Patrick Moore's Practical Astronomy Series

Total Page:16

File Type:pdf, Size:1020Kb

Patrick Moore's Practical Astronomy Series P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 Patrick Moore’s Practical Astronomy Series i P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 Other Titles in this Series Navigating the Night Sky Observing Comets How to Identify the Stars and Constellations Nick James and Gerald North Guilherme de Almeida Telescopes and Techniques Observing and Measuring Visual Double Stars An Introduction to Practical Astronomy Bob Argyle (Ed.) Chris Kitchin Observing Meteors, Comets, Supernovae Seeing Stars and other transient Phenomena The Night Sky Through Small Telescopes Neil Bone Chris Kitchin and Robert W. Forrest Human Vision and The Night Sky Photo-guide to the Constellations How to Improve Your Observing Skills A Self-Teaching Guide to Finding Your Way Michael P. Borgia Around the Heavens How to Photograph the Moon and Planets Chris Kitchin with Your Digital Camera Solar Observing Techniques Tony Buick Chris Kitchin Practical Astrophotography How to Observe the Sun Safely Jeffrey R. Charles Lee Macdonald Pattern Asterisms The Sun in Eclipse A New Way to Chart the Stars Sir Patrick Moore and Michael Maunder John Chiravalle Transit Deep Sky Observing When Planets Cross the Sun The Astronomical Tourist Sir Patrick Moore and Michael Maunder Steve R. Coe Light Pollution Visual Astronomy in the Suburbs Responses and Remedies A Guide to Spectacular Viewing Bob Mizon Antony Cooke Astronomical Equipment for Amateurs Visual Astronomy Under Dark Skies Martin Mobberley A New Approach to Observing Deep Space The New Amateur Astronomer Antony Cooke Martin Mobberley Real Astronomy with Small Telescopes Lunar and Planetary Webcam User’s Guide Step-by-Step Activities for Discovery Martin Mobberley Michael K. Gainer Choosing and Using a Schmidt-Cassegrain The Practical Astronomer’s Deep-sky Telescope Companion A Guide to Commercial SCT’s and Jess K. Gilmour Maksutovs Observing Variable Stars Rod Mollise GerryA.Good The Urban Astronomer’s Guide Observer’s Guide to Stellar Evolution A Walking Tour of the Cosmos for City The Birth, Life and Death of Stars Sky Watchers Mike Inglis Rod Mollise Field Guide to the Deep Sky Objects Astronomy with a Home Computer Mike Inglis Neale Monks Astronomy of the Milky Way More Small Astronomical Observatories The Observer’s Guide to the Southern/Northern Sir Patrick Moore (Ed.) Sky Parts 1 and 2 hardcover set The Observer’s Year Mike Inglis 366 Nights in the Universe Astronomy of the Milky Way Sir Patrick Moore (Ed.) Part 1: Observer’s Guide to the Northern Sky Care of Astronomical Telescopes and Mike Inglis Accessories Astronomy of the Milky Way A Manual for the Astronomical Observer Part 2: Observer’s Guide to the Southern Sky and Amateur Telescope Maker Mike Inglis M. Barlow Pepin (continued after index) ii P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 Aurora Observing and Recording Nature’s Spectacular Light Show Neil Bone iii P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 Neil Bone ‘The Harepath’ Mile End Lane Apulduram Chichester West Sussex PO20 7DZ UK [email protected] Library of Congress Control Number: 2006940469 Patrick Moore’s Practical Astronomy Series ISSN 1617-7185 ISBN-10: 0-387-36052-2 e-ISBN-10: 0-387-68469-7 ISBN-13: 978-0-387-36052-2 e-ISBN-13: 978-0-387-68469-7 Printed on acid-free paper. C 2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 987654321 springer.com iv P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 Contents Preface ........................................................ ix 1. Atmospheric Phenomena ....................................... 1 AuroraeinHistory............................................. 2 Aurorae in Mythology .......................................... 3 Other Atmospheric Phenomena .................................. 7 Haloes.................................................... 7 Sun-Pillars and Related Phenomena ............................. 10 Rainbows .................................................. 11 Meteors..................................................... 12 Space Weather ................................................ 16 2. Causes of the Aurora ........................................... 19 TheVariableSun.............................................. 20 The Sun as a Star .............................................. 24 Sunspots and the Solar Magnetic Field ........................... 27 The Active Chromosphere and Corona ........................... 29 Coronal Holes .............................................. 31 Solar Flares ................................................. 32 Linking the Sun and the Earth—The Solar Wind ................... 34 New Insights on Coronal Mass Ejections and Solar Flares ............ 36 Interactions with the Solar Wind .................................. 37 Comets.................................................... 37 Earth’sMagnetosphere........................................ 40 StructureoftheMagnetosphere.............................. 40 TheVanAllenBelts........................................ 43 Plasma Movements and Currents in the Magnetosphere; theAuroralOvals........................................ 44 Auroral Activity Types and Causes ................................ 49 Auroral Substorms ........................................... 49 GeomagneticStorms......................................... 50 Other Effects Associated with CMEs ........................... 51 CoronalHoleAurorae........................................ 52 Sector Boundary Crossings and Chromospheric Filament Disappearances ........................................... 53 Auroral Emissions ........................................... 53 Other Solar Effects on the Atmosphere ............................. 57 The Ionosphere ............................................. 57 v P1: PAB/SPH P2: XXX SVNY352-Bone SVNY352-FM.tex February 8, 2007 8:42 vi Contents The Heliosphere ............................................... 58 Effects on Terrestrial Climate ................................... 60 3. Auroral Forecasting ............................................ 63 Aurorae and the Sunspot Cycle ................................... 64 Keeping an Eye on the Possibilities for Auroral Activity—The DIYApproach!.............................................. 66 Solar Observing ............................................. 66 RecentPastActivity.......................................... 70 Early Warnings of Ongoing Auroral Activity ......................... 72 MagneticEffects............................................. 72 Magnetometers............................................. 72 BehavioroftheMagneticField................................. 74 Indices of Geomagnetic Activity .................................. 76 TheaaIndex............................................... 76 TheKpIndex............................................... 76 TheApIndex............................................... 77 RadioAurorae................................................ 77 Internet Resources ............................................. 79 4. Observing the Aurora .......................................... 81 AuroralActivityatHighLatitudes................................. 81 TheAuroralZones........................................... 82 Location,Location,Location................................... 83 Polar Cusp Aurorae ............................................ 83 Polar Cap Absorptions (PCA) .................................... 84 ThetaAurora................................................. 85 Substorm Events .............................................. 86 Geomagneticstorms........................................... 88 AuroralActivityatLowerLatitudes................................ 88 GeomagneticStorms........................................... 89 CoronalHoleAurorae.......................................... 97 “Flash Aurora” ................................................ 97 VisualObservation............................................ 98 Photography ................................................. 102 5. Historical Aurorae and More Recent Events ......................... 105 Aurorae in Classical Times ....................................... 105 AuroralRecordsfromtheDarkandMiddleAges..................... 106 TheNineteenthCentury........................................ 108 AuroraeintheTwentiethCentury................................. 108 The Great Aurora of 13–14 March 1989 .......................... 109 OtherEventsinCycle22...................................... 111 The Major Aurora of 8–9 November 1991 ........................ 113 TheStrangeCaseofCycle23................................... 114 The Aurora of 6–7 April 2000 .................................. 115 The Bastille Day Event, 15–16 July 2000 .......................... 116 March–April 2001—A Rash of Sunspots
Recommended publications
  • Atmospheric Phenomena by Feist
    Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two.
    [Show full text]
  • Atmospheric Halos
    Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young.
    [Show full text]
  • Artificial Circumzenithal and Circumhorizontal Arcs
    Artificial circumzenithal and circumhorizontal arcs Markus Selmke and Sarah Selmke* *Universit¨atLeipzig, 04103 Leipzig, Germany∗ (Dated: September 2, 2018) We revisit a water glass experiment often used to demonstrate a rainbow. On a closer look, it also turns out to be a rather close analogy of a different kind of atmospheric optics phenomenon altogether: The geometry may be used to faithfully reproduce the circumzenithal and the circum- horizontal halos, providing a missing practical demonstration experiment for those beautiful and common natural ice halo displays. I. INTRODUCTION Light which falls onto a transparent thin-walled cylin- der (e.g. a drinking glass) filled with water gets refracted. Several ray paths may be realized through what then ef- fectively represents a cylinder made of water. Light may either illuminate and enter through the side of the cylin- der, or may enter through the top or bottom interfaces, depending on the angle and spot of illumination. Indeed, FIG. 1. Rays entering through the top face of both a cylinder in the former situation, i.e. illumination from the side and (left) and a hexagonal prism (right) experience an equivalent refraction. Refraction of the skew rays by the side faces are under a shallow inclination angle reveals a rainbow in the equivalent when the effect of rotational averaging of the prism backwards direction. The reason being that the geome- is considered. The same holds true for the reverse ray path. try mimics the incidence plane geometry of a light path though a spherical raindrop: Refraction, internal reflec- tion and a second refraction upon exit, all occurring at was the first to establish an extensive quantitative frame- the cylinder's side wall, produce the familiar observable work for halos based on the (false) assumption of refract- ◦ rainbow caustic in the backwards direction at around 42 ing cylinders, did not conceive of this CZA mechanism 2,3 towards the incidence light source.
    [Show full text]
  • TO LOG I'qure
    GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt
    [Show full text]
  • Ensk Heiti Íslensk Heiti Skýring Ablation Leysing Leysing (Einkum Á Jöklum
    Ensk heiti Íslensk heiti skýring ablation leysing leysing (einkum á jöklum) absolute extremes aftök absolute humidity rakamagn massi vatnsgufu á rúmmálseiningu lofts absolute zero alkul 0 Kelvingráður = -273,16 selsíusgráður absorption ísog geislanám (gleyping) abyssal flow djúpsjávarflæði sjávarstraumar næst botni acceptable risk viðunandi áhætta acceptance level áhættuviðmið accessory clouds hjáský sérstök minni ský sem fylgja ákveðnum skýjategundum og hafa sérstök nöfn accidental load skyndiálag acclimatization umhverfisaðlögun veðráttuaðlögun accretion áhleðsla accumulated temperature gráðudagafjöldi accumulation ákoma söfnun acid deposition súrfelli acid precipitation súr úrkoma acid rain súrt regn adaption aðlögun adiabatic innrænn bókstaflega = ekki-gegnumstreymanlegur = ófær adiabatic temperature changes innrænar hitabreytingar varðveita mættishita adret - ubac effect viðhorfsáhrif adsorption ásog (aðlögun) aðlögun advection aðstreymi advection fog aðstreymisþoka advective inversion aðstreymishitahvörf aeolian vind- aerodynamic loftstreymis-, vindorku- aerological diagram háloftarit aerology háloftaveðurfræði aeronomy háloftaeðlisfræði aerosol ar agnúði, úrsúr, sveimur af þurrum eða votum smáögnum í andrúmslofti, úði úr þrýstidós ageostrophic flow hjáþrýstiflæði ageostrophic wind hjáþrýstivindur aggregate risk heildaráhætta aggregation klístrun þyrping agroclimatology búveðurfræði agrometeorology búveðurfræði air avalanche kófhlaup Ensk heiti Íslensk heiti skýring air mass lofthlot lofthaf, loft, loftmassi air pollution loftmengun
    [Show full text]
  • Chapter 34 Weather Elements
    CHAPTER 34 WEATHER ELEMENTS GENERAL DESCRIPTION OF THE ATMOSPHERE 3400. Introduction latitudes to about 10 miles at low latitudes. The standard atmosphere is a conventional vertical Weather is the state of the Earth’s atmosphere with structure of the atmosphere characterized by a standard sea- respect to temperature, humidity, precipitation, visibility, level pressure of 1013.25 hectopascals of mercury (29.92 cloudiness, and other factors. Climate refers to the average inches) and a sea-level air temperature of 15° C (59° F). long-term meteorological conditions of a place or region. The temperature decreases with height at the standard All weather may be traced to the effect of the Sun on lapse rate, a uniform 2° C (3.6° F) per thousand feet to 11 the Earth. Most changes in weather involve large-scale kilometers (36,089 feet), and above that remains constant at horizontal motion of air. Air in motion is called wind. This –56.5° C (-69.7° F). motion is produced by differences of atmospheric pressure, The jet stream refers to relatively strong (greater than which are attributable both to differences of temperature 60 knots) quasi-horizontal winds, usually concentrated and the nature of the motion itself. within a restricted layer of the atmosphere. Research has Weather is of vital importance to the mariner. The indicated that the jet stream is important in relation to the wind and state of the sea affect dead reckoning. Reduced sequence of weather. There are two commonly known jet visibility limits piloting. The state of the atmosphere affects streams. The sub-tropical jet stream (STJ) occurs in the electronic navigation and radio communication.
    [Show full text]
  • Chapter 6 Splashing Colors Everywhere, Like a Rainbow (Optics)
    Optics 1 Chapter 6 Splashing colors everywhere, like a rainbow (optics) Here are the references and web links for the stories in the book. Recently added references are highlighted. For updates to those stories and for all the new stories, go to http://www.flyingcircusofphysics.com/News/NewsDetail.aspx?NewsID=42 Jan 2015 6.1 Rainbows This item is discussed in the book The Flying Circus of Physics, second edition, by Jearl Walker, published by John Wiley & Sons, June 2006, ISBN 0-471-76273-3. The material here is located at www.flyingcircusofphysics.com and will be updated periodically. Photos and discussions http://www.atoptics.co.uk/ Many photos and explanations of atmospheric optics http://atmospherical.blogspot.com/search?updated-min=2006-01-01T00%3A00%3A00Z&updated- max=2007-01-01T00%3A00%3A00Z&max-results=50 Blog devoted to photos of atmospheric phenomena http://atmospherical.blogspot.com Way cool blog site with lots of photos and descriptions. Go through the archived blogs by clicking on the button at the bottom of the page. The blog started in April 2006. Videos: http://www.youtube.com/watch?v=z3iOjTqFGWY&mode=related&search= Double rainbows plus lightning http://www.youtube.com/watch?v=ZmVuO-qQOn8 Primary rainbow plus faint secondary bow http://www.youtube.com/watch?v=cylV9Lp9fuM&mode=related&search= Double rainbow References Dots through indicate level of difficulty Journal reference style: author, journal, volume, pages (date) Book reference style: author, title, publisher, date, pages Neuberger, N., "A rainbow in a cirrus sky in winter," Bulletin of the American Meteorological Society, 26, 211 (1945) Boyer, C.
    [Show full text]
  • Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information
    Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information Index 120° parhelion, 133, 134, see also halo A-Train satellite constellation, 259, 260 1-D climate model, 365 cloud and aerosol interactions, 366 1-D model, 51, 361, 363, 364 deposition, 192, 193 detection of thin cirrus, 286, 287 22° halo, 133, 134, see also halo direct and indirect effect of, 361, 362, 380 22° parhelion, 130, 133, see also halo historical review of polarization measurements, 302 2-D climate model, 366 radiative transfer, 332 radiative transfer results compared with satellite 46° halo, 128, 132, 134, 186, 189, 220, 233, 268, 269, observations, 346, 348 see also halo soot and sulfate aerosols, 379, 380 view from satellite instruments, 14, 16 absorbing boundary conditions, 204 Aerosol Polarimetry Sensor, 302 absorptance, 80, 255 AGCM, 366, 370, see also GCM absorption aggregate, 20, 32, 35, 38, 39, 42, 43, 47, 49, 216, 218, coefficient, 77, 78, 80, 325, 335, 336, 337 233, 234, 239, 271, 273, 303 cross-section, 55, 56, 156, 157, 175, 176, 330 Airborne Visible/Infrared Imaging Spectrometer, 286 efficiency, 168 AIRS, 11, 259, 277, 279, 280, 281, 300, see also line, 250, 252, 279, 321, 323, 328, 333, 335, 336, Atmospheric Infrared Sounder 338 Airy function, 167 spectrum albedo CH4, 250 cloud, 344, 351, 361 CO, 250 global, 293, 390 CO2, 250 planetary, 346 H2O, 250 shortwave, 349 N2, 250 single-scattering, see single-scattering albedo N2O, 250 solar, 341, 342, 344, 359, 360, 361, 362, 364, 373, O2, 250
    [Show full text]
  • SHB Halo Key Key Structure
    SHB Halo Key key structure: KKOJJ MMTTg ZZZZd DDNCc EEHFV fzzGG 8HHHH special group / remarks appendix 3: special group group key explanation/remark The full halo circle is cut into 8 segments as shown in the figure below. Segments in which the halo or parts of it appear are to be added at the end of the report (see examples). This special group is only to be applied for the 22°, 46° and circumscribed halos. KKOJJ KK identification number of the observer, which will be assigned by the data centre. ............................................... is registered as KK ............ d c e O which object caused the halo: 1 Sun 4 a bright star b f 2 Moon 5 an earthbound light source a g 3 a planet (e.g. a street lamp) h c-d-e b-c-d-e-f a-b-c-d-e-f-g-h c-d-e / g-h-a JJ year of observation (for example 1999 = 99) MMTTg MM months of observation from 01 - 12 (for example March = 03) Further comments to the halo key and the computation of monthly reports: TT date of observation from 01 - 31 Since all observations are stored with the HALO program it is very important to use only the uniform report format. • please send in your monthly reports only in the halo key format definition of the observing place: • report the group 8HHHH only for Sun pillars g 0 observation at the primary observing site (home) or not farther away than 5 km • the special group (appendix 3) should only be applied for the 22°, 46° and circumscribed halo 1 observation at neither primary nor secondary observing site • group , element : Please report changes in your secondary observing site immediately to the data centre MMTTg g 2 observation at the secondary observing site (work place) or not farther away than 5 km.
    [Show full text]
  • Optical Properties of Contrail-Induced Cirrus: Discussion of Unusual Halo Phenomena
    Optical properties of contrail-induced cirrus: discussion of unusual halo phenomena Ralf Sussmann Photographs of a 120° parhelion and a 22° parhelion within persistent contrails are presented. These phenomena result from hexagonal plate-shaped ice crystals oriented horizontally with diameters between 300 mm and 2 mm. From our observations and reinvestigation of previous reports, we conclude that a subset of the population in persistent contrails can consist of highly regular, oriented, hexagonal plates or columns comparable to the most regular crystals in natural cirrus clouds. This is explained by measured ambient humidities below the formation conditions of natural cirrus. The resulting strong azimuthal variability of the scattering phase function impacts the radiative transfer through persistent contrails. © 1997 Optical Society of America Key words: Aircraft, contrail, climatic impact, crystal growth, halo phenomena, ice crystals, optical properties, relative humidity, remote sensing, scattering phase function. 1. Introduction plied for this purpose,9 as well as advanced satellite Natural cirrus clouds that on average cover approx- multichannel imagery.5,10 In investigating the cli- imately 20% of the globe are known to play a major matic effect of contrails, one of the important ques- role in the radiation balance of the earth.1 In past tions we address is whether in persistent contrails years because of increased air traffic, research activ- there is any significant difference in radiative impact ities were extended strongly toward anthropogeni- compared with natural cirrus, i.e., whether there are cally induced cirrus ~contrails! and the possible differences in optical properties as ruled by particle impact on climate2,3 resulting from an additional sur- compositions, crystal shapes and orientations, and face coverage of at most 2% on long-term average.4,5 size distributions.
    [Show full text]
  • Atmospheric Phenomena in Physics Teaching
    Physics Competitions Vol 12 No 2 2010 Atmospheric Phenomena in Physics Teaching Ibolya Ságodi Dömény Garay János Grammar School Szekszárd, Hungary Abstract According to International researches, physics teaching has difficulties all over the world. The majority of students do not like physics. It is an important object to find those topics that stir enough the curiosity of the students. In our opinion, some interesting topics chosen from the field of atmospheric physics could be an appropriate tool of that. More precisely atmospheric optics would be perhaps one of the possibly best choices. The topic used by us is the phenomenon of halos, which has certainly been proved to be an interesting subject for high school teenagers. Several tens of individual halo forms are known because the various shapes and orientations of tiny hexagonal ice prisms allow light to take numerous different paths in an encounter with a crystal, ranging from simple refraction paths through a wedge to complex ray paths with several internal reflections. In this article the physics of halos and the results of a project made by Hungarian students will be shown. 1. Motivation The Earth’s atmosphere and processes occurring in it are very interesting and our everyday life is highly influenced by them. Clouds, thunderstorms, lightning and rainbows are beautiful, sometimes frightening and exciting phenomena. There are numerous people fanatically observing, taking photos and videos of them almost on daily basis. In spite of that, mainly due to the complexity of the processes mentioned above, curriculums deal with this field of physics only very modestly. However, it is not difficult to excite the curiosity of the students by these admirable spectacles.
    [Show full text]
  • Sunset/Sunrise Phenomena
    Sunset/Sunrise Phenomena Greg Edwards 7 April 2016 Overview • An overview of the hundred of so different - phenomena that can be seen around dawn and sunset. • Photos of dozens of these phenomena • References to apps, websites, books and tools to improve your understanding and ability to make photos of these phenomena • Not everyone agrees on the naming of the different phenomena, nor the causes of them. DO NOT look directly at the sun or photograph it unless you know what you are doing. You can ruin your eyes and/or camera! Introduc6on Data and Timeline • Differences between Sunset and Sunrise • Clouds • Pre-sunset Phenomena 2 hours before unKl 1 hour aer • Sunset Phenomena 15m before unKl 30m aer • Civil Twilight Phenomena 0-6 degrees down • NauKcal Twilight Phenomena 6-12 degrees down • Astronomical Twilight Phenomena 12+ degrees down • Tools, references Differences Between Sunset and Sunrise • Colors – Sunsets generally more colorful due to more dust from aernoon winds • Wind – the wind is generally calmer at dawn – Lakes, ocean more mirror-like – Easier to take long exposures of flowers, trees – Less dust in air = less color in sky/clouds • Red Skies at Morning Sailors Take Warning – Red clouds towards the sun at dawn – not a rain/storm forecast – Bright red dense altocumulus and stratocumulus clouds all over the sky – rain/storm somewhat likely – Big red clouds at anK-dawn side of the sky – rain/storm more likely – Over all the clouds at sunrise are not very good for weather forecasKng. Clouds of Interest for Sun Rise/Sets • Cirrus –
    [Show full text]