Ch. 3: the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Ch. 3: the Solar System 1 Ch. 3: The Solar System Brief outline: Ideas of Copernicus >> Galileo >> Kepler >> Isaac Newton This chapter discusses how the scientific contributions by Copernicus, Galileo and Kepler led to Newton's discovery of the Universal Gravitation. • It must be understood that the ancient Greek ‘philosophers-scientists’ had various opinions about the ‘center of the universe’ and the relation between Earth and the Sun. Some thought that the Sun is at the center. Others that it is Earth. • Aristotle (384-322 BC) chose to follow the opinion that it is Earth. It appears that he also believed that heavier bodies fall faster than light ones, and many other things. • Much later in 312 AD Constantine was made emperor of Rome and protector of Christianity. Christianity evolved rapidly after the council of Nicaea (AD 325), when intellectuals/philosophers within the Catholic church made efforts to establish doctrine that would make the ideas found in the bible more complete, and eventually added concepts of both Plato and then Aristotle. • Once this was done it became DOGMA of the church, and to attack this view was to attack the foundation of the church. And so this incorrect view lasted for over 1,000 years, until Copernicus. <Nicolaus Copernicus> (1473-1543) Ideas The earth is NOT the center of the universe, although it is the center of the moon’s orbit and of its own gravity. The sun is the center of the planetary system and the sphere of stars. Earth is just one of the planets. Since the moon rotates around the Earth, the heavenly bodies do not share the same center. The Earth’s distance from the sun is negligible compared to the distance to the fixed stars. The stars, therefore, are vast objects lying at great distances from the Sun and the Earth. 2 Although the heavens appear to rotate around the Earth once a day, it is the Earth that rotates on its own axis. The Sun appears to move completely around the sky once a year, but this is due to the revolution of the Earth around the Sun. The complex movements of the planets, which include points of apparent rest and periods when they seem to reverse their normal march across the sky (retrograde motion), along with their brightening and dimming, can be explained by the relative motions of each planet & The Earth. Placing the sun at the center resolves all ambiguities about the order of the planets. The further the orbits from the sun, the longer they take to circle it. Mercury is the closest and in the least time, 88 days, while distant Saturn takes 30 years to circle the sun. Method Few astronomical observations Relied more on ancient and unreliable sources. Was put off by a basic inconsistency Was very conservative Feared scorn Appreciated orders Was very cautious of his ideas His theories were based on knowledge of his predecessors. Lack of vision, brilliance, fire. Was fearful, stubborn, miserly, obsequious to authorities, arrogant toward others, and a procrastinator. Impact Overturned two thousand years of astronomical thinking (perception that the earth stands still while the heavens wheel around it) Gave birth to our present concept of the solar system. Galileo, Kepler and Newton built on his foundation (De Revolutionibus) and their work cumulatively destroyed the ancient view of a finite, womb-like cosmos with the Earth & The Human Race at its center. <Johannes Kepler> (1571-1630) Ideas Kepler (eventually) managed to get access to the observational equipment of Tycho Brahe (1546-1601), a very wealthy guy who loved astronomical observations and made very careful and accurate observations of the planets daily. Kepler needed this data to formulate his three rules of planetary motion around the Sun. The Universe was constructed on the basis of Geometric figures. 3 Three laws of planetary motion o Confirmed Copernicus’s heliocentric theory while modifying it in some way. First Law - The orbits of the planets around the sun were not circular but elliptical in shape with the sun at one focus of the ellipse rather than at the center. o Rejected Copernicus Second Law - The speed of a planet is greater when it is closer to the sun and decreases as its distance from the sun increases. o Destroyed a fundamental Aristotelian Tenet that the motions of the planets were steady and unchanging. Third Law - Planets with larger orbits revolve at a slower average velocity than those with smaller orbits. Method Great interest in Math and Astronomy Was an avid Astronomer Keen interest in Hermetic thought and Neoplatonic mathematical magic Modification Observation Solid Evidence Impact The three laws effectively eliminated the idea of uniform circular motion as well as the idea of crystalline spheres revolving in circular objects. People had been freed to think in new terms of the actual paths of planet revolving around the sun in elliptical orbits. Caused the Ptolemaic system to rapidly lose ground to new ideas. Important questions still remained unanswered: What were the planets made of?! And how does one explain motion in the universe - led to Galileo Galilei to answer. 4 <Galileo Galilei> Ideas Observed sunspots - The Universe is not unchanging The moon was just like the surface of the Earth as it had mountains and depressions. Invented the telescope Milky Way had separate stars. Jupiter was like a miniature planetary system. Charted the orbits of its moons Designed instruments such as a thermometer and a mechanical calculating device, his geometric and military compass. A nova or a new star, in the constellation Serpentarius, lay in the supposedly unchanging regions beyond the moon. Scribed phases of Venus Rotation of the sun The Copernicus theory was true. Outlined and explained the scientific method in his book The Assayer. In it, Galileo set out his views on scientific reality and on the new scientific method; he explained his doctrine of primary qualities (which were those that could be measured) and secondary qualities (which were not measurable, i.e. qualities like odor and taste). In The Assayer, he also explained how to define a problem with the help of preliminary experiments and, from the results, to form a theory, which could then be used to ‘predict’ consequences that could be observationally tested. It was in The Assayer, too, that he made his famous remark, “The Book of Nature is …... written in mathematical characters”. Published the Starry Messenger in Italian (instead of Latin - the language of the learned) which helped in the spread of the observations he made using his telescope. NOTE: He did not mention about the heliocentric universe in the Starry Messenger. He supported the heliocentric universe in his another publication the Dialogue Concerning the Two Chief World Systems. 5 Method Proved or disproved competing theories not just through logic but through experimentation. - Father of Modern Science/Father of Mathematical Physics - invented the scientific method which was later refined by Isaac Newton Realized that Science must be built on measurement & Mathematics Observations Careful Drawing Insisted on writing in Italian rather than Latin - More spread of his ideas Bold & Expansive mind, indefatigable observation & experimentation Impact He turned Copernicus’s heliocentric theory into demonstrate able fact. His careful drawings of Jupiter’s retinue of moons, phases of Venus, and spots defacing the Sun, made the issues on the truth real. Cast doubt on people about the Earth’s position & God’s location. Broadcasted his radical ideas to the masses Casted the church to be under doubt. It was no longer mathematics. Either the Earth and Humanity lay at the center of creation as the Church decreed or they wandered insignificantly through space. His pugnacious courage, blazed on indelible trail for all scientists to come. 6 <Sir Isaac Newton> Ideas The three laws of motion: 1) Every object continues in a state of rest or uniform motion in a straight line unless deflected by a force 2) The rate of change of motion of an object is proportional to the force acting upon it. 3) To every action, there is always an equal and opposite reaction. Demonstrated that the three laws of motion govern the planetary bodies as well as terrestrial objects Universal law of gravitation (in his Mathematica Pricipatia): Every object in the Universe was attracted to every other object with a force (gravity) that is directly proportional to the product of their masses and inversely proportional to the square of the distances in between them. Method Interest in Mathematics, Invention and philosophy. Extreme interest in aspect of the occult world. Was not the first of reason, was last of magicians. Believed that clues about mysteries about the world were to be found partly in evidence of the heavens and in the construction of elements, but also partly in certain papers or traditions handed down from the past. Considered himself a representative of the Hermetic Tradition. Spelled out the Mathematical Proofs showing his Universal laws of Gravitation His work was the culmination of the theories of Copernicus, Galileo, and Kepler. Applied his theories of mechanics to the problems of astronomy. 7 Impact 1666 Invented the calculus Investigated into the composition of light Inaugurated his work on the law of Universal Gravitation 1684 Wrote the Principia (Mathematical Principals of Natural Philosophy) 1686 Pieced together a coherent synthesis for a new cosmology. Demonstrated that one universal law mathematically proven could explain all motions in the universe. Gave the idea that The Secrets of the natural world could be known by human investigation. Created a new cosmology in which the world was seen largely in mechanistic terms. The world view of the West was dominated by Newton’s world-machine, conceived as operating absolutely in time , space, & motion, until the 20th century.
Recommended publications
  • Galileo Galilei Introduction Galileo Galilei (1564–1642) Was One of The
    Galileo Galilei Introduction Galileo Galilei (1564–1642) was one of the most significant figures of the Scientific Revolution. Galileo was involved in nearly all fields of natural philosophy, including astronomy, mathematics, and what we now term “physics.” He is rightly considered one of the founders of modern physics and astronomy, and one of the main originators of the modern scientific method. Galileo’s study of motion became the foundation for Newton’s laws of motion and the principles of inertia and gravity. His astronomical studies were instrumental in supporting the heliocentric model of the solar system first propounded by Copernicus. He should also be credited with making experimentation the basis of scientific study, and with the use of mathematics as the fundamental means for expressing and validating the findings of experimental investigation. Galileo’s application of mathematics to experimental results has become one of the most important aspects of modern science. Galileo made important improvements to the telescope, which enabled him to make great advances in astronomical observation. His observations emboldened him to become the most important advocate of Copernicanism—the astronomical system created by Nicolaus Copernicus (1473–1543)—and his support ultimately ushered in the Copernican revolution in astronomy. Copernicus had devised a heliocentric model in which he posited that the Earth revolved around the sun (in perfect circles). Contrary to the Ptolemaic system and Christian cosmology, Copernicus positioned the sun as a fixed center around which Mercury, Venus, Earth, Mars, Jupiter, and Saturn orbited. Furthermore, Copernicus posited the diurnal rotation of the Earth on its own axis in addition to its annual revolutions around the sun.
    [Show full text]
  • Galileo's Assayer
    University of Nevada, Reno Galileo's Assayer: Sense and Reason in the Epistemic Balance A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in History. by James A Smith Dr. Bruce Moran/Thesis Advisor May 2018 c by James A Smith 2018 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by JAMES A. SMITH entitled Galileo's Assayer: Sense and Reason in the Epistemic Balance be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Bruce Moran, Ph.D., Advisor Edward Schoolman, Ph.D., Committee Member Carlos Mariscal, Ph.D., Committee Member Stanislav Jabuka, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i Abstract Galileo's The Assayer, published in 1623, represents a turning point in Galileo's philo- sophical work. A highly polemical \scientific manifesto," The Assayer was written after his astronomical discoveries of the moons of Jupiter and sunspots on a rotating sun, but before his mature Copernican work on the chief world systems (Ptolemaic versus Copernican). The Assayer included major claims regarding the place of math- ematics in natural philosophy and how the objects of the world and their properties can be known. It's in The Assayer that Galileo wades into the discussion about the ultimate constituents of matter and light, namely, unobservable particles and atoms. Galileo stressed the equal roles that the senses and reason served in the discovery of knowledge, in contradistinction to Aristotelian authoritarian dogma that he found to hinder the processes of discovery and knowledge acquisition.
    [Show full text]
  • Galilei-1632 Dialogue Concerning the Two Chief World Systems
    Galileo di Vincenzo Bonaulti de Galilei ([ɡaliˈlɛːo ɡaliˈlɛi]; 15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath, from Pisa. Galileo has been called the "father of observational astronomy", the "father of modern physics", the "father of the scientific method", and the "father of modern science". Galileo studied speed and velocity, gravity and free fall, the principle of relativity, inertia, projectile motion and also worked in applied science and technology, describing the properties of pendulums and "hydrostatic balances", inventing the thermoscope and various military compasses, and using the telescope for scientific observations of celestial objects. His contributions to observational astronomy include the telescopic confirmation of the phases of Venus, the observation of the four largest satellites of Jupiter, the observation of Saturn's rings, and the analysis of sunspots. Galileo's championing of heliocentrism and Copernicanism was controversial during his lifetime, when most subscribed to geocentric models such as the Tychonic system. He met with opposition from astronomers, who doubted heliocentrism because of the absence of an observed stellar parallax. The matter was investigated by the Roman Inquisition in 1615, which concluded that heliocentrism was "foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture". Galileo later defended his views in Dialogue Concerning the Two Chief World Systems (1632), which appeared to attack Pope Urban VIII and thus alienated him and the Jesuits, who had both supported Galileo up until this point. He was tried by the Inquisition, found "vehemently suspect of heresy", and forced to recant.
    [Show full text]
  • A Phenomenology of Galileo's Experiments with Pendulums
    BJHS, Page 1 of 35. f British Society for the History of Science 2009 doi:10.1017/S0007087409990033 A phenomenology of Galileo’s experiments with pendulums PAOLO PALMIERI* Abstract. The paper reports new findings about Galileo’s experiments with pendulums and discusses their significance in the context of Galileo’s writings. The methodology is based on a phenomenological approach to Galileo’s experiments, supported by computer modelling and close analysis of extant textual evidence. This methodology has allowed the author to shed light on some puzzles that Galileo’s experiments have created for scholars. The pendulum was crucial throughout Galileo’s career. Its properties, with which he was fascinated from very early in his career, especially concern time. A 1602 letter is the earliest surviving document in which Galileo discusses the hypothesis of pendulum isochronism.1 In this letter Galileo claims that all pendulums are isochronous, and that he has long been trying to demonstrate isochronism mechanically, but that so far he has been unable to succeed. From 1602 onwards Galileo referred to pendulum isochronism as an admirable property but failed to demonstrate it. The pendulum is the most open-ended of Galileo’s artefacts. After working on my reconstructed pendulums for some time, I became convinced that the pendulum had the potential to allow Galileo to break new ground. But I also realized that its elusive nature sometimes threatened to undermine the progress Galileo was making on other fronts. It is this ambivalent nature that, I thought, might prove invaluable in trying to understand crucial aspects of Galileo’s innovative methodology.
    [Show full text]
  • The Galileo Affair in Context: an Investigation of Influences on the Church During Galileo’S 1633 Trial
    Xavier University Exhibit Honors Bachelor of Arts Undergraduate 2020-5 The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial Evan W. Lamping Xavier University, Cincinnati, OH Follow this and additional works at: https://www.exhibit.xavier.edu/hab Part of the Ancient History, Greek and Roman through Late Antiquity Commons, Ancient Philosophy Commons, Classical Archaeology and Art History Commons, Classical Literature and Philology Commons, and the Other Classics Commons Recommended Citation Lamping, Evan W., "The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial" (2020). Honors Bachelor of Arts. 45. https://www.exhibit.xavier.edu/hab/45 This Capstone/Thesis is brought to you for free and open access by the Undergraduate at Exhibit. It has been accepted for inclusion in Honors Bachelor of Arts by an authorized administrator of Exhibit. For more information, please contact [email protected]. Evan Lamping Dr. Byrne CPHAB Thesis The Galileo Affair In Context: An Investigation of Influences on The Church During Galileo’s 1633 Trial 1 I. Introduction When most people learn about the Galileo controversy of 1633, their knowledge of the affair is most commonly comprised of the facts of his condemnation on counts of heresy and possibly some other details about how and why his inquisition was conducted. These details are often simply concerned with the Church’s indefensible view of the earth as the center of the universe, combined with some scripture passages describing the sun as standing still or the earth being fixed in place and unmovable.
    [Show full text]
  • THE TRIAL of GALILEO-REVISITED Dr
    THE TRIAL OF GALILEO-REVISITED Dr. George DeRise Professor Emeritus, Mathematics Thomas Nelson Community College FALL 2018 Mon 1:30 PM- 3:30 PM, 6 sessions 10/22/2018 - 12/3/2018 (Class skip date 11/19) Sadler Center, Commonwealth Auditorium Christopher Wren Association BOOKS: THE TRIAL OF GALILEO, 1612-1633: Thomas F. Mayer. (Required) THE CASE FOR GALILEO- A CLOSED QUESTION? Fantoli, Annibale. GALILEO; THE RISE AND FALL OF A TROUBLESOME GENIUS. Shea, William; Artigas, Mariano. BASIC ONLINE SOURCES: Just Google: “Galileo” and “Galileo Affair” (WIKI) “Galileo Project” and “Trial of Galileo-Famous Trials” YOUTUBE MOVIES: Just Google: “GALILEO'S BATTLE FOR THE HEAVENS – NOVA – YOUTUBE” “GREAT BOOKS, GALILEO’S DIALOGUE – YOUTUBE” HANDOUTS: GLOSSARY CAST OF CHARACTERS BLUE DOCUMENTS GALILEO GALILEI: b. 1564 in Pisa, Italy Astronomer, Physicist, Mathematician Professor of Mathematics, Universities of Pisa and Padua. In 1610 he observed the heavens with the newly invented telescope- mountains and craters of the moon, moons of Jupiter, many stars never seen before; later the phases of Venus; sunspots. These observations supported his belief that the Copernican (Heliocentric) system was correct, i.e. that the Sun was the center of the Universe; the planets including earth revolved around it. This was in direct contrast to the Ptolemaic-Aristotelian (Geocentric) System which was 1500 years old at the time. Galileo’s Copernican view was also in conflict with the Christian interpretation of Holy Scripture. Because of the Counter Reformation Catholic theologians took a literal interpretation of the Bible. Galileo was investigated by the Inquisition in 1615 and warned not to defend the Copernican view.
    [Show full text]
  • GALILEO and the PHASES of VENUS Abstract
    GALILEO AND THE PHASES OF VENUS Charles-Henri Eyraud Institut National de Recherche Pédagogique (France) Abstract In this article we use Galileo’s letters and drawings to understand his observations of the phases of Venus in 1610-1611. Our article is presented as an exercise for students to understand the conclusions of the great astronomer. PERIODS OF VENUS • Synodical period and phases The synodic period is the time that it takes for the object to reappear at the same point in the sky, relative to the Sun, as observed from Earth; i.e. returns to the same elongation and planetary phase. This is the time that elapses between two successive conjunctions with the Sun. An inferior conjunction occurs when Venus and the Earth lie in a line on the same side of the Sun. When Venus is on the opposite side of the Sun, it is a superior conjunction. The synodic period of Venus is 584 days. The superior conjunction occured on 11th May 1610. Calculate the date of the quadrature, of the inferior conjunction and of the next superior conjunction, supposing the motions of the Earth and Venus are circular and uniform (Figure 2). In fact the next superior conjunction occured on 11th December 1611 and inferior conjunction on 26th February 1611. • Sidereal period The sidereal period is the time that it takes the object to make one full orbit around the Sun, relative to the stars. The sidereal period of the Earth is 365.25 days. Calculate the sidereal period of Venus. PHASES OF VENUS IN GEO AND HELIOCENTRIC MODELS • Phases 1) Determine the phases of Venus in geocentric models, where the Earth is at the center of the universe and planets orbit around (Mercury and Venus “above” or “below” the Sun).
    [Show full text]
  • Challenging the Paradigm: the Legacy of Galileo Symposium
    Challenging the Paradigm: The Legacy of Galileo Symposium November 19, 2009 California Institute of Technology Pasadena, California Proceedings of the 2009 Symposium and Public Lecture Challenging the Paradigm: The Legacy of Galileo NOVEMBER 19, 2009 CAHILL BUILDING - HAMEETMAN AUDITORIUM CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA, USA © 2011 W. M. KECK INSTITUTE FOR SPACE STUDIES, ISBN-13: 978-1-60049-005-07 CALIFORNIA INSTITUTE OF TECHNOLOGY ISBN-10: 1-60049-005-0 Sponsored by The W.M. Keck Institute for Space Studies Supported by The Italian Consulate – Los Angeles The Italian Cultural Institute – Los Angeles Italian Scientists and Scholars in North America Foundation The Planetary Society Organizing Committee Dr. Cinzia Zuffada – Jet Propulsion Laboratory (Chair) Professor Mike Brown – California Institute of Technology (Co-Chair) Professor Giorgio Einaudi – Università di Pisa Dr. Rosaly Lopes – Jet Propulsion Laboratory Professor Jonathan Lunine - University of Arizona Dr. Marco Velli – Jet Propulsion Laboratory Table of Contents Introduction……………………………………………………………………………….. 1 Galileo's New Paradigm: The Ultimate Inconvenient Truth…………………………... 3 Professor Alberto Righini University of Florence, Italy Galileo and His Times…………………………………………………………………….. 11 Professor George V. Coyne, S.J. Vatican Observatory The Galileo Mission: Exploring the Jovian System…………………………………….. 19 Dr. Torrence V. Johnson Jet Propulsion Laboratory, California Institute of Technology What We Don't Know About Europa……………………………………………………. 33 Dr. Robert T. Pappalardo Jet Propulsion Laboratory, California Institute of Technology The Saturn System as Seen from the Cassini Mission…………………………………. 55 Dr. Angioletta Coradini IFSI – Istituto di Fisica dello Spazio Interplanetario dell’INAF - Roma Solar Activity: From Galileo's Sunspots to the Heliosphere………………………….. 67 Professor Eugene N. Parker University of Chicago From Galileo to Hubble and Beyond - The Contributions and Future of the Telescope: The Galactic Perspective…………………………………………………….
    [Show full text]
  • New Light on the Galileo Affair (1)
    New light on the Galileo affair (1) Mariano Artigas Published in Metanexus, 30 April 2002 This is a written version of a lecture delivered at the Metanexus Institute (Philadelphia), on Monday 4 February 2002, and at Columbia University (New York), on Wednesday 6 February 2002, on a document related to the Galileo Affair, discovered by the author in 1999 in the archives of the Holy Office in Rome. (2) (3) More elaborate accounts of the discovery of document EE 291 and its meaning for the Galileo Affair have been published by Mariano Artigas, Rafael Martínez and William R. Shea: (4) (5) (6) (7) Mariano Artigas, Rafael Martínez and William R. Shea, “New light on the Galileo affair?”, in: The Church and Galileo, edited by Ernan McMullin (Notre Dame, In.: University of Notre Dame Press, 2005), pp. 213-233. Mariano Artigas, Rafael Martínez and William Shea, “New Light in the Galileo Affair”, in: John Brooke and Ekmeleddin Ihsanoglu, editores, Religious Values and the Rise of Science in Europe (Istanbul: Research Centre for Islamic History, Art and Culture, 2005), pp. 145-166. Mariano Artigas, Rafael Martínez y William R. Shea, “Nueva luz en el caso Galileo”, Anuario de Historia de la Iglesia, 12 (2003), pp. 159-179. “Un inedito sul caso Galilei. Presentazione”, Acta Philosophica, 10 (2001), pp. 197- 272: Mariano Artigas, “Un nuovo documento sul caso Galileo: EE 291”, pp. 199-214; Rafael Martínez, “Il manoscritto ACDF, Index, Protocolli, vol. EE, f. 291 r-v”, pp. 215- 242; Lucas F. Mateo-Seco, “Galileo e l’Eucaristia. La questione teologica dell’ACDF, Index, Protocolli, EE, f.
    [Show full text]
  • Galileo's Gout
    Gerald Weissmann, M.D. The author (AΩA, New York University, 1965) is Research ice-capped poles, one of those moons, Europa, seems the best Galileo’sGProfessora ofl Medicineile ando director’s of thegoutg Biotechnologyou t candidate yet as a habitat for extraterrestrial life.1 Earlier that Study Center at New York University School of Medicine. In year, Europe—the continent—filed its answer to the American 2002 he was elected to the Accademia Nazionale dei Lincei Global Positioning system; it shot a satellite into orbit and called as the sole American physician member. He is a previous it Galileo.2 Galileo’s own stock rose when physicists ranked two contributor to The Pharos. of Galileo’s experiments among “science’s 0 most beautiful experiments.”3 The year 2003 marked the four hundredth an- he first three years of our new millennium have niversary of the Accademia dei Lincei (established in Rome beenbeen bannerbanner yearsyears forfor GalileoGalileo (Galileo(Galileo Galilei,Galilei, 564–564– in 603), the world’s oldest scholarly society, of which, Galileo 642).642). IInn NNovemberovember 22002,002, oonene ooff NNASA’sASA’s llongest-ongest- was, dare we say, the star. To mark the occasion, a magisterial running missions came to an end when the Galileo spacecraft, volume by Columbia’s David Freedberg, The Eye of the Lynx launched in 989, made its final orbit of Jupiter, the planet showed how the new world view of Galileo and his Linceians whose four moons Galileo first described in 60. With its was an impetus for London’s Royal Society (660) and Colbert’s T Académie des Sciences (666).4 Finally, a definitive exhibition Above: Galileo presenting his telescope to the Doge, by Luigi on Albert Einstein at the American Museum of Natural History Sabatelli (1772–1850).
    [Show full text]
  • Excerpt from Learning from Six Philosophers
    Two chapters on Issues in Empiricism Jonathan Bennett Secondary Qualities Chapter 25 of Learning from Six Philosophers, (Oxford University Press, 2001), pp. 74–91. 187. Locke’s corpuscularianism is not one individual thing, neither is there any such Locke was attracted by the kind of physics he called ‘the thing existing as one material being, or one single corpuscularian hypothesis’1—the hypothesis that the physi- body that we know or can conceive. And therefore if cal world can be comprehensively explained in terms of how matter were the eternal first cogitative being, there corpuscles are assembled into larger structures and how would not be one eternal infinite cogitative being, but they move. One naturally thinks of the ‘corpuscles’ as atoms, an infinite number of eternal finite cogitative beings. unsplittable physical minima, but Locke does not confidently (Essay IV.x.10) do so. Let us consider his troubles with atoms. In this astonishing passage Locke implies that every material Like Descartes, Leibniz, and others at his time, Locke did thing is divisible into an infinite number of basic parts; he not believe in attractive forces.2 That left him, as he knew, calls them ‘beings’ but drops the adjective ‘material’ because unable to explain how bodies hang together so that there are if they were material they would be extended, so divisible, rocks and grains as well as air and water (II.xxiii.23–7). This so unbasic. He here goes a good distance with Leibniz, encouraged the view that there are no atoms because every but unlike him supposes that an extended thing can have portion of matter can be divided into still smaller bodies.
    [Show full text]
  • Historical Journeys Walk in Galileo's Footsteps in Rome, Florence, And
    Historical journeys Walk in Galileo’s footsteps in Rome, Florence, and other haunts of the great Experience astronomer. Galileo’sby William Sheehan Italy t isn’t hard to find the influence of Galileo Galilei (1564–1642) on the history of astronomy. After all, he was the first to use a telescope to study the heavens systematically and objectively. He discovered the Moon’s craggy mountains, Jupiter’s four major Isatellites, and the phases of Venus. But that’s Galileo the scientist. Who was the man? To find some clues, I went to Rome and Florence, where Galileo spent the prime of his life and ended up under house arrest for life after a disastrous encounter with the Roman Catholic Church. I decided to retrace the master’s footsteps in Italy — to visit the places where he lived and worked in hopes of absorbing some- thing of the spirit of the times in the 17th century when Galileo helped Galileo Galilei (1564–1642) was born in Pisa and taught mathematics at Padua. overturn what people thought they He lived in Florence after 1610, where he wrote his greatest scientific works. understood about the celestial realm. Science Museum Pictorial 56 Astronomy • May© 092010 Kalmbach Publishing Co. This material may not be reproduced in any form without permission from the publisher. www.Astronomy.com 1609 Galileo presents a telescope Astronomer and mathematician to the Venetian Senate, which Galileo Galilei lived portions of bestows on him life tenure at his life in Pisa and Padua, but he the University of Padua. considered himself a Florentine.
    [Show full text]