Artificial Circumzenithal and Circumhorizontal Arcs

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Circumzenithal and Circumhorizontal Arcs Artificial circumzenithal and circumhorizontal arcs Markus Selmke and Sarah Selmke* *Universit¨atLeipzig, 04103 Leipzig, Germany∗ (Dated: September 2, 2018) We revisit a water glass experiment often used to demonstrate a rainbow. On a closer look, it also turns out to be a rather close analogy of a different kind of atmospheric optics phenomenon altogether: The geometry may be used to faithfully reproduce the circumzenithal and the circum- horizontal halos, providing a missing practical demonstration experiment for those beautiful and common natural ice halo displays. I. INTRODUCTION Light which falls onto a transparent thin-walled cylin- der (e.g. a drinking glass) filled with water gets refracted. Several ray paths may be realized through what then ef- fectively represents a cylinder made of water. Light may either illuminate and enter through the side of the cylin- der, or may enter through the top or bottom interfaces, depending on the angle and spot of illumination. Indeed, FIG. 1. Rays entering through the top face of both a cylinder in the former situation, i.e. illumination from the side and (left) and a hexagonal prism (right) experience an equivalent refraction. Refraction of the skew rays by the side faces are under a shallow inclination angle reveals a rainbow in the equivalent when the effect of rotational averaging of the prism backwards direction. The reason being that the geome- is considered. The same holds true for the reverse ray path. try mimics the incidence plane geometry of a light path though a spherical raindrop: Refraction, internal reflec- tion and a second refraction upon exit, all occurring at was the first to establish an extensive quantitative frame- the cylinder's side wall, produce the familiar observable work for halos based on the (false) assumption of refract- ◦ rainbow caustic in the backwards direction at around 42 ing cylinders, did not conceive of this CZA mechanism 2,3 towards the incidence light source. and instead invoked a more complicated one.13 Now, returning to the initial claim, we consider illumi- We will detail each experimental setup and show how nation of the glass through the top water-air interface. If to arrive at a quantitative description of several aspects of the angle of incidence is shallow enough, light may exit the artificial halo analoga, rederiving well-known expres- through the cylinder's side wall. Contrary to common sions from the natural atmospheric optics ice halo phe- belief,1 (cf. also blogs etc. found via an internet search for nomena. For ideal experimental results, one may use a \glass water table rainbow") this situation is not related round reflection cuvette. However, a beaker or any other to the rainbow. Instead, this geometry equals the aver- cylindrical glass and a focusable LED flashlight (source age geometry of light paths through an upright hexagonal of parallel white light) will work just fine. ice prism, entering through the (horizontal) top face and leaving through either of its six (vertical) side faces, cf. Fig.1. The averaging meant being over different prism II. ARTIFICIAL CIRCUMZENITHAL ARC orientations as indicated in the figure. This, in turn, is what causes the natural atmospheric phenomenon known 3{11 We begin with the artificial CZA, for which a ray is as- as the circumzenithal arc (CZA) halo, an example of sumed to enter through the top air-water interface and to which is shown in Fig.2(a). In the experiment, an anal- leave the cylinder through its side wall, cf. Fig.3(a)-(c). ogous curved spectrum is observed when the refracted At the first interface, the ray changes its inclination e to- light is projected on the floor (the horizontal plane) some wards the horizontal plane according to Snell's law. We arXiv:1608.08664v1 [physics.ao-ph] 30 Aug 2016 12 distance from the cylinder, see Fig.2(b). denote complementary angles by a subscript c, such that Similarly, illuminating the glass at a very steep angle for instance ec = π=2 − e, see Fig.3(b). Thus, we have at its side, the light may enter through the side wall and 0 sin (ec) = n0 sin (ec), with an associated transmission co- leave through the top surface. Now, apart from top and efficient T1 (ec) according to the Fresnel equations. When bottom being reversed, this geometry equals the average later discussing intensities, we will consider polarization- geometry of light entering a rectangular (vertical) side averaged transmission coefficients only, although this ap- face of a hexagonal plate crystal and leaving through its proach will not strictly be valid for the second refraction bottom (horizontal) hexagonal face. This is the situation due to the partial polarization upon the first refraction. corresponding to the natural halo phenomenon known as The second (skew-ray) refraction now occurs un- the circumhorizontal arc (CHA).3{6,8{11 der a geometry that may be decomposed into two Anecdotally, it appears puzzling why Huygens, who parts8{11,15,16: One in the horizontal plane (i.e. as seen 2 from the top, cf. Fig.3(c)) and described by an effec- tive index of refraction n0, Bravais' index of refraction (a) for inclined rays, and a second inclination refraction de- scribed by the actual material's index of refraction n0. d 17 re e The appropriate effective index of refraction reads: lu a) b s cos2 (e0) n0 = : (1) 2 2 0 1=n0 − sin (e ) zenith The exiting ray, which hit the cylinder's side wall under a xy-projected incidence angle of φ (to the normal), is thus deflected in the horizontal plane by φ00 = φ0 − φ, cirrus clouds where Snell's law connects the latter two angles via n0 sin (φ) = sin (φ0). The inclination angle to the plane (b) 0 00 changes according to n0 sin (e ) = sin (e ), such that over- all the exit angle to the vertical becomes7{9,11 q 00 2 2 ec = arccos n0 − cos (e) : (2) original image exposure corr. Then, referring to the experiment's setup and coordinates point as defined in Fig.3(a), one finds for each light source below glass inclination angle e the deflected rays to lie on a curve (x (φ) ; y (φ)). This CZA curve may be parametrized by the angle φ 2 [−π=2; π=2], see Fig.3(c), as stool x sin (φ00) = l tan (e00) ; (3) light incidence direction y c cos (φ00) (c) wherein φ00 = φ00 (φ), i.e. sin (φ00 + φ) = n0 sin (φ). Eq.3 describes a circle, see dashed line in Fig.2(b),(c). How- 0.4 ever, it turns out that only a segment of the circle is at- tainable by the exiting rays due to the occurrence of total 0.3 internal reflection. The solid black line in Fig.2(c) shows this limit. The critical internal angle of incidence may 0.2 c i 0 0 r be found from φ = arcsin (1=n ), such that φ = π=2 c TIR l 0 e marks the onset of total internal reflection. Herein n is 0.1 a function of e0 which is a function of e. One finds8,11 0.0 q -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 2 φTIR = arccos n0 − 1= cos (e) ; (4) which translates into a corresponding azimuthal limit 00 FIG. 2. (a) Natural circumzenithal arc (CZA) halo display. φ = π=2 − φTIR of the (projected artificial) CZA. TIR The solar elevation was e = 27◦,18 and the angular distance A similar reasoning leads to the existence of a critical 00 ◦ to the zenith was ec = 16 as determined with the help of the elevation angle eTIR above which the internal second re- 00 vanishing lines of vertical & parallel features of the building fraction becomes a total internal reflection, ec = 0, Eq. 19 0 (dashed lines). (b) Artificial CZA produced by illuminat- (2), even for φ = 0 where n is lowest. Equivalently, ing the top surface of a water-filled acrylic cylinder under a one may set φTIR ! 0 and solve Eq. (4) for e to arrive shallow angle (outer = 50 mm, inner = 46 mm, length: 7{9,11 ? ? at: 50 mm, height: l = 1 m). (c) Artificial CZA curves according ◦ ◦ ◦ q to Eq. (3) for e = f5 ; 15 ; 25 g and for red and blue color 2 each. Shading according to the intensity I (φ00), Eq. (6). eTIR = arccos n0 − 1 : (5) ◦ Eq. (5) shows that at around eTIR = 28 even the last p glimpse of the red (n0 (red) = 1:332, i.e. less refracted shows that any material with n0 > 2, i.e. glass, will 15,28{30 than blue n0 (blue) = 1:341) part of the artificial (wa- not produce a CZA (nor a CHA). For this reason ter) CZA disappears. For ice, taking n0 = 1:31, the alone, and in order to not have to construct a water-filled corresponding critical solar elevation above which this hexagonal prism, it is nice to have a simple analog demon- halo can no longer be observed is 32◦.7{11 Eq. (5) also stration experiment to overcome this practical limitation. 3 (a) (b) (c) (d) incidence xy-plane flat ice-crystals only: plane of incidence exit ray exit ray CZA exit ray (e) (f) exit ray (g) (h) CHA xy-plane plane of incidence incidence FIG. 3. Geometry and setup for (a)-(d) the CZA experiment and (e)-(h) the CHA experiment. Read text for details. 00 00 00 7 The full azimuthal width of the CZA is ∆φCZA = 2φTIR ordinate φ requires several key factors to be considered: and is an increasing function of the elevation, starting from 125◦ and approaching a half-circle, i.e.
Recommended publications
  • Atmospheric Phenomena by Feist
    Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two.
    [Show full text]
  • References: Snel's Law and Refraction Index of Refraction For
    ESCI 340 - Cloud Physics and Precipitation Processes Lesson 13 - Atmospheric Optical Phenomena Dr. DeCaria References: One of the best sources for information about atmospheric optics is the Atmospheric Optics website, http://www.atoptics.co.uk Snel's Law and Refraction • The index of refraction for a medium is defined as m = c=c;~ (1) where c is the speed of light in a vacuum, andc ~ is the speed of light in the medium.1 • As light passes from one medium into another, there is both reflection and refraction. • Refraction occurs because the wave fronts bend as they cross from one medium into another, causing a ray of light to bend. The ray bends toward the medium that has the slower speed of light (highest index of refraction). • The bending of the ray is quantified by Snel's Law, which is stated mathematically as sin θ m 1 = 2 ; (2) sin θ2 m1 where θ1 is the angle of incidence (and reflection), θ2 is the angle of refraction, and m1 and m2 are the indices of refraction in the two mediums (see Fig. 1). • The amount by which a ray of light is deflected due to refraction can be quantified in one of two ways. { The bending angle, θ0, is the interior angle between the initial and final rays. { The deviation angle, θ00, is the complement of the bending angle, θ00 = 180◦ −θ0. { The relationship between bending angle and deviation angle is illustrated in Fig. 2. Index of Refraction for Air • Light travels faster through warm air than it does through cold air.
    [Show full text]
  • Atmospheric Halos
    Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young.
    [Show full text]
  • TO LOG I'qure
    GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt
    [Show full text]
  • Ensk Heiti Íslensk Heiti Skýring Ablation Leysing Leysing (Einkum Á Jöklum
    Ensk heiti Íslensk heiti skýring ablation leysing leysing (einkum á jöklum) absolute extremes aftök absolute humidity rakamagn massi vatnsgufu á rúmmálseiningu lofts absolute zero alkul 0 Kelvingráður = -273,16 selsíusgráður absorption ísog geislanám (gleyping) abyssal flow djúpsjávarflæði sjávarstraumar næst botni acceptable risk viðunandi áhætta acceptance level áhættuviðmið accessory clouds hjáský sérstök minni ský sem fylgja ákveðnum skýjategundum og hafa sérstök nöfn accidental load skyndiálag acclimatization umhverfisaðlögun veðráttuaðlögun accretion áhleðsla accumulated temperature gráðudagafjöldi accumulation ákoma söfnun acid deposition súrfelli acid precipitation súr úrkoma acid rain súrt regn adaption aðlögun adiabatic innrænn bókstaflega = ekki-gegnumstreymanlegur = ófær adiabatic temperature changes innrænar hitabreytingar varðveita mættishita adret - ubac effect viðhorfsáhrif adsorption ásog (aðlögun) aðlögun advection aðstreymi advection fog aðstreymisþoka advective inversion aðstreymishitahvörf aeolian vind- aerodynamic loftstreymis-, vindorku- aerological diagram háloftarit aerology háloftaveðurfræði aeronomy háloftaeðlisfræði aerosol ar agnúði, úrsúr, sveimur af þurrum eða votum smáögnum í andrúmslofti, úði úr þrýstidós ageostrophic flow hjáþrýstiflæði ageostrophic wind hjáþrýstivindur aggregate risk heildaráhætta aggregation klístrun þyrping agroclimatology búveðurfræði agrometeorology búveðurfræði air avalanche kófhlaup Ensk heiti Íslensk heiti skýring air mass lofthlot lofthaf, loft, loftmassi air pollution loftmengun
    [Show full text]
  • Night Blue Sky
    Light! Glorious Atmospheric Phenomena Jürgen Rendtel Leibniz-Institut für Astrophysik Potsdam (AIP) 8 July 2015 Light! 1 Outline Blue sky Shadows: clouds, mountains, … Water: droplets of various size Ice crystals Curved light paths Colours in the night Blue sky Our eyes: o Intensities – adaptive o Sensitive to differences o Colours – if bright enough eye sensitivity (cones) No sense for: o Polarization 8 July 2015 Light! 3 Blue sky 8 July 2015 Light! 4 Blue sky Night sky also blue (here scattered moonlight) limit: sensitivity level of the cones 8 July 2015 Light! 5 Blue sky Polarization of skylight 8 July 2015 Light! 6 Blue sky Polarization of skylight 8 July 2015 Light! 7 Shadows (Relative) darkness behind objects sunlight – parallel light view from top from observer O 8 July 2015 Light! 8 Shadows Mountain shadows symmetric observer at O „shadow spike“ Wendelstein (C.Hinz) Teide, with ~full moon 8 July 2015 Light! 9 Rainbow Water droplets + sunlight = rainbow primary arc: radius 42° refracted 2x, reflected 1x secondary arc: radius 51° refracted 2x, reflected 2x Alexander‘s dark band effects of drop size + shape? 8 July 2015 Light! 10 Rainbow Water droplets + sunlight = rainbow primary arc: radius 42° refracted 2x, reflected 1x in water… but different in sea water (higher refractive index) Lynch & Livingston 2001, p. 118 8 July 2015 Light! 11 Rainbow Drop size 2mm interference around the reflection inside the drop 1mm 0.5mm 8 July 2015 Light! 12 Rainbow Reflection inside the drop causes linear polarization linear polarizer: vertical -45° 8 July 2015 Light! 13 Rainbow Drop shape not spherical flattened (turbulence) split rainbows 8 July 2015 Light! 14 Rainbow Additional reflection e.g.
    [Show full text]
  • Telescope from Wikipedia, the Free Encyclopedia
    Rainbow From Wikipedia, the free encyclopedia For other uses, see Rainbow (disambiguation). Double rainbow and supernumerary rainbows on the inside of the primary arc. The shadow of the photographer's head on the bottom marks the centre of the rainbow circle (antisolar point). A rainbow is an optical and meteorological phenomenon that causes a spectrum of light to appear in the sky when the Sun shines on to droplets of moisture in the Earth's atmosphere. It takes the form of a multicoloured arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the sun. In a so-called "primary rainbow" (the lowest, and also normally the brightest rainbow) the arc of a rainbow shows red on the outer (or upper) part of the arc, and violet on the inner section. This rainbow is caused by light being refracted then reflected once in droplets of water. In a double rainbow, a second arc may be seen above and outside the primary arc, and has the order of its colours reversed (red faces inward toward the other rainbow, in both rainbows). This second rainbow is caused by light reflecting twice inside water droplets. The region between a double rainbow is dark, and is known as "Alexander's band" or "Alexander's dark band". The reason for this dark band is that, while light below the primary rainbow comes from droplet reflection, and light above the upper (secondary) rainbow also comes from droplet reflection, there is no mechanism for the region between a double rainbow to show any light reflected from water drops.
    [Show full text]
  • Chapter 34 Weather Elements
    CHAPTER 34 WEATHER ELEMENTS GENERAL DESCRIPTION OF THE ATMOSPHERE 3400. Introduction latitudes to about 10 miles at low latitudes. The standard atmosphere is a conventional vertical Weather is the state of the Earth’s atmosphere with structure of the atmosphere characterized by a standard sea- respect to temperature, humidity, precipitation, visibility, level pressure of 1013.25 hectopascals of mercury (29.92 cloudiness, and other factors. Climate refers to the average inches) and a sea-level air temperature of 15° C (59° F). long-term meteorological conditions of a place or region. The temperature decreases with height at the standard All weather may be traced to the effect of the Sun on lapse rate, a uniform 2° C (3.6° F) per thousand feet to 11 the Earth. Most changes in weather involve large-scale kilometers (36,089 feet), and above that remains constant at horizontal motion of air. Air in motion is called wind. This –56.5° C (-69.7° F). motion is produced by differences of atmospheric pressure, The jet stream refers to relatively strong (greater than which are attributable both to differences of temperature 60 knots) quasi-horizontal winds, usually concentrated and the nature of the motion itself. within a restricted layer of the atmosphere. Research has Weather is of vital importance to the mariner. The indicated that the jet stream is important in relation to the wind and state of the sea affect dead reckoning. Reduced sequence of weather. There are two commonly known jet visibility limits piloting. The state of the atmosphere affects streams. The sub-tropical jet stream (STJ) occurs in the electronic navigation and radio communication.
    [Show full text]
  • Atmospheric Optics
    PHSC 3033: Meteorology Atmospheric Optics Hot Radiating Objects Imagine a piece of metal placed in a hot furnace. At first, the metal becomes warm, although its visual appearance doesn't change. As it heats up, it begins to glow dull red, then orange, brilliant yellow, and finally white hot. Objects that emit light energy are called blackbody radiators. How do we explain this change in color? Spectrum Light Intensity as a function of Wavelength. Intensity Wavelength Blackbody Radiation Stefan-Boltzman Law (Amount of Energy) Energy Flux E = σ T4 As the temperature increases, the energy output increases more dramatically. Stefan-Boltzmann Constant σ = 5.6705 x 10-5 erg cm2/K4 s Wien’s Law Wien's law relates the temperature T of an object to the maximum wavelength at which it emits the most radiation. Mathematically, if we measure Temperature (T) in kelvins and the wavelength maximum (λ) in nanometers, we find that* λmax = 3,000,000/T *3,000,000 is an approximation of the value 2,900,000 like 300,000,000 m/s approximates the speed of light 299,792,458. Solar Spectrum Solar Radiation Output The sun looks “yellowish,” -- WHY Solar Surface Temperature With a spectrum peak at ~ 517 nm, the surface temperature of the sun can be estimated T = 3,000,000 / 517 T = 5800 K Scattering and Size Scattering is very dependent upon the size of the object compared to the wavelength (λ) of light. Very little effect occurs if the wavelength (λ) is very much smaller or very much bigger than the object.
    [Show full text]
  • Chapter 6 Splashing Colors Everywhere, Like a Rainbow (Optics)
    Optics 1 Chapter 6 Splashing colors everywhere, like a rainbow (optics) Here are the references and web links for the stories in the book. Recently added references are highlighted. For updates to those stories and for all the new stories, go to http://www.flyingcircusofphysics.com/News/NewsDetail.aspx?NewsID=42 Jan 2015 6.1 Rainbows This item is discussed in the book The Flying Circus of Physics, second edition, by Jearl Walker, published by John Wiley & Sons, June 2006, ISBN 0-471-76273-3. The material here is located at www.flyingcircusofphysics.com and will be updated periodically. Photos and discussions http://www.atoptics.co.uk/ Many photos and explanations of atmospheric optics http://atmospherical.blogspot.com/search?updated-min=2006-01-01T00%3A00%3A00Z&updated- max=2007-01-01T00%3A00%3A00Z&max-results=50 Blog devoted to photos of atmospheric phenomena http://atmospherical.blogspot.com Way cool blog site with lots of photos and descriptions. Go through the archived blogs by clicking on the button at the bottom of the page. The blog started in April 2006. Videos: http://www.youtube.com/watch?v=z3iOjTqFGWY&mode=related&search= Double rainbows plus lightning http://www.youtube.com/watch?v=ZmVuO-qQOn8 Primary rainbow plus faint secondary bow http://www.youtube.com/watch?v=cylV9Lp9fuM&mode=related&search= Double rainbow References Dots through indicate level of difficulty Journal reference style: author, journal, volume, pages (date) Book reference style: author, title, publisher, date, pages Neuberger, N., "A rainbow in a cirrus sky in winter," Bulletin of the American Meteorological Society, 26, 211 (1945) Boyer, C.
    [Show full text]
  • 1963: Optical Phenomena in Planetary Meteorology
    Visibility Laboratory- University of California Scripps Institution of Oceanography San Diego 52, California OPTICAL PHENOMENA IN PLANETARY METEOROLOGY •:,:,-.:.-t p: •..-/.L.-. pr.-'Orio Ejj-"--Mye£s•'-'"''•"'" August 1963 SIO Ref. 63-4 Approved: S. Q. Duntley, Director VJ '••. Visibility Laboratory Optical Phenomena in Planetary Meteorology It has recently been suggested by Professor John D, Isaacs, of the Scripps Institution of Oceanography, University of California, San Diego, that significant information concerning the atmospheres of Venus, Mars, and Jupiter might be wrested from terrestrial observa­ tion of their anti-corona, halo, and rainbow phenomena. This report is a compilation, in the form of an annotated bibliography, of avail­ able information concerning what is now known of planetary atmospheres, pertinent optical phenomena in terrestrial meteorology, and the means for acquisition of further data concerning terrestrial and extra­ terrestrial atmospheres. In its outline of a general approach to planetary atmospheric research, the National Research Council Committee on Atmospheric Sciences (NRS-1962) states: "Firstly, it is cheaper to make an observation from the earth, or from a balloon, than it is from a space vehicle. Therefore, during the early phase, every effort should be made to gain knowledge with the aid of suitable terrestrial observations," (Vol. 1, Section 3.4.1) "As observations become available, there will develop an increasing need for experimental and theoretical studies of physical as well as dynamical phenomena and for com­ parisons with results gained from research on our own atmosphere." (Vol. 1, Section 3.4.4) Thus the potential value of further thought and research along these lines is recognized.
    [Show full text]
  • Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information
    Cambridge University Press 978-0-521-88916-2 — Light Scattering by Ice Crystals Kuo-Nan Liou , Ping Yang Index More Information Index 120° parhelion, 133, 134, see also halo A-Train satellite constellation, 259, 260 1-D climate model, 365 cloud and aerosol interactions, 366 1-D model, 51, 361, 363, 364 deposition, 192, 193 detection of thin cirrus, 286, 287 22° halo, 133, 134, see also halo direct and indirect effect of, 361, 362, 380 22° parhelion, 130, 133, see also halo historical review of polarization measurements, 302 2-D climate model, 366 radiative transfer, 332 radiative transfer results compared with satellite 46° halo, 128, 132, 134, 186, 189, 220, 233, 268, 269, observations, 346, 348 see also halo soot and sulfate aerosols, 379, 380 view from satellite instruments, 14, 16 absorbing boundary conditions, 204 Aerosol Polarimetry Sensor, 302 absorptance, 80, 255 AGCM, 366, 370, see also GCM absorption aggregate, 20, 32, 35, 38, 39, 42, 43, 47, 49, 216, 218, coefficient, 77, 78, 80, 325, 335, 336, 337 233, 234, 239, 271, 273, 303 cross-section, 55, 56, 156, 157, 175, 176, 330 Airborne Visible/Infrared Imaging Spectrometer, 286 efficiency, 168 AIRS, 11, 259, 277, 279, 280, 281, 300, see also line, 250, 252, 279, 321, 323, 328, 333, 335, 336, Atmospheric Infrared Sounder 338 Airy function, 167 spectrum albedo CH4, 250 cloud, 344, 351, 361 CO, 250 global, 293, 390 CO2, 250 planetary, 346 H2O, 250 shortwave, 349 N2, 250 single-scattering, see single-scattering albedo N2O, 250 solar, 341, 342, 344, 359, 360, 361, 362, 364, 373, O2, 250
    [Show full text]