Dicionarioct.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrogeology and Simulation of Ground-Water Flow in the Thick Regolith-Fractured Crystalline Rock Aquifer System of Indian Creek
Hydrogeology and Simulation of Ground-Water Flow in the Thick Regolith-Fractured Crystalline Rock Aquifer System of Indian Creek Basin, North Carolina AVAILABILITY OF BOOKS AND MAPS OF THE US. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth Sci of general interest (such as leaflets, pamphlets, booklets), single ence Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtain ANCHORAGE, Alaska Rm. 101, 4230 University Dr. able by mail from LAKEWOOD, Colorado Federal Center, Bldg. -
Kinikmi Sigum Qanuq Ilitaavut = Wales Inupiaq Sea Ice Dictionary
Kirjikmi Si gum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Iqqaluagigut Agiyagaq (1945—2010) We Cherish the Memory of Herbert Anungazuk (1945- ■2010) •J. tuagikuq The village of Wales, Alaska, as seen from the land-fast ice, tuaq on February 9, 2007. Small pressure ridges, iunilaurat are built on the flat surface of the land-fast ice (tuagikuq) closer to the beach. Photo, Winton Weyapuk, Jr. Kinikmi Sigum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Winton Weyapuk, Jr. and Igor Krupnik, compilers Advisers: Pete Sereadlook, Faye Ongtowasruk, and Lawrence Kaplan Editors: Igor Krupnik, Herbert Anungazuk. and Matthew Druckenmiller International Polar Year National Park Service Native Village of Wales Arctic Studies Center 2007-2008 Shared Beringian Heritage Program Wales, Alaska Smithsonian Institution © 2012 by the Arctic Studies Center Smithsonian Institution Washington, D.C. 20013-7012 All rights reserved Printed in the United States of America ISBN 978-0-9673429-3-1 This book may be cited as: Wales Inupiaq Sea Ice Dictionary/Kir)ikmi Sigum Qanuq llitaavut. 2012. Winton Weyapuk, Jr. and Igor Krupnik, compilers. Igor Krupnik, Herbert Anungazuk, and Matthew Druckenmiller, editors. Washington, DC: Arctic Studies Center. Smithsonian Institution. 112 pp. The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials This project was supported by a grant from the Shared Beringian Heritage Program National Park Service, Alaska Office Volume design: Igor Krupnik and Winton Weyapuk, Jr. Production editor: Allison Maslow This book has been produced for the ‘SIKU - Sea Ice Knowledge and Use’ Project (IPY #166), a part of The International Polar Year 2007-2008 sponsored by The International Council for Science (ICSU) and The World Meteorological Organization (WMO) Front cover: Ice-covered Bering Strait off the Village of Wales, Alaska, February 2007. -
Who Wants to Be a Speleologist?
Timpanogos Cave Edition Diantha Smith, 2009 Rules of the Game! 1. Read each question and all choices carefully. 2. Choose an answer or choose a life line. 3. If you get the answer correct you continue answering. 4. If you answer incorrectly, another player gets the next question. 5. LEARN A LOT AND HAVE FUN! Ask the audience: The audience will raise their hands to show which question they think the player should choose. Fifty/Fifty: The game host will reveal two answers that are not correct, leaving two choices for the player . Info Sheet: The player may consult the Cave Information Sheet for one minute to try and find the answer. (Beware: not all answers are on the sheet!) $1,000,000 $500,000 Is that your final $250,000 answer? $100,000 $50,000 How do we know that the limestone in Mount $25,000 Timpanogos was formed in ancient sea beds? $10,000 $5,000 $1,000 A: lots of salt B: smells like the ocean $500 $200 C: fossils of sea creatures D: pirate ghosts $100 $1,000,000 $500,000 $250,000 $100,000 $50,000 How do we know that many caves, like Timpanogos, $25,000 are formed in rock from ancient sea beds? $10,000 $5,000 $1,000 A: large salt content B: smell like the ocean $500 $200 C: fossils of sea creatures D: pirate ghosts $100 $1,000,000 $500,000 Is that your final $250,000 answer? $100,000 $50,000 What is the length and weight of the $25,000 Great Heart stalactite? $10,000 $5,000 $1,000 A: 5 ½ ft. -
The Håkåneset Rockslide, Tinnsjø
The Håkåneset rockslide, Tinnsjø Stability analysis of a potentially rock slope instability. Inger Lise Sollie Geotechnology Submission date: June 2014 Supervisor: Bjørn Nilsen, IGB Norwegian University of Science and Technology Department of Geology and Mineral Resources Engineering I II ABSTRACT The Håkåneset rockslide is located on the west shore of Lake Tinnsjø (191 m.a.s.l), a fjordlake stretching 32 km with a SSE-NNW orientation in Telemark, southern Norway. The instability extends from 550 m.a.s.l. and down to approximately 300 m depth in the lake, making up a surface area of 0.54 km2 under water and 0.50 km2 on land. The rockslide comprises an anisotropic metavolcanic rock that is strongly fractured. Five discontinuity sets are identified with systematic field mapping supported by structural analysis of terrestrial laser scan (TLS) data. These are interpreted as gravitationally reactivated inherited tectonic structures. At the northern end the instability is limited by a steep south-east dipping joint (JF3 (~133/77)) that is one direction of a conjugate strike slip fault set (JF3, JF2 (~358/65)). Towards the south the limit to the stable bedrock is transitional. A back scarp is defined by a north-east dipping J1 (~074/59) surface that is mapped out at 550 m.a.s.l. Kinematic analysis indicates that planar sliding, wedge sliding and toppling are feasible. However, because the joint sets are steeply dipping these failure mechanisms can only occur for small rock volumes and are limited to steep slope sections only. Large scale rock slope deformation can only be justified by assuming deformation along a combination of several anisotropies. -
Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin. -
Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
Geochronology Database for Central Colorado
Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 -
The FSC National Forest Stewardship Standard of Romania
Forest Stewardship Council® The FSC National Forest Stewardship Standard of Romania Cover photos: James Morgan/WWF; Doru Oprisan; Radu Grigore Vlad FSC International Center GmbH · ic.f sc.org · FSC® F000100 Adenauer Allee 134 · 53113 Bonn · Germany T +49 (0) 228 367 66 0 · F +49 (0) 228 367 66 30 Geschäf tsf ührer | Chief Policy Officer: Dr. Hans-Joachim Droste Handelsregister | Commercial Register: Bonn HRB12589 Forest Stewardship Council® Title: The FSC National Forest Stewardship Standard of Romania Document reference code: FSC-STD-ROU-01-2017 EN Status: Approved Geographical Scope: National Forest Scope: All forest types Approval body: Policy and Standards Committee Submission date: 15 January 2017 Approval date: 12 July 2017 Effectiveness date: 15 April 2019 Validity Period: Five years after the effectiveness date Marius Turtica Asociatia pentru Certificare Forestiera Country Contact: E-mail: [email protected] [email protected] Mobile: 0040 740 300 616 FSC International Center - Performance and Standards Unit - Adenauer Allee 134 FSC Performance and Stand- 53113 Bonn, Germany ards Unit Contact: +49-(0)228-36766-0 +49-(0)228-36766-30 [email protected] A.C. All rights reserved. No part of this work covered by the publisher’s copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, recording taping, or information retrieval systems) without the written permission of the publish- er. The Forest Stewardship Council® (FSC) is an independent, not for profit, non-government organisation established to support environmentally appropriate, socially beneficial, and eco- nomically viable management of the world's forests. -
Ilulissat Icefjord
World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea. -
Characterisation and Prediction of Large-Scale, Long-Term Change of Coastal Geomorphological Behaviours: Final Science Report
Characterisation and prediction of large-scale, long-term change of coastal geomorphological behaviours: Final science report Science Report: SC060074/SR1 Product code: SCHO0809BQVL-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned by the Environment Agency’s Science Department and funded by the joint Environment Agency/Defra Flood and Coastal Erosion Risk Management Research and Development Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Richard Whitehouse, Peter Balson, Noel Beech, Alan Aztec West, Almondsbury, Bristol, BS32 4UD Brampton, Simon Blott, Helene Burningham, Nick Tel: 01454 624400 Fax: 01454 624409 Cooper, Jon French, Gregor Guthrie, Susan Hanson, www.environment-agency.gov.uk Robert Nicholls, Stephen Pearson, Kenneth Pye, Kate Rossington, James Sutherland, Mike Walkden ISBN: 978-1-84911-090-7 Dissemination Status: © Environment Agency – August 2009 Publicly available Released to all regions All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Keywords: Coastal geomorphology, processes, systems, The views and statements expressed in this report are management, consultation those of the author alone. The views or statements expressed in this publication do not necessarily Research Contractor: represent the views of the Environment Agency and the HR Wallingford Ltd, Howbery Park, Wallingford, Oxon, Environment Agency cannot accept any responsibility for OX10 8BA, 01491 835381 such views or statements. -
Master Gardener Newsletter
Master Gardener Newsletter S EPTEMBER 2020 C OWLITZ C OUNTY 1946 3 RD A VE. L ONGVIEW , WA 98632 WSU Extension Office Gary Fredricks Phone: 360-577-3014 Gary Fredricks, WSU I have a plan? Cowlitz County "A year from now, you will wish you had started today." ~ Karen Lamb Extension Director, 360-577-3014 Extension 3 October marks a showcase of fall colors with all the trees changing to different E-mail: [email protected] shades of gold and red. It also means elections are drawing near. Political speeches fill the airways with promises of a better way of doing things. Speech- Carlee Dowell, es in the past were about saving the taxpayers money, but now because budgets Administrative Secretary have been cut, it has become more about accountability. There are promises to 360-577-3014 Extension 0 eliminate wasteful spending and be more efficient in how your dollars are spent. We all should expect that our tax dollars are being used effectively, but how do E-mail: we know? [email protected] As public supported organization, it is expected that WSU Extension is ac- countable for the funds it uses. That means we need to demonstrate that as an WSU Gardening Websites organization we can show our programs have improved the quality of life for mastergardener.wsu.edu/ the general public. WSU Extension has the responsibility to make sure our pro- gardening.wsu.edu grams are relevant and impact Cowlitz County citizens. As MG volunteers, cowlitz.wsu.edu partners with our office, the goal remains the same for you.