Lecture Notes in Physical Oceanography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Report No. 21
Technical Report No. 21 Climatology of the HOPE-G Global Ocean - Sea Ice General Circulation Model Stephanie Legutke, Deutsches Klimarechenzentrum Ernst Maier-Reimer, Max-Planck-Institut für Meteorologie Bundesstraße 55, D-20146 Hamburg Edited by: Modellberatungsgruppe, DKRZ Hamburg, December 1999 ISSN 0940-9327 ABSTRACT The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8o grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed gen- eral circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmo- sphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. -
The Double Tidal Bulge
The Double Tidal Bulge If you look at any explanation of tides the force is indeed real. Try driving same for all points on the Earth. Try you will see a diagram that looks fast around a tight bend and tell me this analogy: take something round something like fig.1 which shows the you can’t feel a force pushing you to like a roll of sticky tape, put it on the tides represented as two bulges of the side. You are in the rotating desk and move it in small circles (not water – one directly under the Moon frame of reference hence the force rotating it, just moving the whole and another on the opposite side of can be felt. thing it in a circular manner). You will the Earth. Most people appreciate see that every point on the object that tides are caused by gravitational 3. In the discussion about what moves in a circle of equal radius and forces and so can understand the causes the two bulges of water you the same speed. moon-side bulge; however the must completely ignore the rotation second bulge is often a cause of of the Earth on its axis (the 24 hr Now let’s look at the gravitation pull confusion. This article attempts to daily rotation). Any talk of rotation experienced by objects on the Earth explain why there are two bulges. refers to the 27.3 day rotation of the due to the Moon. The magnitude and Earth and Moon about their common direction of this force will be different centre of mass. -
Chapter 5 Water Levels and Flow
253 CHAPTER 5 WATER LEVELS AND FLOW 1. INTRODUCTION The purpose of this chapter is to provide the hydrographer and technical reader the fundamental information required to understand and apply water levels, derived water level products and datums, and water currents to carry out field operations in support of hydrographic surveying and mapping activities. The hydrographer is concerned not only with the elevation of the sea surface, which is affected significantly by tides, but also with the elevation of lake and river surfaces, where tidal phenomena may have little effect. The term ‘tide’ is traditionally accepted and widely used by hydrographers in connection with the instrumentation used to measure the elevation of the water surface, though the term ‘water level’ would be more technically correct. The term ‘current’ similarly is accepted in many areas in connection with tidal currents; however water currents are greatly affected by much more than the tide producing forces. The term ‘flow’ is often used instead of currents. Tidal forces play such a significant role in completing most hydrographic surveys that tide producing forces and fundamental tidal variations are only described in general with appropriate technical references in this chapter. It is important for the hydrographer to understand why tide, water level and water current characteristics vary both over time and spatially so that they are taken fully into account for survey planning and operations which will lead to successful production of accurate surveys and charts. Because procedures and approaches to measuring and applying water levels, tides and currents vary depending upon the country, this chapter covers general principles using documented examples as appropriate for illustration. -
A Characterisation of the Marine Environment of the North-West Marine Region
A Characterisation of the Marine Environment of the North-west Marine Region A summary of an expert workshop convened in Perth, Western Australia, 5-6 September 2007 Prepared by the North-west Marine Bioregional Planning section, Marine and Biodiversity Division, Department of the Environment, Water, Heritage and the Arts © Commonwealth of Australia 2007. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non- commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts or the Minister for Climate Change and Water. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. 2 Background The Department of the Environment, Water, Heritage and the Arts (DEWHA) is developing a North-west Marine Bioregional Plan under the Environment Protection and Biodiversity Conservation Act 1999 (hereafter referred to as the Act). -
Tides and the Climate: Some Speculations
FEBRUARY 2007 MUNK AND BILLS 135 Tides and the Climate: Some Speculations WALTER MUNK Scripps Institution of Oceanography, La Jolla, California BRUCE BILLS Scripps Institution of Oceanography, La Jolla, California, and NASA Goddard Space Flight Center, Greenbelt, Maryland (Manuscript received 18 May 2005, in final form 12 January 2006) ABSTRACT The important role of tides in the mixing of the pelagic oceans has been established by recent experiments and analyses. The tide potential is modulated by long-period orbital modulations. Previously, Loder and Garrett found evidence for the 18.6-yr lunar nodal cycle in the sea surface temperatures of shallow seas. In this paper, the possible role of the 41 000-yr variation of the obliquity of the ecliptic is considered. The obliquity modulation of tidal mixing by a few percent and the associated modulation in the meridional overturning circulation (MOC) may play a role comparable to the obliquity modulation of the incoming solar radiation (insolation), a cornerstone of the Milankovic´ theory of ice ages. This speculation involves even more than the usual number of uncertainties found in climate speculations. 1. Introduction et al. 2000). The Hawaii Ocean-Mixing Experiment (HOME), a major experiment along the Hawaiian Is- An early association of tides and climate was based land chain dedicated to tidal mixing, confirmed an en- on energetics. Cold, dense water formed in the North hanced mixing at spring tides and quantified the scat- Atlantic would fill up the global oceans in a few thou- tering of tidal energy from barotropic into baroclinic sand years were it not for downward mixing from the modes over suitable topography. -
A Survey on Tidal Analysis and Forecasting Methods
Science of Tsunami Hazards A SURVEY ON TIDAL ANALYSIS AND FORECASTING METHODS FOR TSUNAMI DETECTION Sergio Consoli(1),* European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen, Via Enrico Fermi 2749, TP 680, 21027 Ispra (VA), Italy Diego Reforgiato Recupero National Research Council (CNR), Institute of Cognitive Sciences and Technologies, Via Gaifami 18 - 95028 Catania, Italy R2M Solution, Via Monte S. Agata 16, 95100 Catania, Italy. Vanni Zavarella European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen, Via Enrico Fermi 2749, TP 680, 21027 Ispra (VA), Italy Submitted on December 2013 ABSTRACT Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. -
Equilibrium Model of Tides Highly Idealized, but Very Instructive, View of Tides
Tides Outline • Equilibrium Theory of Tides — diurnal, semidiurnal and mixed semidiurnal tides — spring and neap tides • Dynamic Theory of Tides — rotary tidal motion — larger tidal ranges in coastal versus open-ocean regions • Special Cases — Forcing ocean water into a narrow embayment — Tidal forcing that is in resonance with the tide wave Equilibrium Model of Tides Highly Idealized, but very instructive, View of Tides • Tide wave treated as a deep-water wave in equilibrium with lunar/solar forcing • No interference of tide wave propagation by continents Tidal Patterns for Various Locations 1 Looking Down on Top of the Earth The Earth’s Rotation Under the Tidal Bulge Produces the Rise moon and Fall of Tides over an Approximately 24h hour period Note: This is describing the ‘hypothetical’ condition of a 100% water planet Tidal Day = 24h + 50min It takes 50 minutes for the earth to rotate 12 degrees of longitude Earth & Moon Orbit Around Sun 2 R b a P Fa = Gravity Force on a small mass m at point a from the gravitational attraction between the small mass and the moon of mass M Fa = Centrifugal Force on a due to rotation about the center of mass of the two mass system using similar arguments The Main Point: Force at and point a and b are equal and opposite. It can be shown that the upward (normal the the earth’s surface) tidal force on a parcel of water produced by the moon’s gravitational attraction is small (1 part in 9 million) compared to the downward gravitation force on that parcel of water caused by earth’s on gravitational attraction. -
New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] -
Ay 7B – Spring 2012 Section Worksheet 3 Tidal Forces
Ay 7b – Spring 2012 Section Worksheet 3 Tidal Forces 1. Tides on Earth On February 1st, there was a full Moon over a beautiful beach in Pago Pago. Below is a plot of the water level over the course of that day for the beautiful beach. Figure 1: Phase of tides on the beach on February 1st (a) Sketch a similar plot of the water level for February 15th. Nothing fancy here, but be sure to explain how you came up with the maximum and minimum heights and at what times they occur in your plot. On February 1st, there was a full the Moon over the beautiful beaches of Pago Pago. The Earth, Moon, and Sun were co-linear. When this is the case, the tidal forces from the Sun and the Moon are both acting in the same direction creating large tidal bulges. This would explain why the plot for February 1st showed a fairly dramatic difference (∼8 ft) in water level between high and low tides. Two weeks later, a New Moon would be in the sky once again making the Earth, Moon, and Sun co-linear. As a result, the tides will be at roughly the same times and heights (give or take an hour or so). (b) Imagine that the Moon suddenly disappeared. (Don’t fret about the beauty of the beach. It’s still pretty without the moon.) Then how would the water level change? How often would tides happen? (For the level of water change, calculate the ratio of the height of tides between when moon exists and when moon doesn’t exist.) Sketch a plot of the water level on the figure. -
Oceanography
Oceanography Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS أ . را اي Chapter 7: Circulation Patterns and Ocean Currents Circulation Patterns and Ocean Currents 7.1 Density -Driven Circulation 7.2 Thermohaline Circulation 7.3 The Layered Oceans The Atlantic Ocean The Arctic Ocean The Pacific Ocean The Indian Ocean 7.4 Measuring Water Properties 7.5 Wind -Driven Water Motion 7.6 Current Flow and Gyres 7.7 Ocean Surface Currents The Pacific Ocean The Atlantic Ocean The Arctic Ocean The Indian Ocean 7.8 Open -Ocean Convergence and Divergence 7.9 Coastal Upwelling and Downwelling 7.10 Eddies 7.11 Measuring the Currents 7.12 Energy Sources Thermal Energy Harnessing the Currents Prepared by: Raed M.Khaldi Chapter 7: Circulation Patterns and Ocean Currents Circulation Patterns and Ocean Currents Major Concept (I) The oceans are not a single, homogeneous body of water. They actually consist of a number of distinct water masses characterized by different densities due to variations in temperature, salinity, and pressure. There is relatively little mixing between water masses. Different water masses can be identified in the oceans on the basis of changes in salinity and/or temperature. Changes in salinity, temperature, and pressure cause differences in density, resulting in the layering we see in seawater. The individual characteristics of water masses are determined at the surface by such processes as: a. the gain and loss of heat, Prepared by: Raed M.Khaldi Chapter 7: Circulation Patterns and Ocean Currents b. evaporation and precipitation patterns, of sea ice, and ذون c. the freezing and thawing d. -
Tidal Manual Part-I Jan 10/03
CANADIAN TIDAL MANUAL CANADIAN TIDAL MANUAL i ii CANADIAN TIDAL MANUAL Prepared under contract by WARREN D. FORRESTER, PH.D.* DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1983 *This manual was prepared under contract (FP 802-1-2147) funded by The Canadian Hydrographic Service. Dr. Forrester was Chief of Tides, Currents, and Water Levels (1975-1980). Mr. Brian J. Tait, presently Chief of Tides, Currents, and Water Levels, Canadian Hydrographic service, acted as the Project Authority for the contract. iii The Canadian Hydrographic Service produces and distributes Nautical Charts, Sailing Directions, Small Craft Guides, Tide Tables, and Water Levels of the navigable waters of Canada. Director General S.B. MacPhee Director, Navigation Publications H.R. Blandford and Maritime Boundaries Branch Chief, Tides, Currents and Water Levels B.J. Tait ©Minister of Supply and Services Canada 1983 Available by mail from: Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que., Canada KIA OS9 or through your local bookseller or from Hydrographic Chart Distribution Office, Department of Fisheries and Oceans, P.O. Box 8080, 1675 Russell Rd., Ottawa, Ont. Canada KIG 3H6 Canada $20.00 Cat. No. Fs 75-325/1983E Other countries $24.00 ISBN 0-660-11341-4 Correct citation for this publication: FORRESTER, W.D. 1983. Canadian Tidal Manual. Department of Fisheries and Oceans, Canadian Hydrographic Service, Ottawa, Ont. 138 p. iv CONTENTS Preface ...................................................................................................................................... -
Lecture 1: Introduction to Ocean Tides
Lecture 1: Introduction to ocean tides Myrl Hendershott 1 Introduction The phenomenon of oceanic tides has been observed and studied by humanity for centuries. Success in localized tidal prediction and in the general understanding of tidal propagation in ocean basins led to the belief that this was a well understood phenomenon and no longer of interest for scientific investigation. However, recent decades have seen a renewal of interest for this subject by the scientific community. The goal is now to understand the dissipation of tidal energy in the ocean. Research done in the seventies suggested that rather than being mostly dissipated on continental shelves and shallow seas, tidal energy could excite far traveling internal waves in the ocean. Through interaction with oceanic currents, topographic features or with other waves, these could transfer energy to smaller scales and contribute to oceanic mixing. This has been suggested as a possible driving mechanism for the thermohaline circulation. This first lecture is introductory and its aim is to review the tidal generating mechanisms and to arrive at a mathematical expression for the tide generating potential. 2 Tide Generating Forces Tidal oscillations are the response of the ocean and the Earth to the gravitational pull of celestial bodies other than the Earth. Because of their movement relative to the Earth, this gravitational pull changes in time, and because of the finite size of the Earth, it also varies in space over its surface. Fortunately for local tidal prediction, the temporal response of the ocean is very linear, allowing tidal records to be interpreted as the superposition of periodic components with frequencies associated with the movements of the celestial bodies exerting the force.