A New Formal Classification of Gesneriaceae Is Proposed

Total Page:16

File Type:pdf, Size:1020Kb

A New Formal Classification of Gesneriaceae Is Proposed Selbyana 31(2): 68–94. 2013. ANEW FORMAL CLASSIFICATION OF GESNERIACEAE ANTON WEBER* Department of Structural and Functional Botany, Faculty of Biodiversity, University of Vienna, A-1030 Vienna, Austria. Email: [email protected] JOHN L. CLARK Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA. MICHAEL MO¨ LLER Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, U.K. ABSTRACT. A new formal classification of Gesneriaceae is proposed. It is the first detailed and overall classification of the family that is essentially based on molecular phylogenetic studies. Three subfamilies are recognized: Sanangoideae (monospecific with Sanango racemosum), Gesnerioideae and Didymocarpoideae. As to recent molecular data, Sanango/Sanangoideae (New World) is sister to Gesnerioideae + Didymocarpoideae. Its inclusion in the Gesneriaceae amends the traditional concept of the family and makes the family distinctly older. Subfam. Gesnerioideae (New World, if not stated otherwise with the tribes) is subdivided into five tribes: Titanotricheae (monospecific, East Asia), Napeantheae (monogeneric), Beslerieae (with two subtribes: Besleriinae and Anetanthinae), Coronanthereae (with three subtribes: Coronantherinae, Mitrariinae and Negriinae; southern hemisphere), and Gesnerieae [with five subtribes: Gesneriinae, Gloxiniinae, Columneinae (5the traditional Episcieae), Sphaerorrhizinae (5the traditional Sphaerorhizeae, monogeneric), and Ligeriinae (5the traditional Sinningieae)]. In the Didymocarpoideae (almost exclusively Old World, especially E and SE Asia/Malesia) two tribes are recognized: Epithemateae [with four small, but morphologically and genetically very distinctive subtribes: Loxotidinae (monogeneric with Rhynchoglossum), Monophyllaeinae, Loxoniinae and Epithematinae (monogeneric)] and Trichosporeae (the earliest name at tribal rank for the ‘‘Didymocarpoid Gesneriaceae’’). The last is subdivided into ten subtribes: Jerdoniinae (monospecific), Corallodiscinae (monogeneric), Tetraphyllinae (monogeneric), Leptoboeinae, Ramondinae (Europe), Litostigminae (monogeneric), Streptocarpinae (Africa and Madagascar), Didissandrinae, Loxocarpinae and Didymocarpinae. Didymocarpinae is the largest subtribe (ca. 30 genera and .1600 species) and still requires intensive study. It includes the most speciose genera such as Cyrtandra, Aeschynanthus, Agalmyla, Didymocarpus, Henckelia, Codonoboea, Oreocharis and Primulina and the types of the traditional tribes Didymocarpeae, Trichosporeae and Cyrtandreae. Key words: Gesneriaceae, classification, traditional classifications, molecular systematics INTRODUCTION Since Weber’s (2004a) treatment, many more molecular studies have been published (reviewed in The incorporation of molecular methods into Mo¨ller & Clark, 2013). In the New World plant systematics over the last two decades has Gesneriaceae a new tribe has been erected (Roalson dramatically changed our understanding of the et al. 2005b), and in the Old World Gesneriaceae a phylogenetic diversification of angiosperms. Not much more detailed picture of the informal groups unexpectedly, this applies also to the family previously recognized emerged through the work of Gesneriaceae. The last classification, based on M. Mo¨ller and his collaborators (e.g., Mo¨ller et al. morphological (and with respect to the Neotropical 2009, 2011a; Weber et al. 2011a). This paper is the Gesneriaceae also cytological) characters was that of first to propose a comprehensive classification of the Burtt and Wiehler (1995). This was followed by the entire family based on molecular phylogenetic treatment of the family in Kubitzki’s ‘‘Families and studies and to formalize a rank-based system from genera of vascular plants’’ by Weber (2004a). In the published phylogenies. latter work, allowance was made for the molecular data then available (partly unpublished and pub- lished later by Mo¨ller et al. 2009). This resulted in an DO WE NEED FORMAL RANK-BASED abandonment of the traditional tribes hitherto CLASSIFICATIONS? recognized in the Old World Gesneriaceae. For a provisional subdivision of the ‘‘Didymocarpoid The answer is: not necessarily. Formal classifi- Gesneriaceae,’’ informal group names (e.g., ‘‘Basal cations with ranks indicated by name endings are Asiatic genera’’) were used instead of formal names. simply a well-established custom. The modern language of our discipline consists of precise and * Corresponding author. easily comprehensible communication via phylograms 68 Selbyana selb-31-02-02.3d 10/12/13 04:38:30 68 WEBER ET AL.: NEW CLASSIFICATION OF GESNERIACEAE 69 or cladograms (‘‘phylogenetic trees’’). Trees are Lamiales. The inflorescences are said to be graphical representations (branching diagrams) of racemose, and thus are abnormal in the Old the relationships of taxa and can do without names World Gesneriaceae. Burtt (1963: 217) wrote that that reflect the hierarchical order. Where complex the genus ‘‘is at present best regarded as a slightly diversification patterns exist, they provide more anomalous member of Scrophulariaceae, … whose precise information than formal classifications limits need a thorough overhaul.’’ In the meantime, (with a limited number of ranks) could ever do. Scrophulariaceae have been split into many Traditional rank-based classifications date back families of their own (e.g., Olmstead 2001, to a time when nobody could imagine how precise Albach et al. 2005, Oxelman et al. 2005, Tank et phylogenetic reconstructions would ever be possi- al. 2006, APG III 2009, Scha¨ferhoff et al. 2010). ble. Therefore, only few (three) formal ranks Fischer (2004) referred Brookea to the between family and genus have been established: Scrophulariaceae-‘‘Stilbaceae.’’ To the best of our subfamily, tribe and subtribe. Reveal (1995 onw, knowledge there is no molecular data available for edition 2011; 2010) has suggested three additional the genus (see also Wolfe et al. 2006). Brookea is ranks be implemented below the family level clearly in need of a detailed morphological and (supersubfamily, supertribe, supersubtribe). In ear- molecular study. At present, there is no specific lier versions of this manuscript we attempted to evidence that it does belong to Gesneriaceae. introduce some of these new ranks. However, due to conflicting or incomplete molecular evidence, Charadrophila Marloth. The systematic position the relationships of the subtribes within the large of this South African monotypic genus has been tribes Gesnerieae and Trichosporeae (in the new disputed since its establishment by Marloth (1899), sense, see below) proved ambiguous. Therefore, we having been moved between Scrophulariaceae and refrain from establishing a complex hierarchical Gesneriaceae. Based on a detailed morphological classification beyond the traditional ranks. and ontogenetical study, Weber (1989) reached the Systematics is a ‘‘never-ending synthesis’’ and conclusion that Charadrophila should be removed time will perhaps never be ripe for an ultimate from Gesneriaceae and placed in the Scrophulariaceae classification. However, at present we have (s.l.). Fischer (2004) placed the genus in Scrophu- molecular data of all major subgroups of Gesner- lariaceae (s.str.) tribe Alonsoeae. More recently, and iaceae and an updated classification along the lines based on molecular data, Charadrophila was placed addressed here appears meaningful. The classifi- in Stilbaceae, a segregate family of traditional cation of the neotropical Gesneriaceae seems to Scrophulariaceae comprising mainly ‘‘scrophulari- approach consolidation, and the recent phyloge- aceous’’ genera from the Western Cape (Oxelman et netic analyses of the Old World Gesneriaceae al. 2005, APG III 2009). without a doubt are a major step forward (see review of Mo¨ller & Clark 2013). Thus, the Cubitanthus Barringer. From collections foundation is laid to synthesize a new and overall examined by the authors and photographs taken classification of the family. by A. Chautems (Gene´ve), Cubitanthus [mono- typic with C. alatus (Cham. & Schltdl.) Barringer, WHAT TO DO WITH ‘‘ANOMALOUS’’ GENERA? originally described as Russelia alata by Chamisso and Schlechtendal (1828: 3), and referred to Scro- Inclusion of a number of genera in the phulariaceae] is clearly a member of Scrophu- Gesneriaceae has been debated (see Weber lariaceae (s.l.) and must be excluded from 2004a, under ‘‘Genera of uncertain familial Gesneriaceae where the species was placed by affiliation’’ and ‘‘Excluded genera’’). All may Bentham (1876, as Russelia alata) and Barringer be, and some definitely are, of relevance for the (1984, as Cubitanthus alatus). Recent molecular classification of the family. In the following, the data (Perret et al. 2013) support the placement of genera are listed (in alphabetical sequence) along Cubitanthus in or close to Linderniaceae and not in with brief comments. The molecular aspects have Gesneriaceae. been addressed in more detail by Mo¨ller and Clark (2013). Cyrtandromoea Zoll. The genus was established by Zollinger (1854–1855), with the name Brookea Benth. This is a genus of four species reminiscent of Cyrtandra J.R.Forst. & G.Forst., of shrubs or small trees from Borneo. It was placed the largest genus of the Didymocarpoid Gesne- in Scrophulariaceae by Bentham (1876), but riaceae. In early classifications (Bentham 1876, referred to Gesneriaceae by Hallier (1903). The Clarke 1883, Fritsch 1893–1894, Ridley 1923), flower has some similarity with a gesneriad flower, Cyrtandromoea was always
Recommended publications
  • The Gesneriaceae of Sulawesi I: an Introduction
    EDINBURGH JOURNAL OF BOTANY 60 (3): 299–304 (2004) 299 DOI: 10.10M/S0960428603000258 THE GESNERIACEAE OF SULAWESI I: AN INTRODUCTION M. MENDUM*† & H. J. ATKINS* Sulawesi (Celebes) is the largest island in the biogeographic region of Wallacea. The Gesneriaceae of the island are represented by 11 genera, some of which show a very high degree of endemism. Knowledge of the origin and affinities of the flora of this island is important for an understanding of the biogeography of the area. The Gesneriaceae promise to be excellent models for phytogeographic analysis, but before this, basic taxonomic studies must be carried out. A list of the currently known genera and species is provided, and descriptions of new taxa will be published over the coming months. Keywords. Biogeography, Gesneriaceae, Indonesia, Sulawesi, Wallacea. The islands of SE Asia comprise one of the most geologically complex regions in the world (Audley-Charles, 1981; Hall, 1996, 1998), at the meeting point of three major tectonic plates. Its turbulent geological history and exceptionally high levels of biological endemism make this region of prime interest to biogeographers. Wallace’s line, one of the most important biogeographic boundaries in the world, bisects the archipelago, and was originally thought to mark the meeting point of the Oriental and Australasian fauna and flora. Since Wallace first drew his line in 1863, many others have been drawn, reflecting different hypotheses based on the distribu- tion patterns of different taxa (summarized in Scrivener et al., 1943; Simpson, 1977). The difficulty of agreeing on a single line eventually resulted in the identification of a zone of transition in the centre of Malesia (Dickerson, 1928).
    [Show full text]
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • Temporal and Spatial Origin of Gesneriaceae in the New World Inferred from Plastid DNA Sequences
    bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 61–79. With 3 figures Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences MATHIEU PERRET1*, ALAIN CHAUTEMS1, ANDRÉA ONOFRE DE ARAUJO2 and NICOLAS SALAMIN3,4 1Conservatoire et Jardin botaniques de la Ville de Genève, Ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, Santo André, Brazil 3Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 4Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland Received 15 December 2011; revised 3 July 2012; accepted for publication 18 August 2012 Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous.
    [Show full text]
  • Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 15 | Issue 1 Article 5 1996 Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1996) "Wood Anatomy of Buddlejaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 15: Iss. 1, Article 5. Available at: http://scholarship.claremont.edu/aliso/vol15/iss1/5 Aliso, 15(1), pp. 41-56 © 1997, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF BUDDLEJACEAE SHERWIN CARLQUIST' Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, California 93110-2323 ABSTRACT Quantitative and qualitative data are presented for 23 species of Buddleja and one species each of Emorya, Nuxia, and Peltanthera. Although crystal distribution is likely a systematic feature of some species of Buddleja, other wood features relate closely to ecology. Features correlated with xeromorphy in Buddleja include strongly marked growth rings (terminating with vascular tracheids), narrower mean vessel diameter, shorter vessel elements, greater vessel density, and helical thickenings in vessels. Old World species of Buddleja cannot be differentiated from New World species on the basis of wood features. Emorya wood is like that of xeromorphic species of Buddleja. Lateral wall vessel pits of Nuxia are small (2.5 ILm) compared to those of Buddleja (mostly 5-7 ILm) . Peltanthera wood features can also be found in Buddleja or Nuxia; Dickison's transfer of Sanango from Buddlejaceae to Ges­ neriaceae is justified. All wood features of Buddlejaceae can be found in families of subclass Asteridae such as Acanthaceae, Asteraceae, Lamiaceae, Myoporaceae, Scrophulariaceae, and Verbenaceae.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Molecular Species Delimitation, Taxonomy and Biogeography of Sri Lankan Gesneriaceae Subhani Wathsala Ranasinghe Doctor of Philosophy The University of Edinburgh Royal Botanic Garden Edinburgh 2017 Declaration I hereby declare that the work contained in this thesis is my own unless otherwise acknowledged and cited. This thesis has not in whole or in part been previously presented for any degree Subhani Wathsala Ranasinghe 24th January 2017. i Abstract The plant family Gesneriaceae is represented in Sri Lanka by six genera: Aeschynanthus, Epithema, Championia, Henckelia, Rhynchoglossum and Rhynchotechum, with 13 species (plus one subspecies/variety) of which ten are endemic including the monotypic genus Championia, according to the last revision in 1981. They are exclusively distributed in undisturbed habitats, and some have high ornamental value. The species are morphologically diverse, but face a problem of taxonomic delineation, which is further complicated by the presence of putative hybrids.
    [Show full text]
  • Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
    Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees.
    [Show full text]
  • Palinotaxonomia De Espécies Brasileiras De Gesneriaceae, Com Ênfase Nas Ocorrentes No Estado De São Paulo
    EDUARDO CUSTÓDIO GASPARINO Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTOR em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. SÃO PAULO 2008 EDUARDO CUSTÓDIO GASPARINO Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTOR em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. ORIENTADORA: DRA. MARIA AMÉLIA VITORINO DA CRUZ-BARROS CO-ORIENTADOR: DR. ALAIN CHAUTEMS Ficha Catalográfica elaborada pela Seção de Biblioteca do Instituto de Botânica Gasparino, Eduardo Custódio G249p Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo / Eduardo Custódio Gasparino -- São Paulo, 2008. 197 p.il. Tese (Doutorado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2008 Bibliografia. 1. Pólen. 2. Palinotaxonomia. 3. Gesneriaceae. I. Título CDU : 581.33 Alfa, Ômega... princípio e fim, sim Ele é... sim Ele é.... Lírio dos vales, estrela da manhã, para sempre cantarei o Seu amor!!! À Ele a glória, À Ele o louvor, à Ele o domínio... Ele é o Senhor Aos meus pais, Luzia Custódia Pereira Gasparino e Francisco Gasparino, dedico. À minha Orientadora Dra. Maria Amélia Obrigado por todos os ensinamentos, pela amizade, dedicação e pela orientação de todos estes anos e em especial nesta Tese.
    [Show full text]
  • Progress on Southeast Asia's Flora Projects
    Gardens' Bulletin Singapore 71 (2): 267–319. 2019 267 doi: 10.26492/gbs71(2).2019-02 Progress on Southeast Asia’s Flora projects D.J. Middleton1, K. Armstrong2, Y. Baba3, H. Balslev4, K. Chayamarit5, R.C.K. Chung6, B.J. Conn7, E.S. Fernando8, K. Fujikawa9, R. Kiew6, H.T. Luu10, Mu Mu Aung11, M.F. Newman12, S. Tagane13, N. Tanaka14, D.C. Thomas1, T.B. Tran15, T.M.A. Utteridge16, P.C. van Welzen17, D. Widyatmoko18, T. Yahara14 & K.M. Wong1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA 3Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand 4Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University Building 1540, Ny Munkegade 114, Aarhus C DK 8000, Denmark 5The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand 6Herbarium, Forest Research Institute Malaysia, Kepong, Selangor 52109, Malaysia 7School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 8Department of Forest Biological Sciences, College of Forestry & Natural Resources, University of the Philippines - Los Baños, College, 4031 Laguna, Philippines 9Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 7818125, Japan 10Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam 11Forest
    [Show full text]
  • Bopopia, a New Monotypic Genus of Gesneriaceae (Gesnerioideae, Coronanthereae) from New Caledonia
    European Journal of Taxonomy 736: 82–101 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.736.1253 www.europeanjournaloftaxonomy.eu 2021 · Morel J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article Bopopia, a new monotypic genus of Gesneriaceae (Gesnerioideae, Coronanthereae) from New Caledonia Jérémie MOREL 1, Jérôme DUMINIL 2 & Jérôme MUNZINGER 3,* 1,3 AMAP, Université de Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France. 2 DIADE, Université de Montpellier, IRD, Montpellier, France. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 1 https://orcid.org/0000-0001-7969-2609 2 https://orcid.org/0000-0002-2500-824X 3 https://orcid.org/0000-0001-5300-2702 Abstract. A new genus of Gesneriaceae, Bopopia Munzinger & J.R.Morel gen. nov., is described from New Caledonia. The genus is based on B. parvifl ora Munzinger & J.R.Morel gen. et sp. nov., a new species collected during an expedition on Mt Katalupaik, in the North Province of New Caledonia’s main island. Originally considered as a species of Coronanthera, our phylogenetic analysis – including 19 species within Coronanthereae and two individuals of B. parvifl ora gen. et sp. nov., and using three molecular markers (nuclear rDNA ITS, and chloroplast regions trnL-trnF and trnE-trnT) – showed that the new species is not close to Coronanthera in subtribe Coronantherinae, but belongs to subtribe Negriinae where it is sister to Depanthus. From that genus Bopopia gen. nov. diff ers in fl oral symmetry (zygomorphic vs actinomorphic) and the number of stamens (4 vs 5).
    [Show full text]
  • Cortes-Diago Et Al MS-636.Fm
    ORNITOLOGIA NEOTROPICAL ________________________________________________________________________ Volume 18 2007 No. 2 ________________________________________________________________________ ORNITOLOGIA NEOTROPICAL 18: 161–170, 2007 © The Neotropical Ornithological Society A NEW SPECIES OF ERIOCNEMIS (TROCHILIDAE) FROM SOUTHWEST COLOMBIA Alexander Cortés-Diago1, Luis Alfonso Ortega2, Luis Mazariegos-Hurtado1, & André-A. Weller3 1The Hummingbird Conservancy, Calle 17 A No. 121-11, Cali, Colombia. E-mail: [email protected] 2Fundación Ecohabitat, Calle 64 AN No. 10-71, Popayán, Colombia. 3Zoological Research Museum A. Koenig, Biology and Phylogeny of Tropical Birds, Adenauerallee 160, 53113 Bonn, Germany. Resumen. – Una nueva especie de Eriocnemis (Trochilidae) del suroeste de Colombia. – Una nueva especie de colibrí, el Zamarrito del Pinche (Eriocnemis isabellae, sp. nov.), es descrita de la Serranía del Pinche, un macizo aislado e inexplorado localizado en el Departamento del Cauca en el suroeste de Colombia (02°16’04.18”N, 77°21’26.41”W, 2800 m s.n.m.). Esta especie representa un nuevo miembro distincto del género Eriocnemis y habita los bosques templados y nublados de la Serranía. Aunque se puede identificar fácilmente como un miembro del género Eriocnemis por sus zamarros blancos, el azul violeta en las infracaudales de la cola y la cola azul negra bifurcada, se diferencia ampliamente de la mayoría de las especies de su género en tener la cara, corona y nuca de color negro con visos amarillosos verde oliva. Además, tiene una gorguera bicolor iridiscente distincta, azul violeta y verde. Este nuevo taxón comparte algunas características con otros de su género (i.e., E. vestitus, E. nigrivestis) y esta ecológicamente asociado a bosques enanos ocupando un pequeño rango en pendientes pronunciadas a lo largo de filos montañosos.
    [Show full text]