Characterisation and Prediction of Large-Scale, Long-Term Change of Coastal Geomorphological Behaviours: Final Science Report

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation and Prediction of Large-Scale, Long-Term Change of Coastal Geomorphological Behaviours: Final Science Report Characterisation and prediction of large-scale, long-term change of coastal geomorphological behaviours: Final science report Science Report: SC060074/SR1 Product code: SCHO0809BQVL-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned by the Environment Agency’s Science Department and funded by the joint Environment Agency/Defra Flood and Coastal Erosion Risk Management Research and Development Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Richard Whitehouse, Peter Balson, Noel Beech, Alan Aztec West, Almondsbury, Bristol, BS32 4UD Brampton, Simon Blott, Helene Burningham, Nick Tel: 01454 624400 Fax: 01454 624409 Cooper, Jon French, Gregor Guthrie, Susan Hanson, www.environment-agency.gov.uk Robert Nicholls, Stephen Pearson, Kenneth Pye, Kate Rossington, James Sutherland, Mike Walkden ISBN: 978-1-84911-090-7 Dissemination Status: © Environment Agency – August 2009 Publicly available Released to all regions All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Keywords: Coastal geomorphology, processes, systems, The views and statements expressed in this report are management, consultation those of the author alone. The views or statements expressed in this publication do not necessarily Research Contractor: represent the views of the Environment Agency and the HR Wallingford Ltd, Howbery Park, Wallingford, Oxon, Environment Agency cannot accept any responsibility for OX10 8BA, 01491 835381 such views or statements. (For contractor quality control purposes this report is also numbered SR 694) This report is printed on Cyclus Print, a 100% recycled stock, which is 100% post consumer waste and is totally Environment Agency’s Project Manager: chlorine free. Water used is treated and in most cases Stefan Laeger, Twerton Office and Depot, Lower returned to source in better condition than removed. Bristol Road, Bath, BA2 9ES, 01225 487664 Further copies of this summary are available from our Collaborator(s): publications catalogue: http://publications.environment- British Geological Survey, Kenneth Pye Associates agency.gov.uk or our National Customer Contact Ltd, Newcastle University, Royal Haskoning, University Centre: T: 08708 506506 College London, University of Southampton E: [email protected]. Science Project Number: SC060074/SR1 Product Code: SCHO0809BQVL-E-P ii Science Report – Final Science Report Science at the Environment Agency Science underpins the work of the Environment Agency. It provides an up-to-date understanding of the world about us and helps us to develop monitoring tools and techniques to manage our environment as efficiently and effectively as possible. The work of the Environment Agency’s Science Department is a key ingredient in the partnership between research, policy and operations that enables the Environment Agency to protect and restore our environment. The science programme focuses on five main areas of activity: • Setting the agenda, by identifying where strategic science can inform our evidence-based policies, advisory and regulatory roles; • Funding science, by supporting programmes, projects and people in response to long-term strategic needs, medium-term policy priorities and shorter-term operational requirements; • Managing science, by ensuring that our programmes and projects are fit for purpose and executed according to international scientific standards; • Carrying out science, by undertaking research – either by contracting it out to research organisations and consultancies or by doing it ourselves; • Delivering information, advice, tools and techniques, by making appropriate products available to our policy and operations staff. Steve Killeen Head of Science Science Report – Final Science Report iii Executive summary With the advent of climate change, it is vital to understand and predict coastal geomorphological change in order to assess flooding and erosion risks and to plan, appraise and develop sustainable coastal management solutions. Until now, our capability to predict coastal morphological change on a broad scale has been limited and has not always allowed us to fully consider the impacts of coastal management options and climate change in strategic planning and decision-making. New research in this report has sought to develop a framework and conceptual model to predict long-term and large-scale geomorphological evolution, linking our understanding to the treatment of coastal and estuarine environments. Substantial progress has been made in developing conceptual models and in quantitative analysis of coastal geomorphological change. To provide generic tools applicable in any UK location, it is necessary to understand the geomorphological behaviour of the coastal system as a whole and links between its component parts. A functioning coastal system is made up of features which combine and interact over a range of timescales. Coastal features are themselves made up of one or more geomorphological elements or units. These form the basic building blocks of the coastal system and as such are the starting point for this study. The coastal system will also be constrained at a large scale by geological controls, such as headlands, and supply of sediments forming the main geomorphological features. A framework for assessing coastal geomorphological change is supported by the conceptual models of geomorphological features and elements which form the basis for assessing the impacts of coastal management options, including the cessation of management. Answers can be delivered in a consistent fashion for any location. The conceptual model was implemented numerically to ‘proof of concept’ level using existing systems-based models applied to a coupled coast and estuary system; this demonstrated the benefits of the approach and showed how the results could be used to inform practical coastal management decisions. Expert geomorphological analysis and systems analysis were also used to evaluate existing engineering tools and methods for quantifying coastal change. A graphical method of mapping coastal geomorphological systems and interactions was developed to aid discussions with outside groups of how a coastal system works. The mapping approach is scale independent and is a useful starting point for analysis of geomorphological systems and for strategic planning. It helps to construct baseline knowledge and formal understanding, highlights uncertainty and removes the ‘black box’ nature of existing coastal prediction methods. The approach was applied to three coastal locations and easy-to-follow guidance on its use was produced. Independent assessment of the approach was carried out at another location which confirmed the approach’s usefulness in shoreline management plans (SMP) in identifying broad scale links, developing skills and training for coastal managers and offering a means of communication between different partners. In the long-term, the outputs from this project will enable better planning of coastal works and better understanding of the consequences of not intervening. It will help coastal practitioners, local authorities, Environment Agency, Department for Environment, Food and Rural Affairs (Defra) and others involved in strategic planning to assess risks and plan for change. This report also makes a number of recommendations for the application and development of existing methods for quantifying coastal change. iv Science Report – Final Science Report This final science report of project SC060074 is based on work carried out with the Environment Agency by HR Wallingford, Royal Haskoning, University College London, University of Southampton, Kenneth Pye & Associates, Newcastle University and British Geological Survey. The report should be read in conjunction with Whitehouse et al. (2008), Walkden and Rossington (2009), and French and Burningham (2009). A project website is also available at www.coastalgeomorphology.net Science Report – Final Science Report v Acknowledgements The project is grateful for advice received from Steering Group members (Tim Kermode, Suresh Surendran, Stefan Laeger, Owen Tarrant) and those who contributed to the consultation process: Graham Lymbery (Sefton District Council) – who also kindly participated in a test of the system mapping approach, Rod Jones (Countryside Council for Wales), Kerry Keirle (Welsh Assembly Government), Lee Swift, Geoff Astle, Karen Thomas, Gary Watson (Environment Agency), Emyr Williams (Pembrokeshire County Council), Stewart Rowe (Scarborough Borough Council). We would also like to thank the Steering Group and Jim Hall from University of Newcastle for reviewing this report. vi Science Report – Final Science Report Contents 1. Preamble 1 1.1. Introduction 2 1.2. Objectives and outline of report 5 2. Aim, audience and FCRM context for the report 6 2.1. Objectives and target audience 6 2.2. Project goals and benefits 6 2.3. Modelling coastal evolution for coastal management 8 3. Framework for incorporation of coastal geomorphology into coastal management
Recommended publications
  • F!13Il-.-.; A:: It: Identification of Littoral Cells
    Journal of Coastal Research 381-400 Fort Lauderdale, Florida Spring 1995 Littoral Cell Definition and Budgets for Central Southern England Malcolm J. Bray, David J. Carter and Janet M. Hooke Department of Geography University of Portsmouth Portsmouth, POI 3HE, England ABSTRACT . BRAY, M.J.; CARTER, D.J., and HOOKE, J.M., 1995. Littoral cell definition and budgets for central southern England. Journal of Coastal Research, 11(2),381-400. Fort Lauderdale (Florida), ISSN 0749­ ,tllllllll,.e 0208. Differentiation of natural process units is promoted as a means of better understanding the interconnected . ~ ~ - nature of coastal systems at various scales. This paper presents a new holistic methodology for the f!13Il-.-.; a:: it: identification of littoral cells. Testing is undertaken through application to an extensive region of central ... bJLt southern England. Diverse sources of information are compiled to map 8. detailed series of local sediment circulations both at the shoreline and in the offshore zone. Cells and sub-cells are subsequently defined by thorough examination of the continuity of sediment transport pathways and by identification of boundaries where there are discontinuities. Important distinctions are made between the nature and stability of different boundaries and a classification of types is devised. Application of sediment budget analysis to major process units helps to clarify the regional significance of different sediment sources, stores and sinks. Within the study area, it is shown that sediments circulate from distinct eroding cliff sources to well defined sinks. Natural beaches are transient and dependent upon the continued functioning of supply pathways from cliff sources. Relict cells with residual circulations are identified as a consequence of interference.
    [Show full text]
  • Ocean Shore Management Plan
    Ocean Shore Management Plan Oregon Parks and Recreation Department January 2005 Ocean Shore Management Plan Oregon Parks and Recreation Department January 2005 Oregon Parks and Recreation Department Planning Section 725 Summer Street NE Suite C Salem Oregon 97301 Kathy Schutt: Project Manager Contributions by OPRD staff: Michelle Michaud Terry Bergerson Nancy Niedernhofer Jean Thompson Robert Smith Steve Williams Tammy Baumann Coastal Area and Park Managers Table of Contents Planning for Oregon’s Ocean Shore: Executive Summary .......................................................................... 1 Chapter One Introduction.................................................................................................................. 9 Chapter Two Ocean Shore Management Goals.............................................................................19 Chapter Three Balancing the Demands: Natural Resource Management .......................................23 Chapter Four Balancing the Demands: Cultural/Historic Resource Management .........................29 Chapter Five Balancing the Demands: Scenic Resource Management.........................................33 Chapter Six Balancing the Demands: Recreational Use and Management .................................39 Chapter Seven Beach Access............................................................................................................57 Chapter Eight Beach Safety .............................................................................................................71
    [Show full text]
  • Impersonal Style and the Form of Experience in W. G. Sebald's the Rings of Saturn
    Please do not remove this page Impersonal Style and the Form of Experience in W. G. Sebald's The Rings of Saturn Persson, Torleif https://scholarship.libraries.rutgers.edu/discovery/delivery/01RUT_INST:ResearchRepository/12643388260004646?l#13643534940004646 Persson, T. (2016). Impersonal Style and the Form of Experience in W. G. Sebald’s The Rings of Saturn. Studies in the Novel, 48(2), 205–222. https://doi.org/10.7282/T3B56MZ6 This work is protected by copyright. You are free to use this resource, with proper attribution, for research and educational purposes. Other uses, such as reproduction or publication, may require the permission of the copyright holder. Downloaded On 2021/09/27 14:06:53 -0400 Studies in the Novel ISSN 0039-3827 205 Vol. 48 No. 2 (Summer), 2016 Pages 205–222 IMPERSONAL STYLE AND THE FORM OF EXPERIENCE IN W. G. SEBALD’S THE RINGS OF SATURN TORLEIF PERSSON The prose fiction of W. G. Sebald exhibits a curious flatness. The source of this defining quality is what the narrator of The Emigrants calls the “wrongful trespass” of empathetic or emotional identification with the victims of historical calamity (29). The resulting narrative distance is a familiar hallmark of Sebald’s style, realized in his writing through an almost seamless intermingling of fact, fiction, allusion, and recall—a “literary monism”—that fuses different narrative temporalities, superimposes the global on the local, and assimilates a wide range of source materials and intertextual content (McCulloh 22). Two broad responses might be discerned in respect to this particular aspect of Sebald’s writing. The first questions the ethical commitment of a style that is unable to make any kind of moral distinction.
    [Show full text]
  • Field Guide for Oil Spill Response in Arctic Waters
    FIELD GUIDE FOR OIL SPILL RESPONSE IN ARCTIC WATERS (SECOND EDITION, 2017) ISBN 978-82-93600-29-9 (digital, PDF) © Arctic Council Secretariat, 2017 This report is licensed under the Creative Commons Attribu- tion-NonCommercial 4.0 International License. To view a copy of the license visit http://creativecommons.org/licenses/y-nc/4.0 Suggested citation EPPR, 2017, Field Guide for Oil Spill Response in Arctic Waters (Second Edition, 2017). 443 pp. The revised second edition was funded by the Oil Spill Recovery Institute, Prince William Sound Science Center in Cordova, Alaska, as a project of EPPR. Authors E.H. Owens, Owens Coastal Consultants L.B. Solsberg, Counterspil Research Inc. D.F. Dickins, DF Dickins Associates, LLC This EPPR project was led by the United States, with contribu- tions for Arctic States, Permanent Participants, and Arctic Council Working Groups. Published by Arctic Council Secretariat This report is available as an electronic document from the Arctic Council’s open access repository: https://oaarchive.arctic-council. org/handle/11374/2100 Cover image © Xxsalguodxx – stock.adobe.com Inside cover painting “Arctic” by Christopher Walker Field Guide for Oil Spill Response in Arctic Waters (Second Edition, 2017) DISCLAIMER Nothing in the Guide shall be understood as prejudicing the legal position that any Arctic country may have regarding the determi- nation of its maritime boundaries or the legal status of any waters. Regardless of suggested response strategies and procedures shown in this Guide, it is expected that individual
    [Show full text]
  • West of Wales Shoreline Management Plan 2 Section 4
    West of Wales Shoreline Management Plan 2 Section 4. Coastal Area D November 2011 Final 9T9001 A COMPANY OF HASKONING UK LTD. COASTAL & RIVERS Rightwell House Bretton Peterborough PE3 8DW United Kingdom +44 (0)1733 334455 Telephone Fax [email protected] E-mail www.royalhaskoning.com Internet Document title West of Wales Shoreline Management Plan 2 Section 4. Coastal Area D Document short title Policy Development Coastal Area D Status Final Date November 2011 Project name West of Wales SMP2 Project number 9T9001 Author(s) Client Pembrokeshire County Council Reference 9T9001/RSection 4CADv4/303908/PBor Drafted by Claire Earlie, Gregor Guthrie and Victoria Clipsham Checked by Gregor Guthrie Date/initials check 11/11/11 Approved by Client Steering Group Date/initials approval 29/11/11 West of Wales Shoreline Management Plan 2 Coastal Area D, Including Policy Development Zones (PDZ) 10, 11, 12 and 13. Sarn Gynfelyn to Trwyn Cilan Policy Development Coastal Area D 9T9001/RSection 4CADv4/303908/PBor Final -4D.i- November 2011 INTRODUCTION AND PROCESS Section 1 Section 2 Section 3 Introduction to the SMP. The Environmental The Background to the Plan . Principles Assessment Process. Historic and Current Perspective . Policy Definition . Sustainability Policy . The Process . Thematic Review Appendix A Appendix B SMP Development Stakeholder Engagement PLAN AND POLICY DEVELOPMENT Section 4 Appendix C Introduction Appendix E Coastal Processes . Approach to policy development Strategic Environmental . Division of the Coast Assessment
    [Show full text]
  • Wales: River Wye to the Great Orme, Including Anglesey
    A MACRO REVIEW OF THE COASTLINE OF ENGLAND AND WALES Volume 7. Wales. River Wye to the Great Orme, including Anglesey J Welsby and J M Motyka Report SR 206 April 1989 Registered Office: Hydraulics Research Limited, Wallingford, Oxfordshire OX1 0 8BA. Telephone: 0491 35381. Telex: 848552 ABSTRACT This report reviews the coastline of south, west and northwest Wales. In it is a description of natural and man made processes which affect the behaviour of this part of the United Kingdom. It includes a summary of the coastal defences, areas of significant change and a number of aspects of beach development. There is also a brief chapter on winds, waves and tidal action, with extensive references being given in the Bibliography. This is the seventh report of a series being carried out for the Ministry of Agriculture, Fisheries and Food. For further information please contact Mr J M Motyka of the Coastal Processes Section, Maritime Engineering Department, Hydraulics Research Limited. Welsby J and Motyka J M. A Macro review of the coastline of England and Wales. Volume 7. River Wye to the Great Orme, including Anglesey. Hydraulics Research Ltd, Report SR 206, April 1989. CONTENTS Page 1 INTRODUCTION 2 EXECUTIVE SUMMARY 3 COASTAL GEOLOGY AND TOPOGRAPHY 3.1 Geological background 3.2 Coastal processes 4 WINDS, WAVES AND TIDAL CURRENTS 4.1 Wind and wave climate 4.2 Tides and tidal currents 5 REVIEW OF THE COASTAL DEFENCES 5.1 The South coast 5.1.1 The Wye to Lavernock Point 5.1.2 Lavernock Point to Porthcawl 5.1.3 Swansea Bay 5.1.4 Mumbles Head to Worms Head 5.1.5 Carmarthen Bay 5.1.6 St Govan's Head to Milford Haven 5.2 The West coast 5.2.1 Milford Haven to Skomer Island 5.2.2 St Bride's Bay 5.2.3 St David's Head to Aberdyfi 5.2.4 Aberdyfi to Aberdaron 5.2.5 Aberdaron to Menai Bridge 5.3 The Isle of Anglesey and Conwy Bay 5.3.1 The Menai Bridge to Carmel Head 5.3.2 Carmel Head to Puffin Island 5.3.3 Conwy Bay 6 ACKNOWLEDGEMENTS 7 REFERENCES BIBLIOGRAPHY FIGURES 1.
    [Show full text]
  • Chapter 10. a First Look at Nunatsiavut Kangidualuk ('Fjord') Ecosystems
    Chapter 10. A first look at Nunatsiavut Kangidualuk (‘fjord’) ecosystems Lead author Tanya Brown1,2,3, Ken Reimer3, Tom Sheldon4, Trevor Bell5 1Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC; 2Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC; 3Environmental Sciences Group, Royal Military College of Canada, Kingston, ON; 4Nunatsiavut Government, Nain, NF; 5Memorial University of Newfoundland, St. John’s, NF Contributing authors S. Bentley, R. Pienitz, M. Gosselin, M. Blais, M. Carpenter, E. Estrada, T. Richerol, E. Kahlmeyer, S. Luque, B. Sjare, A. Fisk, S. Iverson Abstract Long marine inlets that are classified as either fjords or fjards indent the Labrador coast. Along the moun- tainous north coast a classic fjord landscape dominates, with deep (up to ~300 m) muddy basins separated by rocky sills and flanked by high (up to 1,000 m), steep sidewalls. In contrast, the fjards of the central and southern coast are generally shallow (150 m), irregularly shaped inlets with gently sloping sidewalls and large intertidal zones. These fjords and fjards are important feeding grounds for marine mammals and seabirds and are commonly used by Inuit for hunting and travel. Despite their ecological and socio-cultural importance, these marine ecosystems are largely understudied. The Nunatsiavut Nuluak project has, as a primary goal, to undertake baseline inventories and comparative assessments of representative marine ecosystems in Labrador, including benthic and pelagic community composition, distribution and abun- dance, fjord processes, and oceanographic conditions. A case study demonstrating ecosystem resilience to anthropogenic disturbance is examined. This information provides a foundation for further research and monitoring as climate change and anthropogenic pressures alter recent baselines.
    [Show full text]
  • Dorset and East Devon Coast for Inclusion in the World Heritage List
    Nomination of the Dorset and East Devon Coast for inclusion in the World Heritage List © Dorset County Council 2000 Dorset County Council, Devon County Council and the Dorset Coast Forum June 2000 Published by Dorset County Council on behalf of Dorset County Council, Devon County Council and the Dorset Coast Forum. Publication of this nomination has been supported by English Nature and the Countryside Agency, and has been advised by the Joint Nature Conservation Committee and the British Geological Survey. Maps reproduced from Ordnance Survey maps with the permission of the Controller of HMSO. © Crown Copyright. All rights reserved. Licence Number: LA 076 570. Maps and diagrams reproduced/derived from British Geological Survey material with the permission of the British Geological Survey. © NERC. All rights reserved. Permit Number: IPR/4-2. Design and production by Sillson Communications +44 (0)1929 552233. Cover: Duria antiquior (A more ancient Dorset) by Henry De la Beche, c. 1830. The first published reconstruction of a past environment, based on the Lower Jurassic rocks and fossils of the Dorset and East Devon Coast. © Dorset County Council 2000 In April 1999 the Government announced that the Dorset and East Devon Coast would be one of the twenty-five cultural and natural sites to be included on the United Kingdom’s new Tentative List of sites for future nomination for World Heritage status. Eighteen sites from the United Kingdom and its Overseas Territories have already been inscribed on the World Heritage List, although only two other natural sites within the UK, St Kilda and the Giant’s Causeway, have been granted this status to date.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Copyright Pearson Education Iii
    Contents Introduction v The natural environment (Section A) Chapter 1: River environments 1 Chapter 2: Coastal environments 11 Chapter 3: Hazardous environments 21 People and their environments (Section B) Chapter 4: Economic activity and energy 31 Chapter 5: Ecosystems and rural environments 41 Chapter 6: Urban environments 50 Global issues (Section D) Chapter 7: Fragile environments 60 Chapter 8: Globalisation and migration 71 Chapter 9: Development and human welfare 81 Contents Preparing for the exam 91 Glossary Sample 95 Index 99 Copyright Pearson Education iii Geog_Rev_Guide-5thProof.indb 3 22/01/2013 13:29 Chapter 2: Coastal environments The coast as a system The coast is an open system. For example, sediment comes into the system (input) from a river delta. Waves transport the sediment or it is stored in beaches or sand dunes. Sediment may be lost to the coastal system if it moves into the open sea (output). Coastal processes are divided into marine processes (waves) and sub-aerial processes (weathering and mass movement). Waves and erosion and deposition Constructive waves Destructive waves weak tall waves with short swash long wavelength strong swash shallow wavelength gradient steep gradient waves waves h sh as wa ackw ack d) ak b g b de we ron ero st ach beach built up by (be deposition of material brought up in wash (Section A) Figure 2.1 Constructive and destructive waves Constructive waves build the beach by deposition. Destructive waves erode the beach. Their backwash Their swash is stronger than their backwash so they is stronger than their swash, so they drag material carry material up the beach and deposit it there.
    [Show full text]
  • A Report on the Guano-Producing Birds of Peru [“Informe Sobre Aves Guaneras”]
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 197 A report on the guano-producing birds of Peru [“Informe sobre Aves Guaneras”] July 2018* *Original manuscript completed1942 William Vogt1 with translation and notes by David Cameron Duffy2 1 Deceased Associate Director of the Division of Science and Education of the Office of the Coordinator in Inter-American Affairs. 2 Director, Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa Honolulu, Hawai‘i 96822, USA PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa 3190 Maile Way, St. John 408, Honolulu, Hawai‘i 96822, USA Recommended Citation: Vogt, W. with translation and notes by D.C. Duffy. 2018. A report on the guano-producing birds of Peru. Pacific Cooperative Studies Unit Technical Report 197. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 198 pages. Key words: El Niño, Peruvian Anchoveta (Engraulis ringens), Guanay Cormorant (Phalacrocorax bougainvillii), Peruvian Booby (Sula variegate), Peruvian Pelican (Pelecanus thagus), upwelling, bird ecology behavior nesting and breeding Place key words: Peru Translated from the surviving Spanish text: Vogt, W. 1942. Informe elevado a la Compañia Administradora del Guano par el ornitólogo americano, Señor William Vogt, a la terminación del contracto de tres años que con autorización del Supremo Gobierno celebrara con la Compañia, con el fin de que llevara a cabo estudios relativos a la mejor forma de protección de las aves guaneras y aumento de la produción de las aves guaneras.
    [Show full text]
  • Geomorphology of Mandvi to Mundra Coast, Kachchh, Western India
    24 Geosciences Research, Vol. 1, No. 1, November 2016 Geomorphology of Mandvi to Mundra Coast, Kachchh, Western India Heman V. Majethiya, Nishith Y. Bhatt and Paras M. Solanki Geology Department, M.G. Science Institute, Navrangpura, Ahmedabad – 380009. India Email: [email protected] Abstract. Landforms of coast between Mandvi and Mundra in Kachchh and their origin are described here. Various micro-geomorphic features such as delta, beaches (ridge & runnel), coastal dunes, tidal flat, tidal creek, mangrove, backwater, river estuary, bar, spit, saltpan etc. are explained. The delta sediment of Phot River is superimposed by tidal flat sediments deposited later during uplift in last 2000 years. Raise-beach, raise-tidal flat, firm sub-tidal mud pockets on beach, delta and parabolic dune remnants and palaeo-fore dune (Mundra dune) - all these features projects 3 to 4 m high palaeo-sea level than the present day. All these features are superimposed by present day active beach, dune, tidal flat, creek, spit, bar, lagoon, estuary and mangroves. All these are depositional features. Keywords: Coastal Geomorphology, mandvi, mundra, kachchh, landforms. 1 Introduction The micro-geomorphic features, their distribution and origin in Mandvi to Mundra segment of Kachchh are described here. Tides, waves and currents are common coastal processes responsible for erosion, transportation and deposition of the sediments and produce erosional and depositional landform features in the study area. Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun and the rotation of the Earth. Most places in the ocean usually experience two high tides and two low tides each day (semi-diurnal tide), but some locations experience only one high and one low tide each day (diurnal tide).
    [Show full text]