Chapter 5 Water Levels and Flow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Double Tidal Bulge
The Double Tidal Bulge If you look at any explanation of tides the force is indeed real. Try driving same for all points on the Earth. Try you will see a diagram that looks fast around a tight bend and tell me this analogy: take something round something like fig.1 which shows the you can’t feel a force pushing you to like a roll of sticky tape, put it on the tides represented as two bulges of the side. You are in the rotating desk and move it in small circles (not water – one directly under the Moon frame of reference hence the force rotating it, just moving the whole and another on the opposite side of can be felt. thing it in a circular manner). You will the Earth. Most people appreciate see that every point on the object that tides are caused by gravitational 3. In the discussion about what moves in a circle of equal radius and forces and so can understand the causes the two bulges of water you the same speed. moon-side bulge; however the must completely ignore the rotation second bulge is often a cause of of the Earth on its axis (the 24 hr Now let’s look at the gravitation pull confusion. This article attempts to daily rotation). Any talk of rotation experienced by objects on the Earth explain why there are two bulges. refers to the 27.3 day rotation of the due to the Moon. The magnitude and Earth and Moon about their common direction of this force will be different centre of mass. -
Of Universal Gravitation and of the Theory of Relativity
ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY By HUGH OSCAR PEEBLES Bachelor of Science The University of Texas Austin, Texas 1955 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1960 ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY Report Approved: Dean of the Graduate School ii ACKNOWLEDGEMENT I express my deep appreciation to Dr. Leon w. Schroeder, Associate Professor of Physics, for his counsel, his criticisms, and his interest in the preparation of this study. My appre ciation is also extended to Dr. James H. Zant, Professor of Mathematics, for his guidance in the development of my graduate program. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. 1 II. THE EARTH-MOON T"EST OF THE LAW OF GRAVITATION 4 III. DERIVATION OF KEPLER'S LAWS OF PLAN.ET.ARY MOTION FROM THE LAW OF UNIVERSAL GRAVITATION. • • • • • • • • • 9 The First Law-Law of Elliptical Paths • • • • • 10 The Second Law-Law of Equal Areas • • • • • • • 15 The Third Law-Harmonic Law • • • • • • • 19 IV. DETERMINATION OF THE MASSES OF ASTRONOMICAL BODIES. 20 V. ELEMENTARY THEORY OF TIDES. • • • • • • • • • • • • 26 VI. ELEMENTARY THEORY OF THE EQUATORIAL BULGE OF PLANETS 33 VII. THE DISCOVERY OF NEW PLANETS. • • • • • • • • • 36 VIII. ASTRONOMICAL TESTS OF THE THEORY OF RELATIVITY. 40 BIBLIOGRAPHY . 45 iv LIST OF FIGURES Figure Page 1. Fall of the Uoon Toward the Earth • • • • • • • • • • 6 2. Newton's Calculation of the Earth's Gravitational Ef- fect on the Moon. -
Lecture Notes in Physical Oceanography
LECTURE NOTES IN PHYSICAL OCEANOGRAPHY ODD HENRIK SÆLEN EYVIND AAS 1976 2012 CONTENTS FOREWORD INTRODUCTION 1 EXTENT OF THE OCEANS AND THEIR DIVISIONS 1.1 Distribution of Water and Land..........................................................................1 1.2 Depth Measurements............................................................................................3 1.3 General Features of the Ocean Floor..................................................................5 2 CHEMICAL PROPERTIES OF SEAWATER 2.1 Chemical Composition..........................................................................................1 2.2 Gases in Seawater..................................................................................................4 3 PHYSICAL PROPERTIES OF SEAWATER 3.1 Density and Freezing Point...................................................................................1 3.2 Temperature..........................................................................................................3 3.3 Compressibility......................................................................................................5 3.4 Specific and Latent Heats.....................................................................................5 3.5 Light in the Sea......................................................................................................6 3.6 Sound in the Sea..................................................................................................11 4 INFLUENCE OF ATMOSPHERE ON THE SEA 4.1 Major Wind -
Tidal Hydrodynamic Response to Sea Level Rise and Coastal Geomorphology in the Northern Gulf of Mexico
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2015 Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico Davina Passeri University of Central Florida Part of the Civil Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Passeri, Davina, "Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico" (2015). Electronic Theses and Dissertations, 2004-2019. 1429. https://stars.library.ucf.edu/etd/1429 TIDAL HYDRODYNAMIC RESPONSE TO SEA LEVEL RISE AND COASTAL GEOMORPHOLOGY IN THE NORTHERN GULF OF MEXICO by DAVINA LISA PASSERI B.S. University of Notre Dame, 2010 A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2015 Major Professor: Scott C. Hagen © 2015 Davina Lisa Passeri ii ABSTRACT Sea level rise (SLR) has the potential to affect coastal environments in a multitude of ways, including submergence, increased flooding, and increased shoreline erosion. Low-lying coastal environments such as the Northern Gulf of Mexico (NGOM) are particularly vulnerable to the effects of SLR, which may have serious consequences for coastal communities as well as ecologically and economically significant estuaries. -
REPORT on the CONDUCT of the 2021 WORLD HYDROGRAPHY DAY CELEBRATION in NIGERIA-1.Pdf
Advancements and the Future Outlook of Charting the Nigerian Navigation Channel Chukwuemeka C. Onyebuchi1, Franklin E. Onyeagoro2 and Peter O. Aimah3 1Polaris Integrated and Geosolutions Limited, [email protected] 2Federal University of Technology Owerri, [email protected] 3Polaris Integrated and Geosolutions Limited, [email protected] ABSTRACT The need for achieving safe waterways for navigation, engineering, exploration, security and other marine operations cannot be overemphasized and should be attained using precise methods and equipment. The Hydrographic process still remains the only systematic means through which spatial information about our marine environment (oceans, seas, rivers etc.) are acquired for charting purposes so as to aid analysis and decision making. In Nigeria today, most marine operations and mostly the Nigerian Navy is dependent on the Hydrographic process for smooth operations required for security, trading, engineering etc. therefore maintaining the integrity of the hydrographic process is of uttermost importance. To maintain the integrity of the hydrographic process used for charting our navigational channels, the progressive evolution of this process shall be assessed: from the earliest methods that directly sounded navigational channels using weighted lead lines and graduated poles to provide water depths to Wire Drag methods used to identify physical features on the marine environment, then to the 1930s when acoustic waves were applied in the Echo Sounder to indirectly ascertain seabed profile, and the use of instruments like Multi Beam Echo Sounders, Magnetometer, Side Scan Sonar, etc. for detailed Bathymetric and Geophysical Survey Projects, and presently to the use of Remotely Operated Vehicles (ROV) and satellites in space to monitor sea level rise. -
Tide Simplified by Phil Clegg Sea Kayaking Anglesey
Tide Simplified By Phil Clegg Sea Kayaking Anglesey Tide is one of those areas that the more you learn about it, the more you realise you don’t know. As sea kayakers, and not necessarily scientists, we don’t have to know every detail but a simplified understanding can help us to understand and predict what we might expect to see when we are out on the water. In this article we look at the areas of tide you need to know about without having to look it up in a book. Causes of tides To understand tide is convenient to imagine the earth with an envelope of water all around it, spinning once every 24 hours on its north-south axis with the moon on a line parallel to the equator. Moon Gravity A B Earth Ocean C The tides are primarily caused by the gravitational attraction of the moon. Simplifying a bit, at point A the gravitational pull is the strongest causing a high tide, point B experiences a medium pull towards the moon, while point C has the weakest pull causing a second high tide. Because the earth spins once every 24 hours, at any location on its surface there are two high tides and two low tides a day. There are approximately six hours between high tide and low tide. One way of predicting the approximate time of high tide is to add 50 minutes to the high tide of the previous day. The sun has a similar but weaker gravitational effect on the tides. On average this is about 40 percent of that of the moon. -
Tides and the Climate: Some Speculations
FEBRUARY 2007 MUNK AND BILLS 135 Tides and the Climate: Some Speculations WALTER MUNK Scripps Institution of Oceanography, La Jolla, California BRUCE BILLS Scripps Institution of Oceanography, La Jolla, California, and NASA Goddard Space Flight Center, Greenbelt, Maryland (Manuscript received 18 May 2005, in final form 12 January 2006) ABSTRACT The important role of tides in the mixing of the pelagic oceans has been established by recent experiments and analyses. The tide potential is modulated by long-period orbital modulations. Previously, Loder and Garrett found evidence for the 18.6-yr lunar nodal cycle in the sea surface temperatures of shallow seas. In this paper, the possible role of the 41 000-yr variation of the obliquity of the ecliptic is considered. The obliquity modulation of tidal mixing by a few percent and the associated modulation in the meridional overturning circulation (MOC) may play a role comparable to the obliquity modulation of the incoming solar radiation (insolation), a cornerstone of the Milankovic´ theory of ice ages. This speculation involves even more than the usual number of uncertainties found in climate speculations. 1. Introduction et al. 2000). The Hawaii Ocean-Mixing Experiment (HOME), a major experiment along the Hawaiian Is- An early association of tides and climate was based land chain dedicated to tidal mixing, confirmed an en- on energetics. Cold, dense water formed in the North hanced mixing at spring tides and quantified the scat- Atlantic would fill up the global oceans in a few thou- tering of tidal energy from barotropic into baroclinic sand years were it not for downward mixing from the modes over suitable topography. -
Depth Measuring Techniques
EM 1110-2-1003 1 Jan 02 Chapter 9 Single Beam Acoustic Depth Measurement Techniques 9-1. General Scope and Applications Single beam acoustic depth sounding is by far the most widely used depth measurement technique in USACE for surveying river and harbor navigation projects. Acoustic depth sounding was first used in the Corps back in the 1930s but did not replace reliance on lead line depth measurement until the 1950s or 1960s. A variety of acoustic depth systems are used throughout the Corps, depending on project conditions and depths. These include single beam transducer systems, multiple transducer channel sweep systems, and multibeam sweep systems. Although multibeam systems are increasingly being used for surveys of deep-draft projects, single beam systems are still used by the vast majority of districts. This chapter covers the principles of acoustic depth measurement for traditional vertically mounted, single beam systems. Many of these principles are also applicable to multiple transducer sweep systems and multibeam systems. This chapter especially focuses on the critical calibrations required to maintain quality control in single beam echo sounding equipment. These criteria are summarized in Table 9-6 at the end of this chapter. 9-2. Principles of Acoustic Depth Measurement Reference water surface Transducer Outgoing signal VVeeloclocityty Transmitted and returned acoustic pulse Time Velocity X Time Draft d M e a s ure 2d depth is function of: Indexndex D • pulse travel time (t) • pulse velocity in water (v) D = 1/2 * v * t Reflected signal Figure 9-1. Acoustic depth measurement 9-1 EM 1110-2-1003 1 Jan 02 a. -
National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000
FGDC Data Committee FGDC Document Number National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000 NSDI National Spatial Data Infrastructure National Hydrography Data Content Standard for Coastal and Inland Waterways – Public Review Draft Bathymetric Subcommittee Federal Geographic Data Committee January 2000 Federal Geographic Data Committee i FGDC Data Committee FGDC Document Number National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000 Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Energy, Housing and Urban Development, the Interior, State, and Transportation; the Environmental Protection Agency; the Federal Emergency Management Agency; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; and the Tennessee Valley Authority. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the -
Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire Jayne F
Journal of Coastal Research 35 1 143–157 Coconut Creek, Florida January 2019 Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire Jayne F. Knott†*, Jennifer M. Jacobs†, Jo S. Daniel†, and Paul Kirshen‡ †Department of Civil and Environmental Engineering ‡School for the Environment University of New Hampshire University of Massachusetts Boston Durham, NH 03824, U.S.A. Boston, MA 02125, U.S.A. ABSTRACT Knott, J.F.; Jacobs, J.M.; Daniel, J.S., and Kirshen, P., 2019. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. Journal of Coastal Research, 35(1), 143–157. Coconut Creek (Florida), ISSN 0749-0208. Coastal communities with low topography are vulnerable from sea-level rise (SLR) caused by climate change and glacial isostasy. Coastal groundwater will rise with sea level, affecting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in coastal areas of high aquifer transmissivity. In this regional study, SLR-induced groundwater rise is investigated in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated NE. A numerical groundwater-flow model is used with groundwater observations and withdrawals, LIDAR topography, and surface-water hydrology to investigate SLR-induced changes in groundwater levels in New Hampshire’s coastal region. The SLR groundwater signal is detected more than three times farther inland than projected tidal flooding from SLR. The projected mean groundwater rise relative to SLR is 66% between 0 and 1 km, 34% between 1 and 2 km, 18% between 2 and 3 km, 7% between 3 and 4 km, and 3% between 4 and 5 km of the coastline, with large variability around the mean. -
Tide Identification and Tabulation Procedure
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Evaluating VDatum in Coastal National Parks Fire Island National Seashore, Gateway National Recreation Area, and Assateague Island National Seashore Natural Resource Report NPS/NCBN/NRR—2016/1148 ON THE COVER Photograph of GPS receiver on a tidal benchmark that collected data for Gateway National Recreation Area. Photograph courtesy of Michael Bradley. Evaluating VDatum in Coastal National Parks Fire Island National Seashore, Gateway National Recreation Area, and Assateague Island National Seashore Natural Resource Report NPS/NCBN/NRR—2016/1148 David Ullman Graduate School of Oceanography University of Rhode Island 215 South Ferry Road Narragansett, RI 02882 Amanda Babson National Park Service, Northeast Region University of Rhode Island 215 South Ferry Road Narragansett, RI 02882 Michael Bradley Environmental Data Center Department of Natural Resources Science University of Rhode Island Kingston, RI 02881 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. -
Equilibrium Model of Tides Highly Idealized, but Very Instructive, View of Tides
Tides Outline • Equilibrium Theory of Tides — diurnal, semidiurnal and mixed semidiurnal tides — spring and neap tides • Dynamic Theory of Tides — rotary tidal motion — larger tidal ranges in coastal versus open-ocean regions • Special Cases — Forcing ocean water into a narrow embayment — Tidal forcing that is in resonance with the tide wave Equilibrium Model of Tides Highly Idealized, but very instructive, View of Tides • Tide wave treated as a deep-water wave in equilibrium with lunar/solar forcing • No interference of tide wave propagation by continents Tidal Patterns for Various Locations 1 Looking Down on Top of the Earth The Earth’s Rotation Under the Tidal Bulge Produces the Rise moon and Fall of Tides over an Approximately 24h hour period Note: This is describing the ‘hypothetical’ condition of a 100% water planet Tidal Day = 24h + 50min It takes 50 minutes for the earth to rotate 12 degrees of longitude Earth & Moon Orbit Around Sun 2 R b a P Fa = Gravity Force on a small mass m at point a from the gravitational attraction between the small mass and the moon of mass M Fa = Centrifugal Force on a due to rotation about the center of mass of the two mass system using similar arguments The Main Point: Force at and point a and b are equal and opposite. It can be shown that the upward (normal the the earth’s surface) tidal force on a parcel of water produced by the moon’s gravitational attraction is small (1 part in 9 million) compared to the downward gravitation force on that parcel of water caused by earth’s on gravitational attraction.