Multidimensional Poverty Measure and Analysis: a Case Study from Hechi City, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guangxi Wuzhou Urban Development Project
Environmental Assessment Report Summary Environmental Impact Assessment Project Number: 40642 August 2008 People’s Republic of China: Guangxi Wuzhou Urban Development Project Prepared by the Wuzhou municipal government for the Asian Development Bank (ADB). This summary environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. CURRENCY EQUIVALENTS (as of 1 August 2008) Currency Unit – yuan (CNY) CNY1.00 = $0.1464 $1.00 = CNY6.8312 ABBREVIATIONS ADB – Asian Development Bank dB(A) – A-weighted decibel Dongtai – Wuzhou Dongtai State Assets Operation Corporation Ltd. EIA – environmental impact assessment EIRR – economic internal rate of return EMC – environmental management company/consultant EMP – environmental management plan EPB – environmental protection bureau GEPB – Guangxi Environmental Protection Bureau GIS – geographical information system IEM – independent environmental monitor NO2 – nitrogen dioxide PLG – project leading group PM10 – particular matter smaller than 10 micrometers PPMS – project performance management system PRC – People’s Republic of China SEIA – summary environmental impact assessment SEPA – State Environmental Protection Administration SO2 – sulfur dioxide TEIAR – tabular environmental impact assessment report WDRC Wuzhou Development and Reform Commission WEMS – Wuzhou Environmental Monitoring Station WEPB – Wuzhou Environmental Protection Bureau WMG – Wuzhou municipal government WPMO – Wuzhou project management office WWRB – Wuzhou Water Resources Bureau WUIMB – Wuzhou Urban Infrastructure Management Bureau WWTP – wastewater treatment plant WEIGHTS AND MEASURES ‰ – per mill (per thousand) ha – hectare km – kilometer km2 – square kilometer m – meter m2 – square meter m3 – cubic meter m3/d – cubic meters per day mg/m3 – milligrams per cubic meter mm – millimeter NOTE In the report, “$” refers to US dollars. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Biplot Evaluation of Test Environments and Identification of Mega
www.nature.com/scientificreports OPEN Biplot evaluation of test environments and identification of mega-environment for sugarcane Received: 23 April 2015 Accepted: 28 September 2015 cultivars in China Published: 22 October 2015 Jun Luo1, Yong-Bao Pan2, Youxiong Que1, Hua Zhang1, Michael Paul Grisham2 & Liping Xu1 Test environments and classification of regional ecological zones into mega environments are the two key components in regional testing of sugarcane cultivars. This study aims to provide the theoretical basis for test environment evaluation and ecological zone division for sugarcane cultivars. In the present study, sugarcane yield data from a three-year nationwide field trial involving 21 cultivars and 14 pilot test locations were analysed using both analysis of variance (ANOVA) and heritability adjusted-genotype main effect plus genotype-environment interaction (HA-GGE) biplot. The results showed that among the interactive factors, the GE interaction had the greatest impact, while the genotype and year interaction showed the lowest impact. Kaiyuan, Lincang and Baoshan of Yunnan, Zhangzhou and Fuzhou of Fujian, and Hechi, Liuzhou and Chongzuo of Guangxi, and Lingao of Hainan were ideal test environments with a demonstrated high efficiency in selecting new cultivars with a wide adaptability, whereas Baise of Guangxi was not. Based on HA-GGE biplot analysis, there are three ecological sugarcane production zones in China, the Southern China Inland Zone, the Southwestern Plateau Zone, and the Southern Coastal Zone. The HA-GGE biplot analysis here presents the ideal test environments and also identifies the mega-environment for sugarcane cultivars in China. Environmental changes affect both crop growth and yield due to significant genotype × environment interactions (GE)1–5. -
Anisotropic Patterns of Liver Cancer Prevalence in Guangxi in Southwest China: Is Local Climate a Contributing Factor?
DOI:http://dx.doi.org/10.7314/APJCP.2015.16.8.3579 Anisotropic Patterns of Liver Cancer Prevalence in Guangxi in Southwest China: Is Local Climate a Contributing Factor? RESEARCH ARTICLE Anisotropic Patterns of Liver Cancer Prevalence in Guangxi in Southwest China: Is Local Climate a Contributing Factor? Wei Deng1&, Long Long2&*, Xian-Yan Tang3, Tian-Ren Huang1, Ji-Lin Li1, Min- Hua Rong1, Ke-Zhi Li1, Hai-Zhou Liu1 Abstract Geographic information system (GIS) technology has useful applications for epidemiology, enabling the detection of spatial patterns of disease dispersion and locating geographic areas at increased risk. In this study, we applied GIS technology to characterize the spatial pattern of mortality due to liver cancer in the autonomous region of Guangxi Zhuang in southwest China. A database with liver cancer mortality data for 1971-1973, 1990-1992, and 2004-2005, including geographic locations and climate conditions, was constructed, and the appropriate associations were investigated. It was found that the regions with the highest mortality rates were central Guangxi with Guigang City at the center, and southwest Guangxi centered in Fusui County. Regions with the lowest mortality rates were eastern Guangxi with Pingnan County at the center, and northern Guangxi centered in Sanjiang and Rongshui counties. Regarding climate conditions, in the 1990s the mortality rate of liver cancer positively correlated with average temperature and average minimum temperature, and negatively correlated with average precipitation. In 2004 through 2005, mortality due to liver cancer positively correlated with the average minimum temperature. Regions of high mortality had lower average humidity and higher average barometric pressure than did regions of low mortality. -
Using Baise Red Cultural Resources to Create Ideological and Political Brand of Physical Education Course
Using Baise Red Cultural Resources to Create Ideological and Political Brand of Physical Education Course Qirong QIU College of Physical Education, Baise University Absrtact: Colleges and universities should construct physical education curriculum according to local conditions, fully develop and utilize the red cultural resources of the school location, integrate the red cultural resources into the physical education curriculum teaching, and create the ideological and political brand of physical edu- cation curriculum. Therefore, Baise University located in the border areas of the old and the young should grasp the connotation and significance of Baise red cul- tural resources, familiarize itself with the general situation of Baise red cultural re- sources, grasp the principles of its application in the teaching of physical education courses in Colleges and universities of the border areas of the old and the young, and explore the Countermeasures of integrating it into the teaching of physical ed- ucation courses. Key words: Baise Uprising Spirit; Red Cultural Resources; Physical Education Course; Course Ideology and Politics n December 11, 1929, Deng Xiaoping and other revolutionary predecessors O led the Baise Uprising and the Longzhou Uprising, created the seventh and eighth armies of the Chinese Red Army of Workers and Peasants, established the right and left Jiangsu Vietnamese regime, opened and protected the revolutionary base areas of the left and right rivers, nurtured and formed the spirit of the Baise About the author: Qirong QIU (1963-), male, Lianjiang, Guangdong Province, Secretary of the General Party Branch, Associate Professor, Bachelor of Physical Education Col- lege of Baise University, whose research direction is party building and ideological and political education in Colleges and universities. -
LINGUISTIC DIVERSITY ALONG the CHINA-VIETNAM BORDER* David Holm Department of Ethnology, National Chengchi University William J
Linguistics of the Tibeto-Burman Area Volume 33.2 ― October 2010 LINGUISTIC DIVERSITY ALONG THE CHINA-VIETNAM BORDER* David Holm Department of Ethnology, National Chengchi University Abstract The diversity of Tai languages along the border between Guangxi and Vietnam has long fascinated scholars, and led some to postulate that the original Tai homeland was located in this area. In this article I present evidence that this linguistic diversity can be explained in large part not by “divergent local development” from a single proto-language, but by the intrusion of dialects from elsewhere in relatively recent times as a result of migration, forced trans-plantation of populations, and large-scale military operations. Further research is needed to discover any underlying linguistic diversity in the area in deep historical time, but a prior task is to document more fully and systematically the surface diversity as described by Gedney and Haudricourt among others. Keywords diversity, homeland, migration William J. Gedney, in his influential article “Linguistic Diversity Among Tai Dialects in Southern Kwangsi” (1966), was among a number of scholars to propose that the geographical location of the proto-Tai language, the Tai Urheimat, lay along the border between Guangxi and Vietnam. In 1965 he had 1 written: This reviewer’s current research in Thai languages has convinced him that the point of origin for the Thai languages and dialects in this country [i.e. Thailand] and indeed for all the languages and dialects of the Tai family, is not to the north in Yunnan, but rather to the east, perhaps along the border between North Vietnam and Kwangsi or on one side or the other of this border. -
Cassava in China Inad• Era of Change
, '. -.:. " . Ie'"d;~~aVa in China lnan• I j Era of Change A CBN Case Study with Farmers and Processors ~-- " '. -.-,'" . ,; . ):.'~. - ...~. ¡.;; i:;f;~ ~ ';. ~:;':. __ ~~,.:';.: GuyHenry an~ Reinhardt Howeler )28103 U.' '1'/ "'.'..,· •.. :¡g.l ... !' . ~ .. W()R~mG,~6t:UMENT 1§:º~~U'U~T'O~OIln1ernotlonol CeMe:r fer TropIcal AgrICultura No. 155 Cassava Biotechnolgy Network Cassava in China InaD• Era of Change A CBN Case Study with Farmers and Processors GuyHenry and Reinhardt Howeler Cover Photos: Top: Cassava processing in Southern China í Bottom: Farmer participatory research in Southern China I I Al! photos: Cuy Henry (ClAn, July-August, 1994 I I¡ ¡ ¡, I Centro Internacional de Agricultura Tropical, CIAT ! Intemational Center for Tropical Agriculwre I Apartado Aéreo 6713 Cali, Colombia G:IAT Working Document No. 155 Press fun: 100 Printed in Colombia june 1996 ! Correa citation: Henry, G.; Howeler, R. 1996. Cassava in China in an era of change. A CBN case study with farmers and processors. 31 July to 20 August, 1994. - Cali Colombia: Centro Internacional de Agricultura Tropical, 1996. 68 p. - (Working Document; no. 1 ~5) I Cassava in China in An Era of Change A CBN Case Study with farmers and processors in Guangdong, Guangxi and Hainan Provinces of Southern China By: Guy Henry and Reínhardt Howeler luly 31 - August 20, 1994 Case Study Team Members: Dr. Guy Henry (Economist) International Center for Tropical Agriculture (ClAn, Cal i, Colombia Dr. Reinharot Howeler (Agronomis!) Intemational Center for Tropical Agricultur<! (ClAn, Bangkok, Thailand Mr. Huang Hong Cheng (Director), Mr. Fang Baiping, M •. Fu Guo Hui 01 the Upland Crops Researcll Institute (UCRIl in Guangzhou. -
Ecography ECOG-02908 Luo, Y
Ecography ECOG-02908 Luo, Y. and Li, S. 2017. Cave Stedocys spitting spiders illuminate the history of the Himalayas and southeast Asia. – Ecography doi: 10.1111/ecog.02908 Supplementary material Appendix 1 Fig. A4. (A) Phylogenetic tree reconstructed using maximum likelihood inference based on the concatenated mitochondria and nuclear gene data. Branch is truncated as indicated by slashes. Blue numbers at nodes indicate maximum likelihood bootstrap support values, and “-” at nodes indicate that the bootstrap values are lower than 50%. Black numbers near branches are in-group divergence time nodes. Branch lengths indicate the expected number of substitutions per site. (B) Divergence times based on fossil calibration under uncorrelated exponential relaxed clock. Nodes are available in Figure 1SA. 95% CI* is 95% highest posterior density. Ma is million years ago. Table A5. Samples used in this study: specimen label, haplotype, taxon name, sample collection locality with coordinates, and GenBank accession numbers. Specimen code Family Genus Species Country Locality Lat/long Altitude Haplotype CO1 28S ITS2 16S H3 18S X001 Scytodidae Stedocys sp. 1 China Guilin, Guangxi 25.309/110.264 164 hap1 submitting submitting submitting submitting submitting submitting X002 Scytodidae Stedocys sp. 1 China Guilin, Guangxi 25.309/110.264 164 hap4 submitting submitting submitting submitting submitting submitting X003 Scytodidae Stedocys sp. 1 China Guilin, Guangxi 25.309/110.264 164 hap7 submitting submitting submitting submitting submitting submitting X004 Scytodidae Stedocys sp. 1 China Guilin, Guangxi 25.309/110.264 164 hap4 submitting submitting submitting submitting submitting submitting X005 Scytodidae Stedocys sp. 1 China Guilin, Guangxi 25.309/110.264 164 hap2 submitting submitting submitting submitting submitting submitting X006 Scytodidae Stedocys sp. -
Download Article (PDF)
Advances in Economics, Business and Management Research, volume 68 International Symposium on Social Science and Management Innovation (SSMI 2018) Analysis on Optimization Model of Hongshuihe Longtan Coal Dump Transportation System Xiaolei Liu, Bo Ma, Kai Luo China Academy of Transportation Science Transportation Development Research Center (Center for Finance and Finance Research), Beijing 100029, China Abstract. The Hongshui River is an important part of the southwest waterway to the mid-sea channel. It is the hinterland of the “two rivers and one river” in Guizhou, which is rich in resources. The downstream is a new industrial city such as guests and rivers in Guangxi. It has a prominent position in the inland waterway transportation of the Pearl River system and is one of the inland waterway channels that are under construction in China during the 12th Five-Year Plan period. During the “Eleventh Five-Year Plan” period, the shipbuilding facilities of Yantan, Dahua, Bailongtan, Letan and Qiaogong have been completed and put into use. There is already a level of navigation for the four- level channel from Longtan to Datengxia. However, the construction of the Longtan Hub navigation facilities is lagging behind, and the entire line of Hongshui River is seriously affected. The results of the “Study on the Strategy of the Red River River Longtan dam Transportation System” of the Pearl River Shipping Administration's work project of the Ministry of Transport are the basis of this paper. The development status of Hongshuihe Longtan waterway transportation system was analyzed. The principle of cost minimization is based. The economics of different dam transport schemes were studied. -
MAIYUE TECHNOLOGY LIMITED 邁越科技股份有限公司 (The “Company”) (Incorporated in the Cayman Islands with Limited Liability)
The Stock Exchange of Hong Kong Limited and the Securities and Futures Commission take no responsibility for the contents of this Application Proof, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this Application Proof. Application Proof of MAIYUE TECHNOLOGY LIMITED 邁越科技股份有限公司 (the “Company”) (Incorporated in the Cayman Islands with limited liability) WARNING The publication of this Application Proof is required by The Stock Exchange of Hong Kong Limited (the “Exchange”) and the Securities and Futures Commission (the “Commission”) solely for the purpose of providing information to the public in Hong Kong. This Application Proof is in draft form. The information contained in it is incomplete and is subject to change which can be material. By viewing this document, you acknowledge, accept and agree with the Company, its sponsor, advisers or member of the underwriting syndicate that: (a) this document is only for the purpose of providing information about the Company to the public in Hong Kong and not for any other purposes. No investment decision should be based on the information contained in this document; (b) the publication of this document or supplemental, revised or replacement pages on the Exchange’s website does not give rise to any obligation of the Company, its sponsor, advisers or members of the underwriting syndicate to proceed with an offering in Hong Kong or any other jurisdiction. -
A Once Inaccessible Mountain Village in South China Changes Its Economic Status and Mindset by Li Yifan
WORLD: XI ON POST-PANDEMIC ERA P.22 | BUSINESS: CHINA’S TOP 500 PRIVATE FIRMS P.38 VOL.63 NO.40-41 OCTOBER 1, 2020 WWW.BJREVIEW.COM THE ROAD TO CHANGE Mountain-locked village finds a way to prosperity RMB6.00 USD1.70 AUD3.00 GBP1.20 CAD2.60 CHF2.60 JPY188 邮发代号2-922·国内统一刊号:CN11-1576/G2 VOL.63 NO.40-41 OCTOBER 1, 2020 CONTENTS EDITOR’S DESK BUSINESS 02 Men and Women With a Mission 38 Big But Not Strong Enough A look at the new top 500 Chinese THIS WEEK private firms 40 Market Watch COVER STORY 18 Leading by Example CULTURE 44 Hail to the Harvest The man behind prosperity Festival pays tribute to farmers’ toil 20 An Unusual Helper A good Samaritan from Luxembourg 12 COVER STORY FORUM WORLD 46 How Can Food Delivery People’s Working Conditions Be Improved? 24 Turning Challenge Into Opportunity Decoupling threat to boomerang When Fortune Smiles on U.S. New infrastructure and thinking ESSAY 28 Walking a Tightrope 48 National Interest or Self-Interest? What’s to be new Japanese PM’s policy? transform a village Time for the U.S. to reexamine its own bunglings NATION 32 Through Thick and Thin WORLD Charitable work grows with technology P.22 | A China Plan for OUT OF POVERTY Sustainable Development 34 Green Leaves, Gold Mines President Xi Jinping on post-COVID-19 Tea becomes a poor prefecture’s elixir of life development at UN meetings BUSINESS P.36 | New Cooperation Channels Hi-tech trade fairs become new face of opening up WORLD Cover Photo: Zhadong, a village in Hechi, Guangxi Zhuang Autonomous Region in south China (ZHANG WEI) P.26 | A Sound Path China-EU GI deal signals greater ©2020 Beijing Review, all rights reserved. -
Spatio-Temporal Variation and Impact Factors for Vegetation Carbon Sequestration and Oxygen Production Based on Rocky Desertific
remote sensing Article Spatio-Temporal Variation and Impact Factors for Vegetation Carbon Sequestration and Oxygen Production Based on Rocky Desertification Control in the Karst Region of Southwest China Mingyang Zhang 1,2, Kelin Wang 1,2,*, Huiyu Liu 3,4, Jing Wang 1,2, Chunhua Zhang 1,2, Yuemin Yue 1,2 and Xiangkun Qi 1,2 1 Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, No. 644, Yuanda 2nd Road, Furong District, Changsha 410125, China; [email protected] (M.Z.); [email protected] (J.W.); [email protected] (C.Z.); [email protected] (Y.Y.); [email protected] (Q.X.) 2 Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China 3 College of Geography Science, Nanjing Normal University, No.1, Wenyuan Road, Xianlin University District, Nanjing 210046, China; [email protected] 4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210046, China * Correspondence: [email protected] or [email protected], Tel.: +86-731-8461-5201; Fax: +86-731-8461-2685 Academic Editors: Parth Sarathi Roy and Prasad S. Thenkabail Received: 30 September 2015; Accepted: 20 January 2016; Published: 28 January 2016 Abstract: The Grain to Green Program (GTGP) and eco-environmental emigration have been employed to alleviate poverty and control rocky desertification in the Southwest China Karst region. Carbon sequestration and oxygen production (CSOP) is used to indicate major ecological changes, because they involve complex processes of material circulation and energy flow. Using remote sensing images and weather records, the spatiotemporal variation of CSOP was analyzed in a typical karst region of northwest Guangxi, China, during 2000–2010 to determine the effects of the Chinese government’s ecological rehabilitation initiatives implemented in 1999.