Artificial Circumzenithal and Circumhorizontal Arcs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atmospheric Phenomena by Feist
Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two. -
References: Snel's Law and Refraction Index of Refraction For
ESCI 340 - Cloud Physics and Precipitation Processes Lesson 13 - Atmospheric Optical Phenomena Dr. DeCaria References: One of the best sources for information about atmospheric optics is the Atmospheric Optics website, http://www.atoptics.co.uk Snel's Law and Refraction • The index of refraction for a medium is defined as m = c=c;~ (1) where c is the speed of light in a vacuum, andc ~ is the speed of light in the medium.1 • As light passes from one medium into another, there is both reflection and refraction. • Refraction occurs because the wave fronts bend as they cross from one medium into another, causing a ray of light to bend. The ray bends toward the medium that has the slower speed of light (highest index of refraction). • The bending of the ray is quantified by Snel's Law, which is stated mathematically as sin θ m 1 = 2 ; (2) sin θ2 m1 where θ1 is the angle of incidence (and reflection), θ2 is the angle of refraction, and m1 and m2 are the indices of refraction in the two mediums (see Fig. 1). • The amount by which a ray of light is deflected due to refraction can be quantified in one of two ways. { The bending angle, θ0, is the interior angle between the initial and final rays. { The deviation angle, θ00, is the complement of the bending angle, θ00 = 180◦ −θ0. { The relationship between bending angle and deviation angle is illustrated in Fig. 2. Index of Refraction for Air • Light travels faster through warm air than it does through cold air. -
Atmospheric Halos
Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young. -
TO LOG I'qure
GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt -
Ensk Heiti Íslensk Heiti Skýring Ablation Leysing Leysing (Einkum Á Jöklum
Ensk heiti Íslensk heiti skýring ablation leysing leysing (einkum á jöklum) absolute extremes aftök absolute humidity rakamagn massi vatnsgufu á rúmmálseiningu lofts absolute zero alkul 0 Kelvingráður = -273,16 selsíusgráður absorption ísog geislanám (gleyping) abyssal flow djúpsjávarflæði sjávarstraumar næst botni acceptable risk viðunandi áhætta acceptance level áhættuviðmið accessory clouds hjáský sérstök minni ský sem fylgja ákveðnum skýjategundum og hafa sérstök nöfn accidental load skyndiálag acclimatization umhverfisaðlögun veðráttuaðlögun accretion áhleðsla accumulated temperature gráðudagafjöldi accumulation ákoma söfnun acid deposition súrfelli acid precipitation súr úrkoma acid rain súrt regn adaption aðlögun adiabatic innrænn bókstaflega = ekki-gegnumstreymanlegur = ófær adiabatic temperature changes innrænar hitabreytingar varðveita mættishita adret - ubac effect viðhorfsáhrif adsorption ásog (aðlögun) aðlögun advection aðstreymi advection fog aðstreymisþoka advective inversion aðstreymishitahvörf aeolian vind- aerodynamic loftstreymis-, vindorku- aerological diagram háloftarit aerology háloftaveðurfræði aeronomy háloftaeðlisfræði aerosol ar agnúði, úrsúr, sveimur af þurrum eða votum smáögnum í andrúmslofti, úði úr þrýstidós ageostrophic flow hjáþrýstiflæði ageostrophic wind hjáþrýstivindur aggregate risk heildaráhætta aggregation klístrun þyrping agroclimatology búveðurfræði agrometeorology búveðurfræði air avalanche kófhlaup Ensk heiti Íslensk heiti skýring air mass lofthlot lofthaf, loft, loftmassi air pollution loftmengun -
Night Blue Sky
Light! Glorious Atmospheric Phenomena Jürgen Rendtel Leibniz-Institut für Astrophysik Potsdam (AIP) 8 July 2015 Light! 1 Outline Blue sky Shadows: clouds, mountains, … Water: droplets of various size Ice crystals Curved light paths Colours in the night Blue sky Our eyes: o Intensities – adaptive o Sensitive to differences o Colours – if bright enough eye sensitivity (cones) No sense for: o Polarization 8 July 2015 Light! 3 Blue sky 8 July 2015 Light! 4 Blue sky Night sky also blue (here scattered moonlight) limit: sensitivity level of the cones 8 July 2015 Light! 5 Blue sky Polarization of skylight 8 July 2015 Light! 6 Blue sky Polarization of skylight 8 July 2015 Light! 7 Shadows (Relative) darkness behind objects sunlight – parallel light view from top from observer O 8 July 2015 Light! 8 Shadows Mountain shadows symmetric observer at O „shadow spike“ Wendelstein (C.Hinz) Teide, with ~full moon 8 July 2015 Light! 9 Rainbow Water droplets + sunlight = rainbow primary arc: radius 42° refracted 2x, reflected 1x secondary arc: radius 51° refracted 2x, reflected 2x Alexander‘s dark band effects of drop size + shape? 8 July 2015 Light! 10 Rainbow Water droplets + sunlight = rainbow primary arc: radius 42° refracted 2x, reflected 1x in water… but different in sea water (higher refractive index) Lynch & Livingston 2001, p. 118 8 July 2015 Light! 11 Rainbow Drop size 2mm interference around the reflection inside the drop 1mm 0.5mm 8 July 2015 Light! 12 Rainbow Reflection inside the drop causes linear polarization linear polarizer: vertical -45° 8 July 2015 Light! 13 Rainbow Drop shape not spherical flattened (turbulence) split rainbows 8 July 2015 Light! 14 Rainbow Additional reflection e.g. -
Telescope from Wikipedia, the Free Encyclopedia
Rainbow From Wikipedia, the free encyclopedia For other uses, see Rainbow (disambiguation). Double rainbow and supernumerary rainbows on the inside of the primary arc. The shadow of the photographer's head on the bottom marks the centre of the rainbow circle (antisolar point). A rainbow is an optical and meteorological phenomenon that causes a spectrum of light to appear in the sky when the Sun shines on to droplets of moisture in the Earth's atmosphere. It takes the form of a multicoloured arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the sun. In a so-called "primary rainbow" (the lowest, and also normally the brightest rainbow) the arc of a rainbow shows red on the outer (or upper) part of the arc, and violet on the inner section. This rainbow is caused by light being refracted then reflected once in droplets of water. In a double rainbow, a second arc may be seen above and outside the primary arc, and has the order of its colours reversed (red faces inward toward the other rainbow, in both rainbows). This second rainbow is caused by light reflecting twice inside water droplets. The region between a double rainbow is dark, and is known as "Alexander's band" or "Alexander's dark band". The reason for this dark band is that, while light below the primary rainbow comes from droplet reflection, and light above the upper (secondary) rainbow also comes from droplet reflection, there is no mechanism for the region between a double rainbow to show any light reflected from water drops. -
Chapter 34 Weather Elements
CHAPTER 34 WEATHER ELEMENTS GENERAL DESCRIPTION OF THE ATMOSPHERE 3400. Introduction latitudes to about 10 miles at low latitudes. The standard atmosphere is a conventional vertical Weather is the state of the Earth’s atmosphere with structure of the atmosphere characterized by a standard sea- respect to temperature, humidity, precipitation, visibility, level pressure of 1013.25 hectopascals of mercury (29.92 cloudiness, and other factors. Climate refers to the average inches) and a sea-level air temperature of 15° C (59° F). long-term meteorological conditions of a place or region. The temperature decreases with height at the standard All weather may be traced to the effect of the Sun on lapse rate, a uniform 2° C (3.6° F) per thousand feet to 11 the Earth. Most changes in weather involve large-scale kilometers (36,089 feet), and above that remains constant at horizontal motion of air. Air in motion is called wind. This –56.5° C (-69.7° F). motion is produced by differences of atmospheric pressure, The jet stream refers to relatively strong (greater than which are attributable both to differences of temperature 60 knots) quasi-horizontal winds, usually concentrated and the nature of the motion itself. within a restricted layer of the atmosphere. Research has Weather is of vital importance to the mariner. The indicated that the jet stream is important in relation to the wind and state of the sea affect dead reckoning. Reduced sequence of weather. There are two commonly known jet visibility limits piloting. The state of the atmosphere affects streams. The sub-tropical jet stream (STJ) occurs in the electronic navigation and radio communication. -
Atmospheric Optics
PHSC 3033: Meteorology Atmospheric Optics Hot Radiating Objects Imagine a piece of metal placed in a hot furnace. At first, the metal becomes warm, although its visual appearance doesn't change. As it heats up, it begins to glow dull red, then orange, brilliant yellow, and finally white hot. Objects that emit light energy are called blackbody radiators. How do we explain this change in color? Spectrum Light Intensity as a function of Wavelength. Intensity Wavelength Blackbody Radiation Stefan-Boltzman Law (Amount of Energy) Energy Flux E = σ T4 As the temperature increases, the energy output increases more dramatically. Stefan-Boltzmann Constant σ = 5.6705 x 10-5 erg cm2/K4 s Wien’s Law Wien's law relates the temperature T of an object to the maximum wavelength at which it emits the most radiation. Mathematically, if we measure Temperature (T) in kelvins and the wavelength maximum (λ) in nanometers, we find that* λmax = 3,000,000/T *3,000,000 is an approximation of the value 2,900,000 like 300,000,000 m/s approximates the speed of light 299,792,458. Solar Spectrum Solar Radiation Output The sun looks “yellowish,” -- WHY Solar Surface Temperature With a spectrum peak at ~ 517 nm, the surface temperature of the sun can be estimated T = 3,000,000 / 517 T = 5800 K Scattering and Size Scattering is very dependent upon the size of the object compared to the wavelength (λ) of light. Very little effect occurs if the wavelength (λ) is very much smaller or very much bigger than the object. -
Chapter 6 Splashing Colors Everywhere, Like a Rainbow (Optics)
Optics 1 Chapter 6 Splashing colors everywhere, like a rainbow (optics) Here are the references and web links for the stories in the book. Recently added references are highlighted. For updates to those stories and for all the new stories, go to http://www.flyingcircusofphysics.com/News/NewsDetail.aspx?NewsID=42 Jan 2015 6.1 Rainbows This item is discussed in the book The Flying Circus of Physics, second edition, by Jearl Walker, published by John Wiley & Sons, June 2006, ISBN 0-471-76273-3. The material here is located at www.flyingcircusofphysics.com and will be updated periodically. Photos and discussions http://www.atoptics.co.uk/ Many photos and explanations of atmospheric optics http://atmospherical.blogspot.com/search?updated-min=2006-01-01T00%3A00%3A00Z&updated- max=2007-01-01T00%3A00%3A00Z&max-results=50 Blog devoted to photos of atmospheric phenomena http://atmospherical.blogspot.com Way cool blog site with lots of photos and descriptions. Go through the archived blogs by clicking on the button at the bottom of the page. The blog started in April 2006. Videos: http://www.youtube.com/watch?v=z3iOjTqFGWY&mode=related&search= Double rainbows plus lightning http://www.youtube.com/watch?v=ZmVuO-qQOn8 Primary rainbow plus faint secondary bow http://www.youtube.com/watch?v=cylV9Lp9fuM&mode=related&search= Double rainbow References Dots through indicate level of difficulty Journal reference style: author, journal, volume, pages (date) Book reference style: author, title, publisher, date, pages Neuberger, N., "A rainbow in a cirrus sky in winter," Bulletin of the American Meteorological Society, 26, 211 (1945) Boyer, C. -
1963: Optical Phenomena in Planetary Meteorology
Visibility Laboratory- University of California Scripps Institution of Oceanography San Diego 52, California OPTICAL PHENOMENA IN PLANETARY METEOROLOGY •:,:,-.:.-t p: •..-/.L.-. pr.-'Orio Ejj-"--Mye£s•'-'"''•"'" August 1963 SIO Ref. 63-4 Approved: S. Q. Duntley, Director VJ '••. Visibility Laboratory Optical Phenomena in Planetary Meteorology It has recently been suggested by Professor John D, Isaacs, of the Scripps Institution of Oceanography, University of California, San Diego, that significant information concerning the atmospheres of Venus, Mars, and Jupiter might be wrested from terrestrial observa tion of their anti-corona, halo, and rainbow phenomena. This report is a compilation, in the form of an annotated bibliography, of avail able information concerning what is now known of planetary atmospheres, pertinent optical phenomena in terrestrial meteorology, and the means for acquisition of further data concerning terrestrial and extra terrestrial atmospheres. In its outline of a general approach to planetary atmospheric research, the National Research Council Committee on Atmospheric Sciences (NRS-1962) states: "Firstly, it is cheaper to make an observation from the earth, or from a balloon, than it is from a space vehicle. Therefore, during the early phase, every effort should be made to gain knowledge with the aid of suitable terrestrial observations," (Vol. 1, Section 3.4.1) "As observations become available, there will develop an increasing need for experimental and theoretical studies of physical as well as dynamical phenomena and for com parisons with results gained from research on our own atmosphere." (Vol. 1, Section 3.4.4) Thus the potential value of further thought and research along these lines is recognized. -
Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information
Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information Index 120° parhelion, 133, 134, see also halo A-Train satellite constellation, 259, 260 1-D climate model, 365 cloud and aerosol interactions, 366 1-D model, 51, 361, 363, 364 deposition, 192, 193 detection of thin cirrus, 286, 287 22° halo, 133, 134, see also halo direct and indirect effect of, 361, 362, 380 22° parhelion, 130, 133, see also halo historical review of polarization measurements, 302 2-D climate model, 366 radiative transfer, 332 radiative transfer results compared with satellite 46° halo, 128, 132, 134, 186, 189, 220, 233, 268, 269, observations, 346, 348 see also halo soot and sulfate aerosols, 379, 380 view from satellite instruments, 14, 16 absorbing boundary conditions, 204 Aerosol Polarimetry Sensor, 302 absorptance, 80, 255 AGCM, 366, 370, see also GCM absorption aggregate, 20, 32, 35, 38, 39, 42, 43, 47, 49, 216, 218, coefficient, 77, 78, 80, 325, 335, 336, 337 233, 234, 239, 271, 273, 303 cross-section, 55, 56, 156, 157, 175, 176, 330 Airborne Visible/Infrared Imaging Spectrometer, 286 efficiency, 168 AIRS, 11, 259, 277, 279, 280, 281, 300, see also line, 250, 252, 279, 321, 323, 328, 333, 335, 336, Atmospheric Infrared Sounder 338 Airy function, 167 spectrum albedo CH4, 250 cloud, 344, 351, 361 CO, 250 global, 293, 390 CO2, 250 planetary, 346 H2O, 250 shortwave, 349 N2, 250 single-scattering, see single-scattering albedo N2O, 250 solar, 341, 342, 344, 359, 360, 361, 362, 364, 373, O2, 250