Chapter 10. a First Look at Nunatsiavut Kangidualuk ('Fjord') Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 10. a First Look at Nunatsiavut Kangidualuk ('Fjord') Ecosystems Chapter 10. A first look at Nunatsiavut Kangidualuk (‘fjord’) ecosystems Lead author Tanya Brown1,2,3, Ken Reimer3, Tom Sheldon4, Trevor Bell5 1Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC; 2Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC; 3Environmental Sciences Group, Royal Military College of Canada, Kingston, ON; 4Nunatsiavut Government, Nain, NF; 5Memorial University of Newfoundland, St. John’s, NF Contributing authors S. Bentley, R. Pienitz, M. Gosselin, M. Blais, M. Carpenter, E. Estrada, T. Richerol, E. Kahlmeyer, S. Luque, B. Sjare, A. Fisk, S. Iverson Abstract Long marine inlets that are classified as either fjords or fjards indent the Labrador coast. Along the moun- tainous north coast a classic fjord landscape dominates, with deep (up to ~300 m) muddy basins separated by rocky sills and flanked by high (up to 1,000 m), steep sidewalls. In contrast, the fjards of the central and southern coast are generally shallow (150 m), irregularly shaped inlets with gently sloping sidewalls and large intertidal zones. These fjords and fjards are important feeding grounds for marine mammals and seabirds and are commonly used by Inuit for hunting and travel. Despite their ecological and socio-cultural importance, these marine ecosystems are largely understudied. The Nunatsiavut Nuluak project has, as a primary goal, to undertake baseline inventories and comparative assessments of representative marine ecosystems in Labrador, including benthic and pelagic community composition, distribution and abun- dance, fjord processes, and oceanographic conditions. A case study demonstrating ecosystem resilience to anthropogenic disturbance is examined. This information provides a foundation for further research and monitoring as climate change and anthropogenic pressures alter recent baselines. 271 NUNATSIAVUT FJORD ECOSYSTEMS Chapter 10 10.1 Introduction ern Labrador surrounded by Torngat Mountains National Park (TMNP); Saglek Fjord, a fjord with a point source Spectacular fjords indent the Northern Labrador coast- of contamination also in northern Labrador; Okak Bay, a line. These fjords are influenced by both Atlantic and fjard in central Labrador frequently used for harvesting Arctic water masses and receive freshwater, nutrients and travel by Inuit from Nain, the nearest community ap- and sediments from glaciers and rivers. Fjords are typ- proximately 100 km to the south; and Anaktalak Bay, an- ically long, narrow inlets carved by glacier ice. Classic other fjard in central Labrador that is the shipping route fjords have deep muddy basins separated by rock sills to a mine and concentrator at the head of the bay (Figure and flanked by tall, steep sidewalls. In contrast, shallow, 1). Nachvak and Saglek fjords are located above 58°N irregularly shaped inlets with gently sloping sidewalls latitude, north of treeline and within the Arctic ecoregion, and large intertidal zones dominate the central Labrador whereas Okak and Anaktalak bays are located between coast. These less spectacular inlets, though also glacially 56° and 58°N latitude within the Subarctic ecoregion, carved, are termed fjards. south of treeline. Labrador fjords and fjards host both Arctic and boreal Prior to the modern era, the only permanent settlements flora and fauna and are an important feeding ground for established along the northern Labrador coast were Hud- marine mammals and seabirds. Humans have inhabited son’s Bay Company (HBC) trading posts and Moravian these inlets for millennia, drawn to the rich and diverse Mission settlements (Fitzhugh 1980). During the 19th natural resources and favourable climate. Labrador Inuit and 20th centuries, Okak Bay supported the largest Inuit depend on these environments for harvesting, travel and population on the Labrador Coast. Nutak, located in Okak, economic development; they also recognize the increased was a Moravian Mission and later a HBC post from 1920 pressures placed on these sensitive systems from natural to 1956 (Kleivan 1966). The remains of mission sites (e.g. climate) and anthropogenic (e.g. industry) changes. and HBC trading posts also exist in Saglek and Nachvak fjords. Hebron, the last permanent settlement in northern Although these coastal zones are extremely important for Labrador, was closed in 1959 when Inuit were forced to Inuit health and wellbeing, they remain understudied and re-settle in communities farther south. For the most part, relatively unknown from a scientific perspective. For in- large scale settlement and industrial development are ab- stance, only scant details are available on their ecology, sent in Nachvak Fjord and Okak Bay. TMNP was estab- physical oceanography and land-ocean linkages. In order lished in 2005 and research carried out in Nachvak Fjord to assess the potential impacts of elevated or new stres- forms an important component of the park’s research and sors, it is necessary to establish a baseline against which monitoring program. observed or predicted changes can be measured. Con- sequently, since 2006 our multi-disciplinary team of uni- Outer Saglek Fjord (Saglek Bay) and inner Anaktalak versity, industry and government researchers has under- Bay are sites of industrial and modern day human activ- taken baseline inventories and comparative assessments ity. Saglek Bay was used extensively in the 1960s during of four representative marine ecosystems in Labrador. the construction and maintenance of the Saglek military radar station. Historical operations resulted in extensive The broad objective of our program is to address Inuit polychlorinated biphenyl (PCB) contamination of local concerns regarding the ecological integrity of these mar- soil (Brown et al. 2009, Kuzyk et al. 2005) and prior to ine environments in the face of climate change, natural soil remediation in 1997-1999, the original contamination resource extraction and contamination. The four marine spread to the marine environment. Elevated PCBs were ecosystems are: Nachvak Fjord, a pristine fjord in north- measured in marine sediments and the coastal food web 272 Chapter 10 NUNATSIAVUT FJORD ECOSYSTEMS 64°0'0"W 62°0'0"W 60°0'0"W Nunavut Quebec 60°0'0"N 60°0'0"N Torngat Mountains Labrador National Park Nachvak Fjord 602 600 59°0'0"N 59°0'0"N Labrador Sea Saglek Fjord 617 615 58°0'0"N 58°0'0"N 633 Okak Bay 630 57°0'0"N 57°0'0"N Anaktalak Bay 624 620 0 12.5 25 50 75 Kilometers 64°0'0"W 62°0'0"W 60°0'0"W Figure 1. Location of marine study areas in Nunatsiavut (Nachvak, Saglek, Okak and Anaktalak). Oceanographic stations at the head and mouth of the fjords and fjards are indicated. 273 NUNATSIAVUT FJORD ECOSYSTEMS Chapter 10 more than 7.5 km from the original contamination (Kuzyk ceives most of its modern sediment from Ivitak Brook, et al. 2005). Also in Saglek Bay, the kANGIDLUASUk a glacier-fed river that drains the south-central part of base camp, located on Inuit land at the southern boundary the fiord catchment. The average, annual sediment load of the TMNP, is the venue for a summer youth camp. to the basins ranges between 35,000 and 100,000 tonnes (Kahlmeyer 2009). The head of Anaktalak Bay is the site of a nickel-cop- per-cobalt mine and concentrator that Vale NL (formerly Saglek is a 65-km-long, large branching bay/fjord system Voisey’s Bay Nickel Company) has operated since 2005. (Fitzhugh 1980). Saglek Fjord strictly describes the clas- Labrador Inuit are concerned with the potential environ- sic glacier trough morphology represented by West Arm mental impacts of the mine and concentrator, especially and its tributaries North and Southwest Arm. Farther east, with respect to winter shipping from the dock facility at the fjord opens out into Saglek Bay, which is over 14 km Edward’s Cove along Anaktalak Bay to the Labrador Sea, wide and dotted with large and small islands. The fjord and the treated effluent from the mine that is discharged sidewalls are generally steep, extending up more than 800 into the bay. m vertically from sea level. Fjord basins become increas- ingly deeper from head to mouth, ranging in water depths This chapter presents what we have learned about these from 80 to 256 m. Sills between 45 and 96 m below sea four ecosystems over the past 5 years and identifies in- level separate the basins. Saglek Fjord receives most of formation gaps that are critical to fill in the coming years. its sediment from Nachvak Brook, a nival-fed river that The baseline work that is being conducted in these marine drains the north-central part of the fjord catchment. The ecosystems includes: patterns of the community structure; average, annual sediment load for the basins ranges be- distribution and abundance of both benthic and pelagic tween 16,000 and 380,000 tonnes (Kahlmeyer 2009). fauna and flora; marine sedimentological, palaeoceano- graphic and palaeolimnological analyses over timescales Okak Bay (fjard) is an irregularly shaped, 50-km-long of Inuit and European settlement and modernization; and inlet with north and south entrances either side of Okak the study of Arctic ecosystem resilience to anthropogenic Island. The surrounding catchment is undulating and low disturbances. lying (on average 100-200 m) with only local summits above 400 m height. Underwater, the average depth is 10.2 Physical Features between 40 and 80 m, with flat-bottomed basins separ- ated by low-relief sills. The head of the bay is relatively Nachvak Fjord is a 45-km-long glacial trough that cuts shallow (45-50 m water depth) with two major freshwater through the heart of the Torngat Mountains, producing inputs, Saputit River and North River. The deepest basins 1000-m-high sidewalls and 200-m-deep basins. The fjord by far are on the northeast side of Okak Island along the is 2-4 km wide, increasing gradually eastward to Nachvak northern entrance, where average water depths reach 200 Bay, which opens to the Labrador Sea (Bell and Josen- m.
Recommended publications
  • Inner Sound of Stroma, Pentland Firth (Scotland, UK)
    3rd International Conference on Ocean Energy, 6 October, Bilbao An Operational Hydrodynamic Model of a key tidal-energy site: Inner Sound of Stroma, Pentland Firth (Scotland, UK) M.C. Easton 1, D.K. Woolf 1, and S. Pans 2 1 Environmental Research Institute North Highland College, UHI Millenium Institute Thurso, Caithness, KW14 7JD, Scotland Email: [email protected] 2 DHI Representative UK (Scotland) DHI Agern Allé 5, DK-2970 Hørsholm, Denmark E-mail: [email protected] Abstract mutual influence of tidal ranges and phases between North Atlantic to the West and the North Sea to the As a result of significant progress towards the East act to setup strong currents [2] where spring tides delivery of tidal-stream power the industry is commonly exceed 5 ms-1 [3-4]. moving swiftly towards the deployment of pre- Seeking to capitalise on these unique conditions and commercial arrays. Meanwhile important sites, accelerate the delivery of large-scale tidal-stream such as the Pentland Firth, are being made available energy, in March 2010 the organisation controlling the for development. It is now crucial that we consider seabed in the United Kingdom, the Crown Estate, how the installation of tidal-stream devices will awarded leases for up to 600 MW of installed tidal interact with their host environment. Surveying energy capacity within the Pentland Firth-Orkney and modelling of the marine system prior to region [5]. An additional 200 MW is expected to be development is a prerequisite to identifying any awarded later in 2010 [6]. This announcement of the significant changes associated with tidal energy first large-scale deployment of tidal energy devices deployment.
    [Show full text]
  • Cleaning Symbiosis Among California Inshore Fishes
    CLEANING SYMBIOSIS AMONG CALIFORNIA INSHORE FISHES EDMUNDS. HOBSON' ABSTRACT Cleaning symbiosis among shore fishes was studied during 1968 and 1969 in southern California, with work centered at La Jolla. Three species are habitual cleaners: the seAoriF, Ozyjulis californica; the sharpnose seaperch, Phanerodon atripes; and the kelp perch, Brachyistius frenatus. Because of specific differences in habitat, there is little overlap in the cleaning areas of these three spe- cies. Except for juvenile sharpnose seaperch, cleaning is of secondary significance to these species, even though it may be of major significance to certain individuals. The tendency to clean varies between in- dividuals. Principal prey of most members of these species are free-living organisms picked from a substrate and from midwater-a mode of feeding that favors adaptations suited to cleaning. Because it is exceedingly abundant in a variety of habitats, the seiiorita is the predominant inshore cleaning fish in California. Certain aspects of its cleaning relate to the fact that only a few of the many seiioritas present at a given time will clean, and that this activity is not centered around well-defined cleaning stations, as has been reported for certain cleaning fishes elsewhere. Probably because cleaners are difficult to recognize among the many seiioritas that do not clean, other fishes.generally do not at- tempt to initiate-cleaning; rather, the activity is consistently initiated by the cleaner itself. An infest- ed fish approached by a cleaner generally drifts into an unusual attitude that advertises the temporary existence of the transient cleaning station to other fish in need of service, and these converge on the cleaner.
    [Show full text]
  • Relative Gut Lengths of Coral Reef Butterflyfishes (Pisces
    Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae) ML Berumen1, 2 *, MS Pratchett3, BA Goodman4 1. Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia 2. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA 3. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 4. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309 * Corresponding author: Email: [email protected] Phone: +966 544700019 Keywords: Chaetodontidae; corallivory; Papua New Guinea; relative gut length Abstract Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialisation and foraging behaviours. Introduction Relative gut lengths of vertebrates have long been studied and compared within and among species (e.g., Al-Hussaini 1949). The most common explanations for relatively longer guts in herbivores focus on the chemical defences of plants (e.g., Levin 1976; Hay and Fenical 1988), the indigestibility of plant fibre (e.g., Stevens 1989; Karasov and Martinez del Rio 2007), or the poor nutritional quality of plants as food.
    [Show full text]
  • The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas
    OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas Editors Larry McKinney, Mark Besonen, Kim Withers Prepared under BOEM Contract M16AC00026 by Harte Research Institute for Gulf of Mexico Studies Texas A&M University–Corpus Christi 6300 Ocean Drive Corpus Christi, TX 78412 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management July 2019 Gulf of Mexico OCS Region DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M16AC00026. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management website at https://www.boem.gov/Environmental-Studies-EnvData/, click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-045. CITATION McKinney LD, Besonen M, Withers K (editors) (Harte Research Institute for Gulf of Mexico Studies, Corpus Christi, Texas).
    [Show full text]
  • Fire Island—Historical Background
    Chapter 1 Fire Island—Historical Background Brief Overview of Fire Island History Fire Island has been the location for a wide variety of historical events integral to the development of the Long Island region and the nation. Much of Fire Island’s history remains shrouded in mystery and fable, including the precise date at which the barrier beach island was formed and the origin of the name “Fire Island.” What documentation does exist, however, tells an interesting tale of Fire Island’s progression from “Shells to Hotels,” a phrase coined by one author to describe the island’s evo- lution from an Indian hotbed of wampum production to a major summer resort in the twentieth century.1 Throughout its history Fire Island has contributed to some of the nation’s most important historical episodes, including the development of the whaling industry, piracy, the slave trade, and rumrunning. More recently Fire Island, home to the Fire Island National Seashore, exemplifies the late twentieth-century’s interest in preserving natural resources and making them available for public use. The Name. It is generally believed that Fire Island received its name from the inlet that cuts through the barrier and connects the Great South Bay to the ocean. The name Fire Island Inlet is seen on maps dating from the nineteenth century before it was attributed to the barrier island. On September 15, 1789, Henry Smith of Boston sold a piece of property to several Brookhaven residents through a deed that stated the property ran from “the Head of Long Cove to Huntting
    [Show full text]
  • Sand Dunes Computer Animations and Paper Models by Tau Rho Alpha*, John P
    Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Sand Dunes Computer animations and paper models By Tau Rho Alpha*, John P. Galloway*, and Scott W. Starratt* Open-file Report 98-131-A - This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. * U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ omega? .wr.usgs .gov [email protected] [email protected] (gobackward) <j (goforward) Description of Report This report illustrates, through computer animations and paper models, why sand dunes can develop different forms. By studying the animations and the paper models, students will better understand the evolution of sand dunes, Included in the paper and diskette versions of this report are templates for making a paper models, instructions for there assembly, and a discussion of development of different forms of sand dunes. In addition, the diskette version includes animations of how different sand dunes develop. Many people provided help and encouragement in the development of this HyperCard stack, particularly David M. Rubin, Maura Hogan and Sue Priest.
    [Show full text]
  • Characterisation and Prediction of Large-Scale, Long-Term Change of Coastal Geomorphological Behaviours: Final Science Report
    Characterisation and prediction of large-scale, long-term change of coastal geomorphological behaviours: Final science report Science Report: SC060074/SR1 Product code: SCHO0809BQVL-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned by the Environment Agency’s Science Department and funded by the joint Environment Agency/Defra Flood and Coastal Erosion Risk Management Research and Development Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Richard Whitehouse, Peter Balson, Noel Beech, Alan Aztec West, Almondsbury, Bristol, BS32 4UD Brampton, Simon Blott, Helene Burningham, Nick Tel: 01454 624400 Fax: 01454 624409 Cooper, Jon French, Gregor Guthrie, Susan Hanson, www.environment-agency.gov.uk Robert Nicholls, Stephen Pearson, Kenneth Pye, Kate Rossington, James Sutherland, Mike Walkden ISBN: 978-1-84911-090-7 Dissemination Status: © Environment Agency – August 2009 Publicly available Released to all regions All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Keywords: Coastal geomorphology, processes, systems, The views and statements expressed in this report are management, consultation those of the author alone. The views or statements expressed in this publication do not necessarily Research Contractor: represent the views of the Environment Agency and the HR Wallingford Ltd, Howbery Park, Wallingford, Oxon, Environment Agency cannot accept any responsibility for OX10 8BA, 01491 835381 such views or statements.
    [Show full text]
  • Gulf Literacy: a Marine Science-Based Model of Scientific Literacy
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1995 Gulf Literacy: A Marine Science-Based Model of Scientific Literacy. John Edward Trowbridge Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Trowbridge, John Edward, "Gulf Literacy: A Marine Science-Based Model of Scientific Literacy." (1995). LSU Historical Dissertations and Theses. 6140. https://digitalcommons.lsu.edu/gradschool_disstheses/6140 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • A Detailed District Survey Report of Amravati
    DSR- AMRAVATI A Detailed District Survey Report of Amravati Collector office; Amravati. 1 DSR- AMRAVATI Index Preface 1. Introduction 2. Overview of mining activity in the district 3. List of the Mining Leases in the district 4. Details of Royalty or Revenue received in last three years 5. Details of Production of sand or minor mineral in last three years 6. Deposition of sediments in the rivers of the district 7. General profile of the district 8. Land utilization pattern in the district 9. Physiography of the district 10. Rainfall 11. Geology and Mineral wealth 12. Major and Minor Rivers of the District 13. General recommendation 2 DSR- AMRAVATI Preface In Compliance to the Notification Issued by the Ministry Of Environment, Forest and Climate change Dated 15.01.2016, the preparation of District survey report of River bed mining and other minor minerals is in accordance appendix 10 of the notification. It is also mentioned here that the procedure of preparation of District Survey Report is as per notification guidelines. Every efforts have been made to cover sand mining locations, area & overview of mining activity in the district with all its relevant features pertaining to geology & mineral wealth in replenish able and non- replenish able areas of rivers, stream and other sand sources. This report will be a model and guiding document which is a compendium of available mineral resources, geographical set up, environmental and ecological set up of the district and is based on data of various departments, published reports, and websites. The data may vary due to floods, heavy rains and other natural calamities.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • NATURA 2000 Data Form
    Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8 th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9 th Conference of the Contracting Parties (2005). 8 9 : ; < = 9 > ? 9 @ A B C ; > < D E F G H H H H H ; I J K < 9 L C M N ; ? 9 @ A C ; : ; M B O P ? ? 9 > M P O ? ; Q B : : ; P : : P ? ; M R S T U V W V X Y Z [ \ Y X ] ^ V W _ ` a b _ ] U b W ] ^ c Y Z d Y e T U ] X b W f X g ] F l H H h W c Y Z e V X b Y W i g ] ] X Y W j V e ^ V Z k ] X U V W _ ^ 9 @ A B C ; > < P > ; < : > 9 O m C n P M o B < ; M : 9 > ; P M : B < m L B M P O ? ; N ; = 9 > ; = B C C B O m B O : ; F I J K p F q H H L > : ; > B O = 9 > @ P : B 9 O P O M m L B M P O ? ; B O < L A A 9 > : 9 = I P @ < P > < B : ; M ; < B m O P : B 9 O < P > ; A > 9 o B M ; M B O : ; i X Z V X ] f b d r Z V e ] s Y Z t c Y Z p X g ] c a X a Z ] _ ] u ] U Y T e ] W X Y c X g ] v b ^ X Y c k ] X U V W _ ^ Y c h W X ] Z W V X b Y W V U h e T Y Z X V W d ] w I P @ < P > x B < ; y < ; z P O M N 9 9 { | } O M l ~ F E F H H ; M B : B 9 O } P < P @ ; O M ; M N n I ; < 9 C L : B 9 O J O O ; > M ; M B : B 9 O 9 = : ; z P O M N 9 9 { } B O ? 9 > A 9 > P : B O m : ; < ; p F P @ ; O M @ ; O : < } B < B O A > ; A P > P : B 9 O P O M Q B C C N ; P o P B C P N C ; B O F ~ H H H F l O ? ; ? 9 @ A C ; : ; M } : ; I J K w P O M P ? ? 9 @ A P O n B O m @ P A w < < 9 L C M N ; < L N @ B : : ; M : 9 : ; I P @ < P > K ; ? > ; : P > B P : 9 @ A B C ; > < H H H F < 9 L C M A > 9 o B M ; P O ; C ; ? : > 9 O B ? w K x 9 > M ? 9 A n 9 = : ; I J K P O M } Q ; > ; A 9 < < B N C ; } M B m B : P C ? 9 A B ; < 9 = P C C @ P A < ¡ ¢ ¡ £ £ ¤ ¥ ¦ § ¨ ¦ ¡ © 2 ¡ ¢ £ ¤ ¥ ¦ ¢ £ § ¨ ¢ © ¥ § ª « ¦ ¬ ­ ¢ ® ¯ .
    [Show full text]
  • Development and Demonstration of Systems Based Estuary Simulators
    General enquiries on this form should be made to: Defra, Science Directorate, Management Support and Finance Team, Telephone No. 020 7238 1612 E-mail: [email protected] SID 5 Research Project Final Report z Note In line with the Freedom of Information Act 2000, Defra aims to place the results Project identification of its completed research projects in the public domain wherever possible. The FD2117 SID 5 (Research Project Final Report) is 1. Defra Project code designed to capture the information on the results and outputs of Defra-funded 2. Project title research in a format that is easily Development and Demonstration of Systems-Based publishable through the Defra website. A Estuary Simulators (EstSim) SID 5 must be completed for all projects. • This form is in Word format and the boxes may be expanded or reduced, as 3. Contractor ABP Marine Environmental Research appropriate. organisation(s) Ltd (Lead Contractor) z ACCESS TO INFORMATION University of Plymouth; The information collected on this form will University College London; be stored electronically and may be sent HR Wallingford to any part of Defra, or to individual Deltares researchers or organisations outside Disovery Software Defra for the purposes of reviewing the project. Defra may also disclose the information to any outside organisation acting as an agent authorised by Defra to 4. Total Defra project costs £ 235,000 process final research reports on its behalf. Defra intends to publish this form (agreed fixed price) on its website, unless there are strong reasons not to, which fully comply with 5. Project: start date...............
    [Show full text]