Selaginella Lepidophylla at Various Hydration States Provides New Insights Into the Mechanistic Basis of Desiccation Tolerance

Total Page:16

File Type:pdf, Size:1020Kb

Selaginella Lepidophylla at Various Hydration States Provides New Insights Into the Mechanistic Basis of Desiccation Tolerance Molecular Plant • Volume 6 • Number 2 • Pages 369–385 • March 2013 RESEARCH ARTICLE Metabolomic Profiling in Selaginella lepidophylla at Various Hydration States Provides New Insights into the Mechanistic Basis of Desiccation Tolerance Abou Yobia, Bernard W.M. Woneb, Wenxin Xuc, Danny C. Alexanderc, Lining Guoc, John A. Ryalsc, Melvin J. Oliverd and John C. Cushmana,1 a Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557–0330, USA b Department of Biological Sciences, University of Nevada, Reno, NV 89557–0314, USA c Metabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USA d US Department of Agriculture—Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MI 65211, USA ABSTRACT Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved des- iccation tolerance (DT) or the ability to ‘resurrect’ from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS2 platforms. A total of 251 metabolites including 167 10.1093/mp/sss155 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced con- stitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several poly- unsaturated fatty acids were more abundant in the hydrated states, suggesting that these compounds likely help maintain membrane fluidity during dehydration. Lastly, S. lepidophylla contained seven unnamed compounds that displayed twofold or greater abundance in dry or rehydrating states, suggesting that these compounds might play adaptive roles in DT. Key words: abiotic/environmental stress; mass spectrometry; metabolomics; oxidative/photooxidative stress; desiccation tolerance; Selaginella. INTRODUCTION coal (Beerling, 2002; Gensel, 2008). Today, extant lycophytes comprise a single monophyletic clade of just over 1000 species. Lycophytes represent a key vascular plant lineage that includes the Lycopodiaceae (club mosses), the Isoetaceae (quillworts), and the Selaginellaceae (spike mosses) that arose over 400 1 To whom correspondence should be addressed. E-mail [email protected], million years ago during the Silurian and dominated the tel. +1 775 784 1918, fax +1 775 784 1419. Earth’s flora from the Devonian through the Carboniferous to © The Author 2013. Published by the Molecular Plant Shanghai Editorial the end of the Permian (Friedman, 2011). Dramatic decreases Office in association with Oxford University Press on behalf of CSPB and in atmospheric CO2 concentrations occurred during these IPPE, SIBS, CAS. Paleozoic epochs and the resulting decomposed flora now doi:10.1093/mp/sss155, Advance Access publication 13 December 2012 provide a major source of energy to mankind in the form of Received 9 August 2012; accepted 6 December 2012 370 Yobi et al. • Rehydration/Dehydration Metabolomics Within the spike mosses, the single genus Selaginella con- S. tamariscina (Zhang et al., 2011). Antimicrobial alkaloids tains about 700 species that now exploit a diverse array of arc- have also been characterized from S. moellendorfii (Wang tic, temperate, tropical, and semi-arid habitats (Banks, 2009). et al., 2009). Although most spike moss species are susceptible to desicca- Despite their role in traditional medicine, comprehensive tion, a few species have evolved the ability to survive vegeta- metabolite studies on Selaginella species have been limited. tive tissue drying, defined as the near complete loss (80%–95%) Previous studies have characterized only a few, highly abun- of protoplasmic water (Tuba et al., 1998), and referred to as dant compounds such as lignin (White and Towers, 1967) desiccation tolerance (DT) (Oliver et al., 2000a). Such species and trehalose (White and Towers, 1967; Adams et al., 1990; include S. lepidophylla (Iturriaga et al., 2006), S. bryopteris Iturriaga et al., 2000; Vázquez-Ortíz and Valenzuela-Soto, (Deeba et al., 2009), and S. tamariscina (Wang et al., 2010). 2004; Liu et al., 2008). A recent comparative study examined The DT trait is relatively common in algae, lichens, and mosses the major metabolic differences between the desiccation- (Alpert, 2006; Wood, 2007). However, among vascular plants, sensitive (DS) S. moellendorffi and the DT S. lepidophylla. DT is extremely rare; only about ~0.15% of species being are Several sugars (e.g. glucose, sucrose), sugar alcohols (e.g. known as resurrection plants (Oliver et al., 2000a; Porembski inositol-1-phosphate, myo-inositol, mannitol), and betaine, and Barthlott, 2000; Proctor and Pence, 2002; Proctor and which act as osmoprotectants or hydroxyl radical scavengers, Tuba, 2002). were more abundant in S. lepidophylla at 100% and 50% In terms of response to desiccation, resurrection mosses relative water contents (RWC) (Yobi et al., 2012). In addition, (e.g. bryophytes) rely on a combination of constitutive pro- a variety of γ-glutamyl amino acids, which are thought to tection and inducible repair mechanisms that permit dehy- participate in reactive oxygen species (ROS) detoxification, dration to occur within minutes while maintaining their and possible nitrogen remobilization following rehydration, photosynthetic apparatus relatively intact (Tuba et al., 1998; were markedly higher in S. lepidophylla. A suite of second- Oliver et al., 2000b, 2005). In contrast, DT angiosperms ary compounds, such the flavonols apigenin, luteolin, and require a much longer time to dehydrate and still remain via- naringenin, also accumulated to greater concentrations in ble, presumably to allow sufficient time for mobilizing adap- S. lepidophylla, where they are thought to mitigate ultravi- tive responses and accumulation of key metabolites, such as olet light-induced free radical damage as well as aid in the sucrose, to survive in the desiccated state (Bernacchia et al., stabilization of membrane structures (Hoekstra et al., 2001). 1996; Oliver et al., 2000a). In contrast, lycophytes represent Lastly, polyunsaturated fatty acids were significantly more a plant lineage that lies between mosses and angiosperms abundant in S. lepidophylla, possibly reflecting a need for (Oliver et al., 2000a) and thus might be expected to exhibit greater membrane fluidity in the dry state (Yobi et al., 2012). both constitutive and inducible adaptive mechanisms of DT. The exact mechanisms used to withstand DT have not been Many monocot DT species lose their photosynthetic appara- well investigated in lycophytes. To better understand the met- tus, at least partially, during the dehydration process (Farrant, abolic basis of DT at very low RWCs within the Selaginellaceae, 2000; Proctor and Tuba, 2002), whereas many eudicot species the metabolome of S. lepidophylla was compared over a do not (Georgieva et al., 2009). DT Selaginella species retain five-stage, rehydration/dehydration cycle using an unbiased, their chlorophyll (and presumably their photosynthetic struc- high-throughput metabolomics platform. This temporal study tures) during desiccation (Pandey et al., 2010). revealed that S. lepidophylla employs a combination of diverse Members of the Selaginellales are well known for their constitutive and inducible metabolic strategies to survive and use in traditional folk medicine. For example, S. lepidophylla recover from desiccation of vegetative tissues. has been used as a diuretic, and as a treatment for urinary and kidney infections, chronic gastritis, and gastric carci- RESULTS AND DISCUSSION noma (Ruiz-Bustos et al., 2009; Robles-Zepeda et al., 2011). Extracts of S. tamariscina (Ahn et al., 2006; Lee et al., 2011; Metabolomics approaches can provide a detailed Ha et al., 2012), S. doederleinii (Liu et al., 2011), and S. bry- understanding of an organism’s phenotype (Schauer and opteris (Mishra et al., 2011) have been used as anti-cancer Fernie, 2006; Cascante and Marin, 2008), and disposition therapeutics. Total flavonoids from S. tamariscina have also towards and response to environmental stresses (Sanchez been employed as an anti-diabetic treatment (Zheng et al., et al., 2008; Shulaev et al., 2008; Urano et al., 2010). Recent
Recommended publications
  • Les Gesneriacées Européennes
    Des Gesnériacées aussi en Europe ! Un air de famille… Les cinq espèces Des plantes capables Des datations moléculaires de reviviscence confirment une ancienne hypothèse Les Gesnériacées européennes du genre Ramonda ont une physionomie très sem- de Gesnériacées Qualité peu fréquente chez les plantes à fleurs, les Gesnériacées Depuis la fin du 19e siècle déjà, divers botanistes avaient estimé La famille des Gesnériacées compte environ 3300 espèces, essen- blable à une «tropicale de salon» bien européennes européennes ont une capacité élevée à se réhydrater après un que les Gesnériacées européennes ont une probable origine tiellement répandues dans les régions tropicales. Cependant, cinq connue, le Saintpaulia ionantha, lointaine 1 important dessèchement. Elles sont ainsi bien adaptées aux tertiaire. Mais ce n’est que tout récemment que des datations espèces réparties en trois genres ont une distribution isolée au sud de «cousine» africaine originaire des Monts changements climatiques, ce qui leur a permis de résister aux moléculaires (horloge biologique) ont permis de confirmer cette l’Europe, dans les Pyrénées et dans les Balkans. Usambara en Tanzanie. vicissitudes durant de nombreux millions d’années. hypothèse. En effet, l’origine des Gesnériacées européennes Les cinq Gesnériacées européennes prospèrent en basse et est maintenant datée d’environ 30 millions d’années, durant 1 Haberlea rhodopensis * moyenne montagne, dans les fissures de rochers généralement l’Oligocène, époque à laquelle elles se séparent de Gesnéria- Rhodope et Grand Balkan ombragés, le plus souvent calcaires (mais parfois aussi sur ser- cées asiatiques (voir Petrova & al. (2015), International Journal (Bulgarie et Grèce) 2 pentine ou sur roches siliceuses). of Plant Sciences 176: 499–514).
    [Show full text]
  • Selaginellaceae: Traditional Use, Phytochemistry and Pharmacology
    MS Editions BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 19 (3): 247 - 288 (2020) © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión | Review Selaginellaceae: traditional use, phytochemistry and pharmacology [Selaginellaceae: uso tradicional, fitoquímica y farmacología] Fernanda Priscila Santos Reginaldo, Isabelly Cristina de Matos Costa & Raquel Brandt Giordani College of Pharmacy, Pharmacy Department. University of Rio Grande do Norte, Natal, RN, Brazil. Contactos | Contacts: Raquel Brandt GIORDANI - E-mail address: [email protected] Abstract: Selaginella is the only genus from Selaginellaceae, and it is considered a key factor in studying evolution. The family managed to survive the many biotic and abiotic pressures during the last 400 million years. The purpose of this review is to provide an up-to-date overview of Selaginella in order to recognize their potential and evaluate future research opportunities. Carbohydrates, pigments, steroids, phenolic derivatives, mainly flavonoids, and alkaloids are the main natural products in Selaginella. A wide spectrum of in vitro and in vivo pharmacological activities, some of them pointed out by folk medicine, has been reported. Future studies should afford valuable new data on better explore the biological potential of the flavonoid amentoflavone and their derivatives as chemical bioactive entities; develop studies about toxicity and, finally, concentrate efforts on elucidate mechanisms of action for biological properties already reported. Keywords: Selaginella; Natural Products; Overview. Resumen: Selaginella es el único género de Selaginellaceae, y se considera un factor clave en el estudio de la evolución. La familia logró sobrevivir a las muchas presiones bióticas y abióticas durante los últimos 400 millones de años.
    [Show full text]
  • Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective
    REVIEW ARTICLE Rec. Nat. Prod. X:X (2021) XX-XX Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective Mohd Adnan 1*, Arif Jamal Siddiqui 1, Arshad Jamal 1, Walid Sabri Hamadou 1, Amir Mahgoub Awadelkareem 2, Manojkumar Sachidanandan 3 and Mitesh Patel 4 1Department of Biology, College of Science, University of Ha’il, Ha’il, P O Box 2440, Saudi Arabia 2Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia 3Department of Oral Radiology, College of Dentistry, University of Hail, Hail, PO Box 2440, Saudi Arabia 4Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India (Received November 26, 2020; Revised January 29, 2021; Accepted January 31, 2021) Abstract: Different species of the genus Selaginella are exploited for various ethnomedicinal purposes around the globe; mainly to cure fever, jaundice, hepatic disorders, cardiac diseases, cirrhosis, diarrhea, cholecystitis, sore throat, cough of lungs, promotes blood circulation, removes blood stasis and stops external bleeding after trauma and separation of the umbilical cord. Though, high content of various phytochemicals has been isolated from Selaginella species, flavonoids have been recognized as the most active component in the genus. Crude extract and different bioactive compounds of this plant have revealed various in vitro bioactivities such as, antimicrobial, antiviral, anti-diabetic, anti-mutagenic, anti-inflammatory, anti-nociceptive, anti-spasmodic, anticancer and anti-Alzheimer. However, more studies into the pharmacological activities are needed, since none of the professed bioactivity of this plant have ever been fully evaluated.
    [Show full text]
  • Show Schedules 2012 Ver Finale
    119. 1 pan rock plant native to the Southern Hemisphere 120. 1 pan dwarf shurb THE SCOTTISH ROCK GARDEN CLUB 121. 1 pan rock plant raised from seed by the exhibitor. Date of sowing to be stated. Botanical notes permitted, AGS note 23(e) SECTION III Open to Amateur Members of AGS and SRGC who have not won an AGS Bronze Merit Medal or more than ten First Prizes at Shows run by either Society prior to 1st January 2011. Pan size not to exceed 19 cm outside diameter 130. 3 pans rock plants, distinct 131. 1 pan rock plant in flower 132. 1 pan Gentiana 133. 1 pan Cyclamen 134. 1 pan bulbous plant 135. 1 pan rock plant native to the Southern Hemisphere 136. 1 pan rock plant native to the Northern Hemisphere 137. 1 pan rock plant for foliage effect 138. 1 pan dwarf shrub or conifer 139. 1 pan rock plant. For exhibitors who have never won a first prize at an AGS or SRGC National show SHOW SCHEDULES 2012 DUNBLANE EARLY BULB DISPLAY 18th February* BLACKPOOL SHOW 17th March* STIRLING SHOW 24th March† New Location - Show this Year is in KINCARDINE NORTHUMBERLAND 40th ANNIVERSARY SHOW, HEXHAM 31st March EDINBURGH & THE LOTHIANS SHOW 14th April* PERTH SHOW 21st April HIGHLAND SHOW, NAIRN 28th April GLASGOW SHOW 5th May* ABERDEEN SHOW 19th May* GARDENING SCOTLAND (Joint Rock Only) 2nd June* LATE BULB DISPLAY, RBGE 8th September DISCUSSION WEEKEND, DUMFRIES 29th - 30th September NEWCASTLE SHOW 13th October* AGM 10th November† *Joint Rock Garden Plant Committee meetings 48 †Photographic/Art Competition SHOWS 2012 SHOW RULES 1.
    [Show full text]
  • Comparative Transcriptome Analysis Suggests Convergent Evolution Of
    Alejo-Jacuinde et al. BMC Plant Biology (2020) 20:468 https://doi.org/10.1186/s12870-020-02638-3 RESEARCH ARTICLE Open Access Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species Gerardo Alejo-Jacuinde1,2, Sandra Isabel González-Morales3, Araceli Oropeza-Aburto1, June Simpson2 and Luis Herrera-Estrella1,4* Abstract Background: Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. Results: Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. Conclusions: Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT.
    [Show full text]
  • Desiccation Tolerance: Phylogeny and Phylogeography
    Desiccation Tolerance: Phylogeny and Phylogeography BioQUEST Workshop 2009 Resurrection Plants Desiccation tolerant Survive dehydration Survive in dormant state for extended time period Survive rehydration Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) Figure 2. Selaginella lepidophylla http://en.wikipedia.org/wiki/ File:Rose_of_Jericho.gif Desiccation Issues Membrane integrity Protein structure Generation of free radicals Rascia, N, La Rocca, N. 2005 Critical Reviews in Plant Sciences Solutions Repair upon hydration Prevent damage during dehydration Production/accumulation of replacement solutes Inhibition of photosynthesis http://www.cbs.dtu.dk/staff/dave/roanoke/elodeacell.jpg Evolution of Desiccation Tolerance From Oliver, et al 2000. Plant Ecology Convergent Evolution Among Vascular Plants From Oliver, et al 2000. Plant Ecology Desiccation Tolerance in Vascular Plants Seeds Pollen Spores Osmotic stress Desertification 40% of Earth’s surface 38% of population Low productivity Lack of water Depletion of soil Loss of soil Delicate system Using Evolutionary Relationships to Identify Genes for Crop Enhancement If desiccation sensitive plants have retained genes involved in desiccation tolerance, perhaps expression of those genes can be genetically modified to enhance desiccation tolerance. Expression patterns in dehydratingTortula and Xerophyta Michael Luth Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) ? Methods Occurrence data for Anastatica hierochuntic: o Downloaded from the Global Biodiversity Information Facility (gbif.org). o Of 127 available occurrence points, only 68 were georeferenced with latitude and longitude information. Environmental layers: Precipitation and temperature from the IPCC climate dataset Niche Modeling: Maximum Entropy (Maxent) Maxent principle is to estimate the probability distribution such as the spatial distribution of a species.
    [Show full text]
  • The Resurrection Genome of Boea Hygrometrica: a Blueprint for Survival of Dehydration
    The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration Lihong Xiaoa, Ge Yanga, Liechi Zhanga, Xinhua Yangb, Shuang Zhaob, Zhongzhong Jia, Qing Zhoub, Min Hub, Yu Wanga, Ming Chenb,YuXua, Haijing Jina, Xuan Xiaoa, Guipeng Hua, Fang Baoa, Yong Hua, Ping Wana, Legong Lia, Xin Dengc, Tingyun Kuangd, Chengbin Xiange, Jian-Kang Zhuf,g,1, Melvin J. Oliverh,1, and Yikun Hea,1 aSchool of Life Sciences, Capital Normal University, Beijing 100048, China; bBeijing Genomics Institute-Shenzhen, Shenzhen 518083, China; cKey Laboratory of Plant Resources and dKey Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; eSchool of Life Sciences, University of Science and Technology of China, Hefei 230022, China; fShanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 200032, China; gDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and hPlant Genetics Research Unit, Midwest Area, Agricultural Research Service, United State Department of Agriculture, University of Missouri, Columbia, MO 65211 Contributed by Jian-Kang Zhu, March 26, 2015 (sent for review February 10, 2015; reviewed by Sagadevan G. Mundree and Andrew J. Wood) “Drying without dying” is an essential trait in land plant evolution. plants (5, 8), and a system approach is contemplated (4), efforts Unraveling how a unique group of angiosperms, the Resurrection are hampered by the lack of a sequenced genome for any of the Plants, survive desiccation of their leaves and roots has been ham- resurrection plants. To fill this critical gap, we sequenced the pered by the lack of a foundational genome perspective.
    [Show full text]
  • David Millward's Ramonda Nathaliae Took the Top Award in Aberdeen. I
    David Millward’s Ramonda nathaliae took the top award in Aberdeen. I was unable to get to Aber- deen again this year but from the photograph tak- en by Stan da Prato I can tell that this was a mag- nificent plant, try counting the flowers. I stopped at 100! In my garden I am happy if my Ramondas flower at all. David’s plant also has perfect leaves. Mine have leaves which turn brown at the hint of sunshine. It also looks good all from all sides. This degree of perfection is a tribute to David’s skill as a cultivator. Well done David I was interested to see that David’s superb plant has been raised from seed col- lected by Jim & Jenny Archi- bald. According to Jim’s field notes which are on the SRGC web site, it was collected as Ramonda serbica, [difficult to tell the difference out of flow- er] in the Radika Valley and Gorge in ‘Yugoslavian Mac- edonia’, along with Lilium martagon and Sempervivum heuffellii Ramonda nathaliae grows in Serbia and Macedonia, mostly in the east of both countries. Where- as most flowers in Gesneriaceae have of five lobes in their flower, Ramonda nathaliae has two fused petals which give the overall appearance of four lobes (usually), making it distinctive among Gesneriad flowers. The Ramonda nathaliae flower is considered a symbol of the Serbian Army’s struggle during World War I. The plant was scientifically described in 1884 from speci- mens growing around Niš, by Sava Petrović and Josif Pančić, who named it after Queen Natalija Obrenović of Serbia.
    [Show full text]
  • Rock Garden Quarterly
    ROCK GARDEN QUARTERLY VOLUME 53 NUMBER 1 WINTER 1995 COVER: Aquilegia scopulorum with vespid wasp by Cindy Nelson-Nold of Lakewood, Colorado All Material Copyright © 1995 North American Rock Garden Society ROCK GARDEN QUARTERLY BULLETIN OF THE NORTH AMERICAN ROCK GARDEN SOCIETY formerly Bulletin of the American Rock Garden Society VOLUME 53 NUMBER 1 WINTER 1995 FEATURES Alpine Gesneriads of Europe, by Darrell Trout 3 Cassiopes and Phyllodoces, by Arthur Dome 17 Plants of Mt. Hutt, a New Zealand Preview, by Ethel Doyle 29 South Africa: Part II, by Panayoti Kelaidis 33 South African Sampler: A Dozen Gems for the Rock Garden, by Panayoti Kelaidis 54 The Vole Story, by Helen Sykes 59 DEPARTMENTS Plant Portrait 62 Books 65 Ramonda nathaliae 2 ROCK GARDEN QUARTERLY VOL. 53:1 ALPINE GESNERIADS OF EUROPE by Darrell Trout J. he Gesneriaceae, or gesneriad Institution and others brings the total family, is a diverse family of mostly Gesneriaceae of China to a count of 56 tropical and subtropical plants with genera and about 413 species. These distribution throughout the world, should provide new horticultural including the north and south temper• material for the rock garden and ate and tropical zones. The 125 genera, alpine house. Yet the choicest plants 2850-plus species include terrestrial for the rock garden or alpine house and epiphytic herbs, shrubs, vines remain the European genera Ramonda, and, rarely, small trees. Botanically, Jancaea, and Haberlea. and in appearance, it is not always easy to separate the family History Gesneriaceae from the closely related The family was named for Konrad Scrophulariaceae (Verbascum, Digitalis, von Gesner, a sixteenth century natu• Calceolaria), the Orobanchaceae, and ralist.
    [Show full text]
  • Topic 11: Land Plants, Part 1 (Bryophytes, Ferns & Fern Allies)
    BIOL 221 – Concepts of Botany Spring 2008 Topic 11: Land Plants, part 1 (Bryophytes, Ferns & Fern Allies) A. Objectives for today’s lab . 1. Get to know 2 of the three groups of bryophytes (liverworts & mosses). 2. Get to know some of the Ferns and Fern Allies, which include some of the earliest lineages of vascular plants (represented today by Psilotum, Lycopodium, Equisetum, & Ferns—Boston (sword) fern, Staghorn fern) 3. Think about the morphological/anatomical innovations that are represented by each. Place these in the context of the origins of leaves, roots, and the fossil record and green plant phylogeny. 4. Know the general sequence of appearance: Green Algae ==> Bryophyte Lineages ==> Lycopod & Horsetail Lineages ==> Fern Lineages ==> Seed Plants (Gymnosperms & Angiosperms) B. Green Plant Phylogeny . Concepts of Botany, (page 1 of 12) C. NonVascular Free-Sporing Land Plants (Bryophytes) . C1. Liverworts . a. **LIVING MATERIAL**: Marchantia &/or Conacephalum (thallose liverworts). The conspicuous green plants are the gametophytes. With a dissecting scope, observe the polygonal outlines of the air chambers. On parts of the thallus are drier, it is easy to see the pore opening to the chamber. These are not stomata. They cannot open and close and the so the thallus can easily dry out if taking from water. Note the gemmae cups on some of that thalli. Ask your instructor what these are for. DRAW THEM TOO. b. **SLIDES**. Using the compound microscope, make observations of the vegetative and reproductive parts of various liverwort species. Note the structure of the air-chambers and the photosynthetic cells inside on the Marchantia sections! Concepts of Botany, (page 2 of 12) C2.
    [Show full text]
  • Induced Expression of Xerophyta Viscosa Xvsap1 Gene Greatly Impacts Tolerance to Drought Stress in Transgenic Sweetpotato
    bioRxiv preprint doi: https://doi.org/10.1101/603910; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Induced expression of Xerophyta viscosa XvSap1 gene greatly impacts tolerance to 2 drought stress in transgenic sweetpotato 3 4 Wilton Mbinda1*, Christina Dixelius2, Richard Oduor3 5 6 7 8 1Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya 9 10 2Department of Plant Biology, Uppsala BioCenter, Linnéan Center for Plant Biology, 11 Swedish University of Agricultural Sciences, Uppsala, Sweden 12 13 3Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya 14 15 *Corresponding author: Wilton Mbinda; Email: [email protected]; Phone: 16 254722723950 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/603910; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 29 Abstract 30 Key message Drought stress in sweetpotato could be overcome by introducing XvSap1 31 gene from Xerophyta viscosa. 32 33 Abstract. Drought stress often leads to reduced yields and is perilous delimiter for expanded 34 cultivation and increased productivity of sweetpotato. Cell wall stabilization proteins have 35 been identified to play a pivotal role in mechanical stabilization during desiccation stress 36 mitigation.
    [Show full text]
  • Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
    International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly.
    [Show full text]