Galileo's Assayer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Human Striving and the Categories of Science
THE HUMAN STRIVLXG AND THE CATEGORIES OF SCIENCE' BY BENJAMIN GINZBURG CERTAIN school of philosophers have tried to persuade us A that the human striving, or the moral consciousness, and the principles of scientific reason have no relationship in common. It is but necessary to cast a glance at the history of pragmatism to appreciate the inadequacy of such an assertion. In the original arti- cle of C. S. Peirce on "How to Make Our Ideas Clear," - the argu- ment concerned the principles of scientific method. After review- ing the notions of Bacon and Descartes, as well as the attempts of lesser philosophers to legislate for science, the American mathemati- cian came to the conclusion that it was necessary to bring reason into the laboratory—much as Kepler had done when he painstak- ingly plotted every possible curve that could explain the movement of Mars. From a discussion of the logic of science, pragmatism w^as transformed into a philosophy of voluntaristic fideism. And even if Mr. Dewey has attempted to swing the movement away from some of the temperamental excesses of James, the fact remains that in the pragmatic philosophy logic and moral striving are still very closely united. To be sure, the realistic critics have used pragmatism as the hoi rible example of what happens when reasons of the heart are allowed to interfere with reasons of the intellect. And it certainly is true that pragmatism in many instances has weakened the authority of the intellect, and has opened the door to all manner of affective vagaries. The same charge is applicable to the Bergsonian phil- osophy of the intuition, which beginning as a critique of scientific orthodoxy has ended up as an apology for modernistic Catholicism. -
Galileo Galilei Introduction Galileo Galilei (1564–1642) Was One of The
Galileo Galilei Introduction Galileo Galilei (1564–1642) was one of the most significant figures of the Scientific Revolution. Galileo was involved in nearly all fields of natural philosophy, including astronomy, mathematics, and what we now term “physics.” He is rightly considered one of the founders of modern physics and astronomy, and one of the main originators of the modern scientific method. Galileo’s study of motion became the foundation for Newton’s laws of motion and the principles of inertia and gravity. His astronomical studies were instrumental in supporting the heliocentric model of the solar system first propounded by Copernicus. He should also be credited with making experimentation the basis of scientific study, and with the use of mathematics as the fundamental means for expressing and validating the findings of experimental investigation. Galileo’s application of mathematics to experimental results has become one of the most important aspects of modern science. Galileo made important improvements to the telescope, which enabled him to make great advances in astronomical observation. His observations emboldened him to become the most important advocate of Copernicanism—the astronomical system created by Nicolaus Copernicus (1473–1543)—and his support ultimately ushered in the Copernican revolution in astronomy. Copernicus had devised a heliocentric model in which he posited that the Earth revolved around the sun (in perfect circles). Contrary to the Ptolemaic system and Christian cosmology, Copernicus positioned the sun as a fixed center around which Mercury, Venus, Earth, Mars, Jupiter, and Saturn orbited. Furthermore, Copernicus posited the diurnal rotation of the Earth on its own axis in addition to its annual revolutions around the sun. -
On the Infinite in Leibniz's Philosophy
On the Infinite in Leibniz's Philosophy Elad Lison Interdisciplinary Studies Unit Science, Technology and Society Ph.D. Thesis Submitted to the Senate of Bar-Ilan University Ramat-Gan, Israel August 2010 This work was carried out under the supervision of Dr. Ohad Nachtomy (Department of Philosophy), Bar-Ilan University. Contents א.……………………………….…………………………………………Hebrew Abstract Prologue…………………………………………………………...………………………1 Part A: Historic Survey Methodological Introduction…………………………………………………………..15 1. Aristotle: Potential Infinite………………………………………………………….16 2. Thomas Aquinas: God and the Infinite………………………………………..…….27 3. William of Ockham: Syncategorematic and Actual Infinite……………………..….32 4. Rabbi Abraham Cohen Herrera: Between Absolute Unity and Unbounded Multitude………………………………………………………………………..….42 5. Galileo Galilei: Continuum Constructed from Infinite Zero's………………………49 6. René Descartes: Infinite as Indefinite…………………………………………….…58 7. Pierre Gassendi: Rejection of the Infinite…………………………………………...69 8. Baruch Spinoza: Infinite Unity…………………………………………………...…73 9. General Background: Leibniz and the History of the Infinite……………………....81 Summary…………………………………………………………………………….…94 Part B: Mathematics Introduction…………………………………………………………………………….99 1. 'De Arte Combinatoria' as a Formal Basis for Thought: Retrospective on Leibniz's 1666 Dissertation………………………………………………………………....102 2. Leibniz and the Infinitesimal Calculus……………………………………….……111 2.1. Mathematical Background: Mathematical Works in 16th-17th Centuries…..111 2.2. Leibniz's Mathematical Development…………………………………….…127 -
Galilei-1632 Dialogue Concerning the Two Chief World Systems
Galileo di Vincenzo Bonaulti de Galilei ([ɡaliˈlɛːo ɡaliˈlɛi]; 15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath, from Pisa. Galileo has been called the "father of observational astronomy", the "father of modern physics", the "father of the scientific method", and the "father of modern science". Galileo studied speed and velocity, gravity and free fall, the principle of relativity, inertia, projectile motion and also worked in applied science and technology, describing the properties of pendulums and "hydrostatic balances", inventing the thermoscope and various military compasses, and using the telescope for scientific observations of celestial objects. His contributions to observational astronomy include the telescopic confirmation of the phases of Venus, the observation of the four largest satellites of Jupiter, the observation of Saturn's rings, and the analysis of sunspots. Galileo's championing of heliocentrism and Copernicanism was controversial during his lifetime, when most subscribed to geocentric models such as the Tychonic system. He met with opposition from astronomers, who doubted heliocentrism because of the absence of an observed stellar parallax. The matter was investigated by the Roman Inquisition in 1615, which concluded that heliocentrism was "foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture". Galileo later defended his views in Dialogue Concerning the Two Chief World Systems (1632), which appeared to attack Pope Urban VIII and thus alienated him and the Jesuits, who had both supported Galileo up until this point. He was tried by the Inquisition, found "vehemently suspect of heresy", and forced to recant. -
Computer Simulations and the Trading Zone
PETER &A Computer Simulations and the Trading Zone At the root of most accounts of the development of science is the covert premise that science is about ontology: What objects are there? How do they interact? And how do we discover them? It is a premise that underlies three distinct epochs of inquiry into the nature of science. Among the positivists, the later Carnap explicitly advocated a view that the objects of physics would be irretrievably bound up with what he called a "framework," a full set of linguistic relations such as is found in Newtonian or Eiustcini;~mechanics. That these frameworks held little in common did not trouble Car- nap; prediction mattered more than progress. Kuhn molded this notion and gave it a more historical focus. Unlike the positivists, Kuhn and other commentators of the 1960's wanted to track the process by which a community abandoned one framework and adopted another. To more recent scholars, the Kuhnian categoriza- tion of group affiliation and disaffiliation was by and large correct, but its underlying dynamics were deemed deficient because they paid insufficient attention to the sociological forces that bound groups to their paradigms. All three generations embody the root assumption that the analysis of science studies (or ought to study) a science classified and divided according to the objects of its inquiry. All three assume that as these objects change, particular branches of science split into myriad disconnected parts. It is a view of scientific disunity that I will refer to as "framework relativism. 55 In this essay, as before, I will oppose this view, but not by Computer Simulations I 19 invoking the old positivist pipe dreams: no universal protocol languages, no physicalism, no Corntian hierarchy of knowledge, and no radical reductionism. -
A Phenomenology of Galileo's Experiments with Pendulums
BJHS, Page 1 of 35. f British Society for the History of Science 2009 doi:10.1017/S0007087409990033 A phenomenology of Galileo’s experiments with pendulums PAOLO PALMIERI* Abstract. The paper reports new findings about Galileo’s experiments with pendulums and discusses their significance in the context of Galileo’s writings. The methodology is based on a phenomenological approach to Galileo’s experiments, supported by computer modelling and close analysis of extant textual evidence. This methodology has allowed the author to shed light on some puzzles that Galileo’s experiments have created for scholars. The pendulum was crucial throughout Galileo’s career. Its properties, with which he was fascinated from very early in his career, especially concern time. A 1602 letter is the earliest surviving document in which Galileo discusses the hypothesis of pendulum isochronism.1 In this letter Galileo claims that all pendulums are isochronous, and that he has long been trying to demonstrate isochronism mechanically, but that so far he has been unable to succeed. From 1602 onwards Galileo referred to pendulum isochronism as an admirable property but failed to demonstrate it. The pendulum is the most open-ended of Galileo’s artefacts. After working on my reconstructed pendulums for some time, I became convinced that the pendulum had the potential to allow Galileo to break new ground. But I also realized that its elusive nature sometimes threatened to undermine the progress Galileo was making on other fronts. It is this ambivalent nature that, I thought, might prove invaluable in trying to understand crucial aspects of Galileo’s innovative methodology. -
A New Vision of the Senses in the Work of Galileo Galilei
Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception. -
Ch. 3: the Solar System
1 Ch. 3: The Solar System Brief outline: Ideas of Copernicus >> Galileo >> Kepler >> Isaac Newton This chapter discusses how the scientific contributions by Copernicus, Galileo and Kepler led to Newton's discovery of the Universal Gravitation. • It must be understood that the ancient Greek ‘philosophers-scientists’ had various opinions about the ‘center of the universe’ and the relation between Earth and the Sun. Some thought that the Sun is at the center. Others that it is Earth. • Aristotle (384-322 BC) chose to follow the opinion that it is Earth. It appears that he also believed that heavier bodies fall faster than light ones, and many other things. • Much later in 312 AD Constantine was made emperor of Rome and protector of Christianity. Christianity evolved rapidly after the council of Nicaea (AD 325), when intellectuals/philosophers within the Catholic church made efforts to establish doctrine that would make the ideas found in the bible more complete, and eventually added concepts of both Plato and then Aristotle. • Once this was done it became DOGMA of the church, and to attack this view was to attack the foundation of the church. And so this incorrect view lasted for over 1,000 years, until Copernicus. <Nicolaus Copernicus> (1473-1543) Ideas The earth is NOT the center of the universe, although it is the center of the moon’s orbit and of its own gravity. The sun is the center of the planetary system and the sphere of stars. Earth is just one of the planets. Since the moon rotates around the Earth, the heavenly bodies do not share the same center. -
Galileo Galilei by Beatrix Mccrea Galileo Galilei Was an Italian Physicist, Engineer, and Astronomer Bestknown for Disc
3/24/2019 Galileo Galilei - Google Docs Galileo Galilei By Beatrix McCrea Galileo Galilei was an Italian physicist, engineer, and astronomer bestknown for discovering the four largest moons on Jupiter and his theory of gravity. His theory of gravity stated that if a bowling ball and a feather dropped at the same time in space they would land at the same time. He also invented the thermometer and an astronomical telescope. Galileo Galilei was born to Vincenzo Galilei and Giulia Ammanniti in Piza, Italy on February 15, 1564. He was the first of six children. There were two things that happened which led Galileo to find that he loved math and science. On The Famous People the text states “the first incident happened in 1581 when he first noticed that a chandelier despite swinging in small and large arcs took almost the same time to return to the first position.” The other incident was when he accidentally attended a geometry lecture. Both these incidents made Galileo find his love for science. Galileo discovered the four largest moons on Jupiter. On Biography.com it says Galileo Galilei was best known for discovering Jupiter and it’s four biggest moons. The names were Io, Europa, Ganymede, and Callisto. They were discovered by Galileo in January of 1610. Galileo used a better version of the telescope that made him made to see the four moons. Galileo Galilei had a very popular theory of gravity, that if there was no air resistance (like in space) you would drop a bowling ball and a feather and they would land at the exact same time. -
The Galileo Affair in Context: an Investigation of Influences on the Church During Galileo’S 1633 Trial
Xavier University Exhibit Honors Bachelor of Arts Undergraduate 2020-5 The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial Evan W. Lamping Xavier University, Cincinnati, OH Follow this and additional works at: https://www.exhibit.xavier.edu/hab Part of the Ancient History, Greek and Roman through Late Antiquity Commons, Ancient Philosophy Commons, Classical Archaeology and Art History Commons, Classical Literature and Philology Commons, and the Other Classics Commons Recommended Citation Lamping, Evan W., "The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial" (2020). Honors Bachelor of Arts. 45. https://www.exhibit.xavier.edu/hab/45 This Capstone/Thesis is brought to you for free and open access by the Undergraduate at Exhibit. It has been accepted for inclusion in Honors Bachelor of Arts by an authorized administrator of Exhibit. For more information, please contact [email protected]. Evan Lamping Dr. Byrne CPHAB Thesis The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial 1 I. Introduction When most people learn about the Galileo controversy of 1633, their knowledge of the affair is most commonly comprised of the facts of his condemnation on counts of heresy and possibly some other details about how and why his inquisition was conducted. These details are often simply concerned with the Church’s indefensible view of the earth as the center of the universe, combined with some scripture passages describing the sun as standing still or the earth being fixed in place and unmovable. -
New Perspectives on Galileo the University of Western Ontario Series in Philosophy of Science
NEW PERSPECTIVES ON GALILEO THE UNIVERSITY OF WESTERN ONTARIO SERIES IN PHILOSOPHY OF SCIENCE A SERIES OF BOOKS ON PHILOSOPHY OF SCIENCE, METHODOLOGY, AND EPISTEMOLOGY PUBLISHED IN CONNECTION WITH THE UNIVERSITY OF WESTERN ONTARIO PHILOSOPHY OF SCIENCE PROGRAMME Managing Editor J. 1. LEACH Editorial Board J. BUB, R. E. BUTTS, W. HARPER, J. HINTIKKA, D. J. HOCKNEY, C. A. HOOKER, 1. NICHOLAS, G. PEARCE VOLUME 14 NEW PERSPECTIVES ON GALILEO Papers Deriving from and Related to a Workshop on Gali/eo held at Virginia Polytechnic Institute and State University, 1975 Edited by ROBERT E. BUTTS Department of Philosophy, the University of Western Ontario, London, Canada and JOSEPH C. PITT Department of Philosophy and Religion, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A. D. REIDEL PUBLISHING COMPANY DORDRECHT : HOLLAND / BOSTON: U.S.A. Library of Congress Cataloging in Publication Data Main entry under title: New perspectives on Galileo. (The University of Western Ontario series in philosophy of science ; v. 14) Bibliography: p. Includes index. 1. S cience-Methodology -Congresses. 2. Science-Philosophy-Congresses. 3. Galilei, Galileo,1564-1642. I. Butts, Robert E. II. Pitt, JosephC. Q174.N48 509 /.2'4 77-17851 ISBN-I3: 978-90-277-0891-5 e-ISBN: 978-94-009-9799-8 DOl: 10.1007/978-94-009-9799-8 Published by D. Reidel Publishing Company, P.O. Box 17, Dordrecht, Holland Sold and distributed in the U.S.A., Canada, and Mexico by D. Reidel Publishing Company,lnc. Lincoln Building, 160 Old Derby Street, Hingham, Mass. 02043, U.S.A. All Rights Reserved Copyright © 1978 by D. -
Descartes, Mathematics and Music
Descartes, Mathematics and Music Donald DeMarco Descartes's influence in shaping the intellectual climate of the modern world is without parallel. More than any other figure of the seventeenth century, he marks the intellectual transition from the Middle Ages to the modern world. It is generally conceded that he is the "father of modern philosophy" as well as the "father of modern mathematics." In addition, his literary influence is inestimable. He is said to have been the first to have offered a perfect model of French prose. Karl Stern refers to him as the Saint Augustine of the Age of Reason. And Alfred North Whitehead regards his marriage of algebra and geometry as one of the truly stirring moments in the history of human discovery: It is impossible not to feel stirred at the thought of the emotions of men at certain historic moments of adventure and discovery Columbus when he first saw the Western shore, Pizarro when he stared at the Pacific Ocean, Franklin when the electric spark came from the string to his kite, Galileo when he first turned his telescope to the heavens. Such moments are also granted to students in the abstract regions of thought, and high among them must be placed the morning when Descartes lay in bed and invented the method of co-ordinate geometry. 1 Pythagoras and Plato saw mathematics as a key to understanding the physical world. Aristotle, whose intellectual inclinations were far more naturalistic, did not share his predecessors enthusiasm for numbers. And since the mind of Aristotle dominated the intellectual temper of the Middle Ages, it was left to Descartes, together with a host of seventeenth century mathematical physicists, to revive mathematics as the key to understanding nature.