Comparative Transcriptome Analysis Suggests Convergent Evolution Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Desiccation Tolerance: Phylogeny and Phylogeography
Desiccation Tolerance: Phylogeny and Phylogeography BioQUEST Workshop 2009 Resurrection Plants Desiccation tolerant Survive dehydration Survive in dormant state for extended time period Survive rehydration Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) Figure 2. Selaginella lepidophylla http://en.wikipedia.org/wiki/ File:Rose_of_Jericho.gif Desiccation Issues Membrane integrity Protein structure Generation of free radicals Rascia, N, La Rocca, N. 2005 Critical Reviews in Plant Sciences Solutions Repair upon hydration Prevent damage during dehydration Production/accumulation of replacement solutes Inhibition of photosynthesis http://www.cbs.dtu.dk/staff/dave/roanoke/elodeacell.jpg Evolution of Desiccation Tolerance From Oliver, et al 2000. Plant Ecology Convergent Evolution Among Vascular Plants From Oliver, et al 2000. Plant Ecology Desiccation Tolerance in Vascular Plants Seeds Pollen Spores Osmotic stress Desertification 40% of Earth’s surface 38% of population Low productivity Lack of water Depletion of soil Loss of soil Delicate system Using Evolutionary Relationships to Identify Genes for Crop Enhancement If desiccation sensitive plants have retained genes involved in desiccation tolerance, perhaps expression of those genes can be genetically modified to enhance desiccation tolerance. Expression patterns in dehydratingTortula and Xerophyta Michael Luth Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) ? Methods Occurrence data for Anastatica hierochuntic: o Downloaded from the Global Biodiversity Information Facility (gbif.org). o Of 127 available occurrence points, only 68 were georeferenced with latitude and longitude information. Environmental layers: Precipitation and temperature from the IPCC climate dataset Niche Modeling: Maximum Entropy (Maxent) Maxent principle is to estimate the probability distribution such as the spatial distribution of a species. -
Topic 11: Land Plants, Part 1 (Bryophytes, Ferns & Fern Allies)
BIOL 221 – Concepts of Botany Spring 2008 Topic 11: Land Plants, part 1 (Bryophytes, Ferns & Fern Allies) A. Objectives for today’s lab . 1. Get to know 2 of the three groups of bryophytes (liverworts & mosses). 2. Get to know some of the Ferns and Fern Allies, which include some of the earliest lineages of vascular plants (represented today by Psilotum, Lycopodium, Equisetum, & Ferns—Boston (sword) fern, Staghorn fern) 3. Think about the morphological/anatomical innovations that are represented by each. Place these in the context of the origins of leaves, roots, and the fossil record and green plant phylogeny. 4. Know the general sequence of appearance: Green Algae ==> Bryophyte Lineages ==> Lycopod & Horsetail Lineages ==> Fern Lineages ==> Seed Plants (Gymnosperms & Angiosperms) B. Green Plant Phylogeny . Concepts of Botany, (page 1 of 12) C. NonVascular Free-Sporing Land Plants (Bryophytes) . C1. Liverworts . a. **LIVING MATERIAL**: Marchantia &/or Conacephalum (thallose liverworts). The conspicuous green plants are the gametophytes. With a dissecting scope, observe the polygonal outlines of the air chambers. On parts of the thallus are drier, it is easy to see the pore opening to the chamber. These are not stomata. They cannot open and close and the so the thallus can easily dry out if taking from water. Note the gemmae cups on some of that thalli. Ask your instructor what these are for. DRAW THEM TOO. b. **SLIDES**. Using the compound microscope, make observations of the vegetative and reproductive parts of various liverwort species. Note the structure of the air-chambers and the photosynthetic cells inside on the Marchantia sections! Concepts of Botany, (page 2 of 12) C2. -
Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. -
Viability Markers for Determination of Desiccation Tolerance and Critical Stages During
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436672; this version posted March 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Viability markers for determination of desiccation tolerance and critical stages during 2 dehydration in Selaginella species 3 Gerardo Alejo-Jacuinde1,2,3, Tania Kean-Galeno1,3, Norma Martínez-Gallardo4, J. Daniel 4 Tejero-Díez5, Klaus Mehltreter6, John P. Délano-Frier4, Melvin J. Oliver7, June Simpson2, 5 and Luis Herrera-Estrella1,3* 6 1National Laboratory of Genomics for Biodiversity (Langebio), Centro de Investigación y 7 de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, 8 Mexico 9 2Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del 10 Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico 11 3Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant 12 and Soil Science, Texas Tech University, 79409 Lubbock, Texas, USA 13 4Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios 14 Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico 15 5Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 16 54090 Tlalnepantla, Estado de Mexico, Mexico 17 6Red de Ecología Funcional, Instituto de Ecología A.C., 91070 Xalapa, Veracruz, México 18 7Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, 19 Columbia, MO 65211, USA 20 Gerardo Alejo-Jacuinde: [email protected] 21 Tania Kean-Galeno: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436672; this version posted March 24, 2021. -
Investigating Water Responsive Actuation Using the Resurrection Plant Selaginella Lepidophylla As a Model System
Investigating Water Responsive Actuation using the Resurrection Plant Selaginella lepidophylla as a Model System Véronique Brulé Department of Biology McGill University, Montréal Summer 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Véronique Brulé 1 ! ABSTRACT Nature is a wealth of inspiration for biomimetic and actuating devices. These devices are, and have been, useful for advancing society, such as giving humans the capability of flight, or providing household products such as velcro. Among the many biomimetic models studied, plants are interesting because of the scope of functions and structures produced from combinations of the same basic cell wall building blocks. Hierarchical investigation of structure and composition at various length-scales has revealed unique micro and nano-scale properties leading to complex functions in plants. A better understanding of such micro and nano-scale properties will lead to the design of more complex actuating devices, including those capable of multiple functions, or those with improved functional lifespan. In this thesis, the resurrection plant Selaginella lepidophylla is explored as a new model for studying actuation. S. lepidophylla reversibly deforms at the organ, tissue, and cell wall level as a physiological response to water loss or gain, and can repeatedly deform over multiple cycles of wetting and drying. Thus, it is an excellent model for studying properties leading to reversible, hierarchical (i.e., multi length-scale) actuation. S. lepidophylla has two stem types, inner (developing) and outer (mature), that display different modes of deformation; inner stems curl into a spiral shape while outer stems curl into an arc shape. -
Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River
National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 ON THE COVER Chisos Basin, as viewed from Casa Grande Peak. Image provided by NPS Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 James Von Loh Cogan Technology, Inc. 8140 East Lightening View Drive Parker, Colorado 80134 Dan Cogan Cogan Technology, Inc. 21 Valley Road Galena, Illinois 61036 February 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. -
Redalyc.Diuretic Effect of Alkaloids Fraction Extracted from Selaginella
Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MELENDEZ-CAMARGO, María Estela; CONTRERAS-LEÓN, Isaías; SILVA-TORRES, Rafael Diuretic effect of alkaloids fraction extracted from Selaginella lepidophylla (Hook. et Grev.) Spring Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 1, 2014, pp. 92-99 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85629766009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (1): 92 - 99 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article Diuretic effect of alkaloids fraction extracted from Selaginella lepidophylla (Hook. et Grev.) Spring [Efecto diurético de la fracción con contenido de alcaloides extraída de Selaginella lepidophylla (Hook. et Grev.) Spring] María Estela MELENDEZ-CAMARGO1, Isaías CONTRERAS-LEÓN1 & Rafael SILVA-TORRES2 1Laboratorio de Farmacología y Toxicología Renal y Hepática 2Laboratorio de Fitoquímica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas (ENCB), Zacatenco del Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Col. Lindavista, CP 07738, México, DF, México. Contactos | Contacts: María Estela MELENDEZ-CAMARGO - E-mail address: [email protected] Abstract: The aerial parts of Selaginella lepidophylla (Hook. et Grev.) Spring, are used in Mexican folk medicine to treat renal diseases. -
2776-0979 Volume 2, Issue 4, April, 2021 PHARMACOLOGICAL AND
ISSN: 2776-0979 Volume 2, Issue 4, April, 2021 PHARMACOLOGICAL AND MEDICINAL ACTIVITIES OF RESURRECTION PLANTS Gali Adamu Ishaku Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State *Corresponding author email: [email protected] Muhammad Akram Department of Eastern Medicine, Government College University Faisalabad-Pakistan Umme Laila Department of Eastern Medicine, Government College University Faisalabad-Pakistan Ayuba Abaka Kalum Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State Daniel Thakuma Tizhe Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State Bello Pariya Ardo 3Chevron Biotechnology Centre, Modibbo Adama University of Technology, Yola, Adamawa State. Abstract Resurrection plants are special kinds of plants in that they can survive almost complete desiccation from their vegetative parts. They do so by shutting down their metabolic systems to tolerate dehydration and the plants are obviously lifeless. In the recent past, invaluable bioactive compounds from resurrection plants have attracted much attention cognizance of their potential application in medicine. Some of these 323 metabolites are reported to have antibacterial, anticancer, antifungal, and antiviral biological effectiveness. In this review article, particular emphases are made on pharmacological and medicinal applications of some resurrection plants. Key words: Desiccation, Medicinal -
Annual Review of Pteridological Research - 2005
Annual Review of Pteridological Research - 2005 Annual Review of Pteridological Research - 2005 Literature Citations All Citations 1. Acosta, S., M. L. Arreguín, L. D. Quiroz & R. Fernández. 2005. Ecological and floristic analysis of the Pteridoflora of the Valley of Mexico. P. 597. In Abstracts (www.ibc2005.ac.at). XVII International Botanical Congress 17–23 July, Vienna Austria. [Abstract] 2. Agoramoorthy, G. & M. J. Hsu. 2005. Borneo's proboscis monkey – a study of its diet of mineral and phytochemical concentrations. Current Science (Bangalore) 89: 454–457. [Acrostichum aureum] 3. Aguraiuja, R. 2005. Hawaiian endemic fern lineage Diellia (Aspleniaceae): distribution, population structure and ecology. P. 111. In Dissertationes Biologicae Universitatis Tartuensis 112. Tartu University Press, Tartu Estonia. 4. Al Agely, A., L. Q. Ma & D. M. Silvia. 2005. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Journal of Environmental Quality 34: 2181–2186. 5. Albertoni, E. F., C. Palma–Silva & C. C. Veiga. 2005. Structure of the community of macroinvertebrates associated with the aquatic macrophytes Nymphoides indica and Azolla filiculoides in two subtropical lakes (Rio Grande, RS, Brazil). Acta Biologica Leopoldensia 27: 137–145. [Portuguese] 6. Albornoz, P. L. & M. A. Hernandez. 2005. Anatomy and mycorrhiza in Pellaea ternifolia (Cav.) Link (Pteridaceae). Bol. Soc. Argent. Bot. 40 (Supl.): 193. [Abstract; Spanish] 7. Almendros, G., M. C. Zancada, F. J. Gonzalez–Vila, M. A. Lesiak & C. Alvarez–Ramis. 2005. Molecular features of fossil organic matter in remains of the Lower Cretaceous fern Weichselia reticulata from Przenosza basement (Poland). Organic Geochemistry 36: 1108–1115. 8. Alonso–Amelot, M. E. -
Proceedings of the United States National Museum
; 1885.] PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 149 Tol. VIII, ]¥o. 39. TFashing^ton, D. C. IScpt. 33, 1885. REPORT ON THE FLORA OP "WESTERN AND SOUTHERN TEXAS. By Dr. V. HATAKD, U. 8. A. The observatioDS and collections on which the following report is based were made at the several posts where I have been stationed since August, 1880, also, and chiefly, while on duty with the expeditions for the exploration of Western Texas, under the command of Maj. William K. Livermore, chief engineer officer, Department of Texas, in the sum- mer and fall of 1881 and 1883. The specimens themselves will be pre- sented to the National Museum. The first part describes in a general way the vegetation of Western and Southern Texas. The various topographical features of the land are considered separately and their botanical physiognomy sketched as accurately as possible. It includes such meteorological notes as were deemed useful for the better understanding of the subject. The seconfi part is made up of economic notes on the plants known to have useful or baneful i^roperties or to be of value to agriculture or in- dustry. My grateful acknowledgments are particularly due to Mr. Sereno Watson, of Cambridge, and Dr. George Vasey, of the Department of Agriculture, for their valuable assistance in the determination of spe- cies. PAKT I. GENEEAL VIEW. Austin, the capital of Texas, lies within the timbered agricultural section of the State. South and west of it, the mean annual temperature increases while the rainfall decreases so that a change of vegetation soon becomes perceptible. -
A Comparative History of Resurrection Plants
CLCWeb: Comparative Literature and Culture ISSN 1481-4374 Purdue University Press ©Purdue University Volume 19 (2017) Issue 2 Article 1 A Comparative History of Resurrection Plants John Charles Ryan University of Western Australia Follow this and additional works at: https://docs.lib.purdue.edu/clcweb Part of the American Studies Commons, Comparative Literature Commons, Education Commons, European Languages and Societies Commons, Feminist, Gender, and Sexuality Studies Commons, Other Arts and Humanities Commons, Other Film and Media Studies Commons, Reading and Language Commons, Rhetoric and Composition Commons, Social and Behavioral Sciences Commons, Television Commons, and the Theatre and Performance Studies Commons Dedicated to the dissemination of scholarly and professional information, Purdue University Press selects, develops, and distributes quality resources in several key subject areas for which its parent university is famous, including business, technology, health, veterinary medicine, and other selected disciplines in the humanities and sciences. CLCWeb: Comparative Literature and Culture, the peer-reviewed, full-text, and open-access learned journal in the humanities and social sciences, publishes new scholarship following tenets of the discipline of comparative literature and the field of cultural studies designated as "comparative cultural studies." Publications in the journal are indexed in the Annual Bibliography of English Language and Literature (Chadwyck-Healey), the Arts and Humanities Citation Index (Thomson Reuters -
Assessment of Pteridophytes' Composition and Conservation
BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 5, June 2021 E-ISSN: 2085-4722 Pages: 3171-3178 DOI: 10.13057/biodiv/d220620 Short Communication: Assessment of Pteridophytes’ composition and conservation status in sacred groves of Jhargram District, South West Bengal, India UDAY KUMAR SEN UDAY, RAM KUMAR BHAKAT Department of Botany & Forestry, Vidyasagar University. Midnapore 721102, West Bengal, India. Tel./fax. +91-3222-276 554, email: [email protected] Manuscript received: 3 April 2021. Revision accepted: 13 May 2021. Abstract. Uday UKS, Bhakat RK.. 2021. Short Communication: Assessment of Pteridophytes’ composition and conservation status in sacred groves of Jhargram District, South West Bengal, India. Biodiversitas 22: 3171-3178. Sacred groves are significant as community-preserved areas and have contributed to the conservation of biodiversity, thereby playing a key role in environmental management. The ecological and related cultural values of the species and the activities of local communities would make it possible to understand the importance of the protection of the sacred groves and also to prepare integrated approaches to biodiversity at the ecosystem level. Thus, this study aimed to investigate the status of pteridophyte diversity in the sacred groves of Jhargram district, West Bengal, India. The study showed that 77 pteridophyte species belonging to 44 genera and 15 families were collected and described, of which nine species were classified as Lycopodiopsida and sixty-eight species as Polypodiopsida. The floristic analysis revealed the dominance of the order Polypodiales (70.13%) followed by Aspleniaceae (23.38%), and Polypodiaceae (23.38%). The results also showed the predominance of the genera Selaginella with five species.