and prompt,” Ignatius of Loyola reminded his Jesuit brothers a decade after their founding in 1540.1 By the turn of the seventeenth century, the incumbent Superior General Claudio Aquaviva had reiterated Loyola’s expectation of “blind obedience,” with specific regard to Jesuit support for the Catholic Church during the Galileo Affair.2 Interpreting the relationship between the Jesuits and Copernicans like Galileo Galilei through the frame of “blind obedience” reaffirms the conservative image of the Catholic Church – to which the Jesuits owed such obedience – as committed to its medieval traditions. In opposition to this perspective, I will argue that the Jesuits involved in the Galileo Affair3 represent the progressive ideas of the Church in the early seventeenth century. To prove this, I will argue that although the Jesuits rejected the epistemological claims of Copernicanism, they found it beneficial in its practical applications. The desire to solidify their status as the intellectual elites of the Church caused the Jesuits to reject Copernicanism in public. However, they promoted an intellectual environment in which Copernican studies – particularly those of Galileo – could develop with minimal opposition, theological or otherwise.
    [Show full text]
  • Galileo's Assayer
    University of Nevada, Reno Galileo's Assayer: Sense and Reason in the Epistemic Balance A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in History. by James A Smith Dr. Bruce Moran/Thesis Advisor May 2018 c by James A Smith 2018 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by JAMES A. SMITH entitled Galileo's Assayer: Sense and Reason in the Epistemic Balance be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Bruce Moran, Ph.D., Advisor Edward Schoolman, Ph.D., Committee Member Carlos Mariscal, Ph.D., Committee Member Stanislav Jabuka, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i Abstract Galileo's The Assayer, published in 1623, represents a turning point in Galileo's philo- sophical work. A highly polemical \scientific manifesto," The Assayer was written after his astronomical discoveries of the moons of Jupiter and sunspots on a rotating sun, but before his mature Copernican work on the chief world systems (Ptolemaic versus Copernican). The Assayer included major claims regarding the place of math- ematics in natural philosophy and how the objects of the world and their properties can be known. It's in The Assayer that Galileo wades into the discussion about the ultimate constituents of matter and light, namely, unobservable particles and atoms. Galileo stressed the equal roles that the senses and reason served in the discovery of knowledge, in contradistinction to Aristotelian authoritarian dogma that he found to hinder the processes of discovery and knowledge acquisition.
    [Show full text]
  • The Association Between the Lunar Cycle and Patterns
    THE ASSOCIATION BETWEEN THE LUNAR CYCLE AND PATTERNS OF PATIENT PRESENTATION TO THE EMERGENCY DEPARTMENT. Grant Dudley Futcher Student number: 7709742 A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Medicine in Emergency Medicine. Johannesburg, 2015 i DECLARATION I, Grant Dudley Futcher, declare that this research report is my own work. It is being submitted for the degree of Master of Science in Medicine (Emergency Medicine) in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University. Signed on 25th day of August 2015 ii DEDICATION This work is dedicated to my children, Charis, Luke and Jarryd, who have patiently endured their father’s choice of medical discipline. iii PUBLICATIONS ARISING FROM THIS STUDY Nil iv ABSTRACT Aim: To determine any association between the lunar synodic or anomalistic months and the nature and volume of emergency department patient consultations and hospital admissions from the emergency department (ED). Design: A retrospective, descriptive study. Setting: All South African EDs of a private hospital group. Patients: All patients consulted from 01 January 2005 to 31 December 2010. Methods: Data was extracted from monthly records and statistically evaluated, controlling for calendric variables. Lunar variables were modelled with volumes of differing priority of hospital admissions and consultation categories including; trauma, medical, paediatric, work injuries, obstetrics and gynaecology, intentional self harm, sexual assault, dog bites and total ED consultations. Main Results: No significant differences were found in all anomalistic and most synodic models with the consultation categories.
    [Show full text]
  • Chapter 5 Water Levels and Flow
    253 CHAPTER 5 WATER LEVELS AND FLOW 1. INTRODUCTION The purpose of this chapter is to provide the hydrographer and technical reader the fundamental information required to understand and apply water levels, derived water level products and datums, and water currents to carry out field operations in support of hydrographic surveying and mapping activities. The hydrographer is concerned not only with the elevation of the sea surface, which is affected significantly by tides, but also with the elevation of lake and river surfaces, where tidal phenomena may have little effect. The term ‘tide’ is traditionally accepted and widely used by hydrographers in connection with the instrumentation used to measure the elevation of the water surface, though the term ‘water level’ would be more technically correct. The term ‘current’ similarly is accepted in many areas in connection with tidal currents; however water currents are greatly affected by much more than the tide producing forces. The term ‘flow’ is often used instead of currents. Tidal forces play such a significant role in completing most hydrographic surveys that tide producing forces and fundamental tidal variations are only described in general with appropriate technical references in this chapter. It is important for the hydrographer to understand why tide, water level and water current characteristics vary both over time and spatially so that they are taken fully into account for survey planning and operations which will lead to successful production of accurate surveys and charts. Because procedures and approaches to measuring and applying water levels, tides and currents vary depending upon the country, this chapter covers general principles using documented examples as appropriate for illustration.
    [Show full text]
  • Equilibrium Model of Tides Highly Idealized, but Very Instructive, View of Tides
    Tides Outline • Equilibrium Theory of Tides — diurnal, semidiurnal and mixed semidiurnal tides — spring and neap tides • Dynamic Theory of Tides — rotary tidal motion — larger tidal ranges in coastal versus open-ocean regions • Special Cases — Forcing ocean water into a narrow embayment — Tidal forcing that is in resonance with the tide wave Equilibrium Model of Tides Highly Idealized, but very instructive, View of Tides • Tide wave treated as a deep-water wave in equilibrium with lunar/solar forcing • No interference of tide wave propagation by continents Tidal Patterns for Various Locations 1 Looking Down on Top of the Earth The Earth’s Rotation Under the Tidal Bulge Produces the Rise moon and Fall of Tides over an Approximately 24h hour period Note: This is describing the ‘hypothetical’ condition of a 100% water planet Tidal Day = 24h + 50min It takes 50 minutes for the earth to rotate 12 degrees of longitude Earth & Moon Orbit Around Sun 2 R b a P Fa = Gravity Force on a small mass m at point a from the gravitational attraction between the small mass and the moon of mass M Fa = Centrifugal Force on a due to rotation about the center of mass of the two mass system using similar arguments The Main Point: Force at and point a and b are equal and opposite. It can be shown that the upward (normal the the earth’s surface) tidal force on a parcel of water produced by the moon’s gravitational attraction is small (1 part in 9 million) compared to the downward gravitation force on that parcel of water caused by earth’s on gravitational attraction.
    [Show full text]
  • Gallieo and the Catholic Church
    Galileo and the Catholic Church PROF BOB DAVIS, DEPT OF RELIGIOUS EDUCATION Galileo and the Catholic Church • Narrating the Galileo Affair • Understanding the nature of the conflict between Galileo and the Church authorities • Understanding its sequel and its legacy for the interaction of science and religion • Beyond simple dichotomies and stereotypes GALILEO: A Life in Context • 1564-92: Early years • 1616: Condemnation in Padua & Florence of Copernicanism (law of pendulum & • 1616-23: Controversy falling bodies) with Grassi • 1592-1610: Padua/ • 1623-32: Wrote Venice years (a Dialogue Copernican by 1597); • 1633: 2nd Trial use of telescope 1609 • 1633-42: Last years • 1616: 1st Trial under house arrest 3 The Church and Heliocentrism: Pope Paul V and the condemnation of 1616 • initial ecclesiastical sponsorship of Copernicus and the New Science––tacit approval through the reigns of nine popes • Heliocentrism first denounced by Protestant reformers Luther and Melanchton on biblical grounds: the attack on Kepler • Galileo in Rome (1611)––the ‘ridicule of the mathematicians’ v ‘the curiosity of the teachers’ (Clavius) • After receiving counsel from several theologians on the orthodoxy of heliocentrism, the Congregation of the Index officially condemned Copernicanism in 1616 as “false and as completely contradictory to Divine Scriptures.” Endorsed by Paul V, but only ‘for the prevention of the circulation of writings’ and refusing to term it ‘heresy’. • Donec corrigatur––permission for those ‘learned and skilful in the science’ to go on
    [Show full text]
  • A Graduate Project Submitted in Partial Satisfaction for the Degree of Master of Arts in Educational Psychology, Counseling and Guidance
    CALIFORNIA STATE UNIVERSITY, NJRTHRIIX:;E THE EFFECT OF LUNAR PERIODICI1Y ON HUMAN BEHAVIOR A graduate project submitted in partial satisfaction for the degree of Master of Arts in Educational Psychology, Counseling and Guidance by Janis Cash Graham May, 1984 The Gragua~roject of Janis Cash Graham is approved: Dr. Robert Docter Dr. Bernard NisenhOlZ Dr. Stan y Charnofsky ( ainnan) California State University, Northridge ii TABLE OF CONTENTS Page ABSTRACT . • • • • ~ • • . • . • ~ . • • • • . • • . • • . • v Chapter 1 INIRODUCTION 1 Purpose of the Project . • . 5 Limitations of the Project 6 Chapter 2 HISIDRY 8 Religion •.•...... 8 Folklore and Superstition. 14 Lycanthropy .......• 19 Chapter 3 IN SEARCH OF 'IHE ''LUNAR EFFECT'': PRESENT DAY INVESTIGATIONS • • • • 30 The Phases of the Moon 32 Case Studies • • . 34 Studies on Marine Life . 36 Biological Rhythms . 39 Medical Studies ..... 41 Studies of Human Behavior .. 44 The \IJork of Lieber and Sherin. 48 Chapter 4 MCDN AND MAN: 'IHEORIES . • . • 52 The Light of the moon. 52 The Geophysical Environment. 55 The Biological Tides Theory. 60 Other Theories of Man and the Moon 66 Chapter 5 APPLICATION AND St.M1ARY 71 Application to Research and Clinical Psychology. 71 Conceptual Application . 76 S'llii.llilary . • . • . • . 83 iii ~-' ' Page REFERENCES. 89 APPENDICES A DEFINITION OF TERMS 93 B ''A PERS01':W... NOTE'' • • 97 iv ABS'IRACT 'lliE EFFECT OF LUNAR PERIODICITY ON HUMAN BEHAVIOR by Janis Cash Graham Master of Arts in Educational Psychology Counseling and Guidance The belief in the power of the moon to influence life on our planet has existed from earliest recorded history, and plays an important role in the history of religion, folklore, and superstition.
    [Show full text]
  • The Galileo Affair in Context: an Investigation of Influences on the Church During Galileo’S 1633 Trial
    Xavier University Exhibit Honors Bachelor of Arts Undergraduate 2020-5 The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial Evan W. Lamping Xavier University, Cincinnati, OH Follow this and additional works at: https://www.exhibit.xavier.edu/hab Part of the Ancient History, Greek and Roman through Late Antiquity Commons, Ancient Philosophy Commons, Classical Archaeology and Art History Commons, Classical Literature and Philology Commons, and the Other Classics Commons Recommended Citation Lamping, Evan W., "The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial" (2020). Honors Bachelor of Arts. 45. https://www.exhibit.xavier.edu/hab/45 This Capstone/Thesis is brought to you for free and open access by the Undergraduate at Exhibit. It has been accepted for inclusion in Honors Bachelor of Arts by an authorized administrator of Exhibit. For more information, please contact [email protected]. Evan Lamping Dr. Byrne CPHAB Thesis The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial 1 I. Introduction When most people learn about the Galileo controversy of 1633, their knowledge of the affair is most commonly comprised of the facts of his condemnation on counts of heresy and possibly some other details about how and why his inquisition was conducted. These details are often simply concerned with the Church’s indefensible view of the earth as the center of the universe, combined with some scripture passages describing the sun as standing still or the earth being fixed in place and unmovable.
    [Show full text]
  • Waves and Tides the Preceding Sections Have Dealt with the Types Of
    CHAPTER XIV Waves and Tides .......................................................................................................... Introduction The preceding sections have dealt with the types of motion in the ocean that bring about transport of water massesin a definite direction during a considerable length of time. They have also dealt with the random motion, the turbulence, which is superimposed upon the general flow. Besidesthese types, one has also to consider the oscillating motion characteristic of waves. In general, this motion manifests itself to the observer more by the riseand fall of the sea surface than by the motion of the individual water particles. Waves have attracted attention since before the beginning of recorded history, and in recent years they have been the subject of extensive theoretical studies. Surveys of our knowledge as to the character of ocean waves have been presented by Cornish (1912, 1934), Krtimmel (1911), Patton and Mariner (1932) and by Defant (1929). Lamb (1932) has discussed the hydrodynamic theories of waves, and Thorade (1931) has given a comprehensive review of the theoretical studies of ocean waves and has compiled a long list of literature covering the period from 1687 to 1930. Our understanding of the waves of the ocean, how they are formed and how they travel, is as yet by no means complete. The reason is, in the first place, that actual observations at sea are so difficult that the characteristicsof the waves cannot easily be determined. In the second place, the theories that serve to bring the observed sequence of events in nature into intimate connection with experience gained by other methods of study are still incomplete, particularly because most theories are based on classicalhydrodynamics, which deal with wave motion in an idealized fluid.
    [Show full text]