Atmospheric Phenomena by Feist

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Phenomena by Feist Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two. Such crystals have 120° internal fainter bow with a radius of 51° and in that may not completely fit into the field of angles with 90° angles on the ends. colours are reversed. Between the two, the view of your camera. Sunlight can either be refracted through sky looks much darker. This area is known Water droplets in the clouds can also these crystals as it would through a stan- as Alexander's Dark Band. Within the pri- produce a corona. This appears as a small- dard prism, (a hexagonal prism can be mary bow other faint bands can sometimes ish ring, or rings, around the Sun and imagined to be a 60° triangular prism with be seen. These are called supernumerary Moon when they are shining through the angles removed.) or be reflected off bows and are faintly coloured. clouds. They are often outlined with a their surfaces to produce either colourful The brightness and richness of the col- brownish red colour and are usually about or white arcs or patches of light. The ori- ours of the rainbow depends on the size of 5° or less across and should not be con- entation of the crystals is important, as is the water droplets producing them. Fog, fused with the solar corona, an outer part whether they are spinning or not. Such ice which is made up of very small droplets, of the Sun, visible during a solar eclipse. crystals mainly occur in wispy cirrus can produce a fogbow, which is colourless. The atmospheric corona is close to the Sun clouds or sheets of thin cirrostratus cloud The Moon can also produce a rainbow, in the sky it is therefore hard, or even dan- and even aeroplane condensation trails known as a moonbow. This is necessarily gerous, to look at and most observed coro- (contrails) may produce colourful and bril- quite faint, the colours not being notice- nae will be around the Moon. liant effects. Both the Sun and Moon can able to our eyes. Reflection and refraction Effects caused by ice crystals—patches, cause such effects although only the within the raindrops cause nearly all these arcs and circles brighter forms can be seen around the effects, although the supernumeraries are Water in high clouds is often frozen into Moon because our satellite is faint in com- caused by diffraction. Rainbows may be ice crystals. These crystals occur in vari- parison to the Sun. The commonest phenomenon is the 22° halo that can be seen around either the Sun or Moon. Many observers must have no- ticed this huge arc, like a great cartwheel in the sky, around a rather murky Moon. It is common in the daytime around the Sun although this is less likely to be noticed due to the glare. To protect our eyes al- ways hide the Sun behind your hand or roof or street-lamp (or something similar) when observing haloes. Not all the halo may be visible, as it will only occur where the cloud is and the cloud may not com- pletely cover the sky. The bottom half of the halo may be too near the horizon to be clearly seen and the commonest effect re- corded is the 'upper part of a 22° halo'. Lunar haloes are less common as the Moon is not in the sky every night and, when it is, it will often be of a small phase which is not bright enough to produce a halo. However, the Moon does not have to be Full to produce a halo, even Quarter Moons will do it. The Solar 22° halo may be fairly colourless although often will This magnificent solar halo was imaged by SPA Solar Section Director Richard Bailey. show a reddish edge. It will never be as Is it raining? Is it centred on the light source, the zenith or antisolar point? Take care not to look directly at the Sun but block it out using a book or building. Is it a patch, an arc or a circle? An arc may be an incomplete circle. How many degrees is it from the light source? Use your outspread hand at arm's length as 22° measure. Is it coloured or white? Look carefully as the colour may be very faint. Are there any other optical effects visible? If one occurs, there may well be others in another part of the sky. What types of clouds are there in the sky? Cirrus and cirrostratus—even contrails— tend to produce good effects. Some angular sizes found in atmos- pheric optical displays ½° Diameter of Sun & Moon 2-4° Diameter of lunar corona 22° Radius of common (small) halo 42° Radius of primary rainbow 46° Radius of (large) halo 51° Radius of secondary rainbow Percentage frequency of atmospheric phenomena (based on observations made from January to April 1990) Solar halo 49% A sun pillar, imaged by Graham Thornton in Portsmouth. Parhelia 25% colourful as a rainbow, although there are tion, it will never show coloured effects. It Rainbow 10% other phenomena that can be. A halo oc- is know as a parhelic circle. Lunar halo 4% curs in the direction of the Sun (or Moon) Another phenomenon produced solely Lunar corona 4% but a rainbow (or moonbow) must be op- by reflection is the Sun pillar (or Moon Sun pillar 4% posite the source, so that they can easily be pillar). When the Sun approaches the hori- Circumzenithal arc 2% told apart. zon at sunset, a single beam of light may Unidentified 2% Rarely, an even larger halo will appear sometimes be seen shooting straight up around the Sun. This is called the 46° solar from it. More rarely a beam may be seen Bibliography halo. As it is much fainter than the smaller reflected below it. Similar effects may be Colour and Light in Nature halo and is so big, over 90° across, it is seen at sunrise. Such effects must not be ByLynch & Livingstone (2001) CUP almost never seen in its entirety. Some- confused with crepuscular rays which ap- ISBN 0521775043 times haloes with other radii are seen and pear as radiating beams, above or below How to Identify–Weather these are often hard to explain. the Sun, when it sunlight shines through By Storm Dunlop (2002) HarperCollins The most colourful effect must be the gaps in the clouds. Recently a Venus pillar ISBN 00022026 circumzenithal arc, which appears above has been recorded and even photographed. Out of the Blue the top of the 46° halo. It is unusual in I have left to the end one of the most By John Taylor (2002) CUP that, unlike many haloes, it is not centred common optical phenomena, which has ISBN 0521809258 on the Sun but on the point vertically three names, It is scientifically called a Rainbows, Halos & Glories above, called the zenith. It looks like, and parhelion (plural parhelia) but is also By Robert Greenler (1989) CUP is often misidentified as an upside down known as a mock sun or sundog. The lunar ISBN 0521388651 rainbow. The Sun has to be quite low in version is called a paraselene or moondog. Seeing the Sky the sky for it to appear. Sundogs occur about 22° either side of the By Fred Schaaf (1990) John Wiley ISBN Below the bottom of the 46° halo there setting or rising Sun but will be farther out 047151067X might appear a circumhorizontal arc. This when the Sun is higher in the sky. If the The Nature of Light & Colour in the Open is also very colourful but the Sun has to be Sun is higher than about 60° the sundogs Air very high in the sky for it to appear at all cannot form at all. Sundogs often occur on By M/Minneart (1954) Dover and is unlikely to be seen from out lati- their own without the halo being present ISBN 486201961 tude, although it is just a rare possibility at and they may occur singly or with one on Wonders of the Sky the very height of summer.
Recommended publications
  • Atmospheric Effects Are Looking Up
    Atmospheric Effects are Looking Up OASI Workshop 21st May 2018 by Olaf Kirchner Ever seen one of these ? OK, so how about one of these? Atmospheric Effects - caused by sun- or moonlight interacting with liquid water or ice in the air - surprisingly common - always beautiful and one or several phenomena may be seen at the same time - can be in-your-face obvious or very subtle, and ... - ... span the entire sky - a challenge to photograph - very complicated theoretical explanations Effects caused by Liquid Water Droplets - rainbows - glories, Heiligenschein and the Spectre of the Brocken - aureoles / coronae - nacreous / iridescent / Mother-of-Pearl clouds Rainbow Rainbow Ray paths for primary rainbow Ray paths through a spherical water drop Ray paths for secondary rainbow Secondary Rainbow Secondary rainbow Alexander’s Band Supernumerary rainbow Primary rainbow Rainbow Gap in cloud behind observer = partial rainbow Rainbow in spray, Geneva Jet d’Eau Supernumerary Rainbow Interference colours from different lengths of light path Rainbow Circular rainbow seen from an aircraft Rainbows don’t reflect ... Glory Colourful diffraction rings centred on the antisolar point, caused by reflection from spherical droplets Glory ... i.e. centred on where the shadow of your head would be! Brockengespenst = Spectre of the Brocken Taken against fog from Golden Gate Bridge Brocken (1142 m) . Highest point in the Harz mountains Heiligenschein = Halo Antisolar point in hydrothermal steam ... scary stuff Heiligenschein ... i.e. a glory centred on your head
    [Show full text]
  • Atmospheric Optics
    53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering
    [Show full text]
  • The Quest for the Gegenschein Erwin Matys, Karoline Mrazek
    The Quest for the Gegenschein Erwin Matys, Karoline Mrazek The sun’s counterglow — or gegenschein — is kind of a stargazers’ legend. Every amateur astronomer has heard about it, only a few of them have actually seen it, and even fewer were lucky enough to capture an image of this dim and ghostlike apparition. As a fellow observer put it: “The gegenschein is certainly not a GOTO-object.” Matter of fact, it isn’t an object at all. But let’s start from the beginning. What exactly is the gegenschein? It is widely known that the space between the planets isn’t empty. The plane of the solar system is filled with an enormous disk of small dust particles with sizes ranging from less than 1/1000 mm up to 1 mm. It is less commonly known that this interplanetary dust cloud is a highly dynamic structure. In contrast to conventional wisdom, it is not an aeon-old leftover from the solar system’s formation. This primordial dust is long gone. Today’s interplanetary dust is — in an astronomical sense of speaking — very young, only millions of years old. Most of the particles originate from quite recent incidents, like asteroid collisions. This is not the gegenschein. The picture shows the zodiacal light, which is closely related to the gegenschein. Here imaged from a rural site, the zodiacal light is a cone of light extending from the sun along the ecliptic, visible after dusk and before dawn. The gegenschein stems from the same dust cloud, but is much harder to detect or photograph.
    [Show full text]
  • Wfc3 Isr 2014
    SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA Instrument Science Report WFC3 2014-11 The Near Infrared Sky Background N. Pirzkal May 13, 2014 ABSTRACT WFC3 IR observations are often background limited. In the vast majority of cases, when HST is pointed away from the Earth Limb, the main contribution to this background light is caused by zodiacal infrared light, including the Gegenschein, the diffuse glow in the sky centered upon Earth's antisolar point. In this ISR, we present direct measurements of the infrared background levels as observed by WFC3 since its launch and in several broad band filters. We compare our observations to the values currently used in the Exposure Time Calculator (ETC) and derive a model of the IR background levels as a function of Ecliptic Latitude and Sun Angle. Data and Analysis WFC3 IR images have been continuously monitored since the installation of WFC3 on board of HST, as part of the \Blob" Monitoring Program (Pirzkal et al. 2012) and the making of deep sky-flats (Pirzkal et al. 2011). The data that were used and details of the procedures used are given in Pirzkal et al. 2011 and Pirzkal et al. 2012. As part of this routine monitoring, we naturally needed to accurately measure the background level in each of the available infrared exposures. The was done by first generating an object mask using SExtractor for each individual FLT file. This mask was then used to mask out sources in each of the IMSET of the original IMA file and we then computed the background in each IMSET Copyright c 2008 The Association of Universities for Research in Astronomy, Inc.
    [Show full text]
  • Atmospheric Optical Phenomena and Radiative Transfer
    ATMOSPHERIC OPTICAL PHENOMENA AND RADIATIVE TRANSFER BY STANLEY DAVID GEDZELMAN AND MICHAEL VOLLMER Sky colors, rainbows, and halos are simulated using models that include light scattered as it passes through clear air and clouds of finite optical depth. ivid rainbows, ice crystal halos, coronas, iridescence, glories, mirages, sky colors, and crepuscular rays have Valways inspired awe and wonder. This makes simulating atmospheric optical phenomena both a scientific and aesthetic undertaking. Atmospheric optics has a venerable history (Pernter and Exner 1922; Minnaert 1993; Humphreys 1940; Tricker 1970; Greenler 1980; Meinel and Meinel 1983; Lynch and Livingston 2001), because the phenomena appear so simple and striking, and because scientists emphasized this branch of atmospheric science at a time when it was far more difficult to examine large-scale weather systems. Discoveries made about or involving the rainbow by Rene Descartes, Isaac Newton, and Thomas Young rank among the early triumphs of the scientific revolution (Boyer 1987). All optical phenomena are produced when air molecules, aerosol particles, or hydrometeors either scatter or absorb light as it passes through the atmosphere. Many of the observed features of the optical phenomena can be reproduced by applying a scattering theory of light to a single particle. This can be done at various levels of complexity. The most accurate and perhaps most intricate Rainbow. " University Corporation for Atmospheric theories involve • i Research, Photo by Carlye Calvin BAH5- AMERICAN METEOROLOGICAL SOCIETY Unauthenticated | DownloadedAPRIL 2008 10/09/21 01:28 AM UTC solving Maxwell's equations with appropriate bound- flattening of drops (Fraser 1983), while models of ary conditions.
    [Show full text]
  • References: Snel's Law and Refraction Index of Refraction For
    ESCI 340 - Cloud Physics and Precipitation Processes Lesson 13 - Atmospheric Optical Phenomena Dr. DeCaria References: One of the best sources for information about atmospheric optics is the Atmospheric Optics website, http://www.atoptics.co.uk Snel's Law and Refraction • The index of refraction for a medium is defined as m = c=c;~ (1) where c is the speed of light in a vacuum, andc ~ is the speed of light in the medium.1 • As light passes from one medium into another, there is both reflection and refraction. • Refraction occurs because the wave fronts bend as they cross from one medium into another, causing a ray of light to bend. The ray bends toward the medium that has the slower speed of light (highest index of refraction). • The bending of the ray is quantified by Snel's Law, which is stated mathematically as sin θ m 1 = 2 ; (2) sin θ2 m1 where θ1 is the angle of incidence (and reflection), θ2 is the angle of refraction, and m1 and m2 are the indices of refraction in the two mediums (see Fig. 1). • The amount by which a ray of light is deflected due to refraction can be quantified in one of two ways. { The bending angle, θ0, is the interior angle between the initial and final rays. { The deviation angle, θ00, is the complement of the bending angle, θ00 = 180◦ −θ0. { The relationship between bending angle and deviation angle is illustrated in Fig. 2. Index of Refraction for Air • Light travels faster through warm air than it does through cold air.
    [Show full text]
  • Than Mountain Air and Daytime Scenery
    Moonbows overYosem te By Donald W. Olson, Russell L. Doescher, and the Mitte Honors Students The rainbow occurs by day, and it was formerly thought that it never appeared by night as a moon rainbow. This opinion was due to the rarity of the phenomenon: it was not observed, for though it does happen, it does so rarely. The colors are not easy to see in the dark. The moon rainbow appears white. — Aristotle, Meteorologica, about 340 BC More than mountain Few sights evoke such spontaneous delight and wonder as a late- afternoon rainbow bursting into view in the eastern sky after a air and daytime spring downpour. Even before it appears, you sense that it might, and you keep a lookout. Maybe you once fancied fi nding a pot of scenery beckon gold where the colorful arc ends. Yet how many of us have seen a rainbow at night? While this is a visitors to Yosemite fairly rare event, nature lovers as far back as Aristotle knew it was National Park each possible for a bright Moon, like the Sun, to produce a rainbow. When rays of light from the Sun (or Moon) shine on spherical spring — many go for drops of water in a rain shower, a combination of refraction, inter- nal refl ection, and dispersion can produce a rainbow display. The a chilly, damp, night- primary bow forms a circular arc with a radius of 42°, and under good conditions a much fainter secondary rainbow can appear time vigil. with a radius of 51° and with the sequence of colors reversed.
    [Show full text]
  • 2003 Astronomy Magazine Index
    2003 astronomy magazine index Catchall (Martian crater), 11:30 observing Mars from, 7:32 hydrogen, 10:28 Subject index CCD (charge-coupled device) cameras, planets like, 6:48–53 Hydrus (constellation), 10:72–75 3:84–87, 5:84–87 seasons of, 3:72–73 A CCD techniques, 9:100–105 tilt of axis, 2:68, 5:72–73 I accidents, space-related, 7:42–47 Celestron C6-R (refractor), 11:84 EarthExplorer web site, 4:30 Achernar (star), 10:30 iceball, found beyond Pluto, 1:24 Celestron C8-N (reflector), 11:86 eclipses India, plans to visit Moon, 10:29 Advanced Camera for Surveys, 4:28 Celestron CGE-1100 (amateur telescope), in Australia (2003), 4:80–83 ALMA (Atacama Large Millimeter Array), infrared survey, 8:31 11:88 lunar integrating wavelengths, 4:24 3:36 Celestron NexStar 8 GPS (amateur telescope), of 2003, 5:18 Amalthea (Jupiter’s moon), 4:28 interferometry 1:84–87 of May 15, 2003, 5:60, 80–83, 88–89 techniques for, 7:48–53 Amateur Achievement Award, 9:32 Celestron NexStar 8i (amateur telescope), solar Andromeda Galaxy VLT interferometer, 2:32 11:89 of May 31, 2003, 5:80–83, 88–89 International Space Station, 3:31 picture of, 2:12–13 Centaurus A (NGC 5128) galaxy Edgar Wilson Award, 11:30 young stars in, 9:86–89 Internet, virtual observatories on, 9:80–85 1,000 Mira stars discovered in, 10:28 Egg Nebula, 8:36 Intes MK67 (amateur telescope), 11:89 Annefrank (asteroid), 2:32 picture of, 10:12–13 elliptical galaxies, 8:31 antineutrinos, 4:26 Io (Jupiter’s moon), 3:30 ripped apart satellite galaxy, 2:32 Eta Carinae (nebula), 5:29 ISAAC multi-mode instrument, 4:32 antisolar point, 10:18 Centaurus (constellation), 4:74–77 ETX-90EC (amateur telescope), 11:89 Antlia (constellation), 4:74–77 cepheid variable stars, 9:90–91 Europa (Jupiter’s moon), 12:30, 77 aphelion, 6:68–69 Challenger (space shuttle), 7:42–47 exoplanet magnetosphere, 11:28 J Apollo 1 (spacecraft), 7:42–47 J002E3 satellite, 1:30 Chamaeleon (constellation), 12:80–83 extrasolar planets.
    [Show full text]
  • Atmospheric Halos
    Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young.
    [Show full text]
  • Artificial Circumzenithal and Circumhorizontal Arcs
    Artificial circumzenithal and circumhorizontal arcs Markus Selmke and Sarah Selmke* *Universit¨atLeipzig, 04103 Leipzig, Germany∗ (Dated: September 2, 2018) We revisit a water glass experiment often used to demonstrate a rainbow. On a closer look, it also turns out to be a rather close analogy of a different kind of atmospheric optics phenomenon altogether: The geometry may be used to faithfully reproduce the circumzenithal and the circum- horizontal halos, providing a missing practical demonstration experiment for those beautiful and common natural ice halo displays. I. INTRODUCTION Light which falls onto a transparent thin-walled cylin- der (e.g. a drinking glass) filled with water gets refracted. Several ray paths may be realized through what then ef- fectively represents a cylinder made of water. Light may either illuminate and enter through the side of the cylin- der, or may enter through the top or bottom interfaces, depending on the angle and spot of illumination. Indeed, FIG. 1. Rays entering through the top face of both a cylinder in the former situation, i.e. illumination from the side and (left) and a hexagonal prism (right) experience an equivalent refraction. Refraction of the skew rays by the side faces are under a shallow inclination angle reveals a rainbow in the equivalent when the effect of rotational averaging of the prism backwards direction. The reason being that the geome- is considered. The same holds true for the reverse ray path. try mimics the incidence plane geometry of a light path though a spherical raindrop: Refraction, internal reflec- tion and a second refraction upon exit, all occurring at was the first to establish an extensive quantitative frame- the cylinder's side wall, produce the familiar observable work for halos based on the (false) assumption of refract- ◦ rainbow caustic in the backwards direction at around 42 ing cylinders, did not conceive of this CZA mechanism 2,3 towards the incidence light source.
    [Show full text]
  • TO LOG I'qure
    GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt
    [Show full text]
  • Ensk Heiti Íslensk Heiti Skýring Ablation Leysing Leysing (Einkum Á Jöklum
    Ensk heiti Íslensk heiti skýring ablation leysing leysing (einkum á jöklum) absolute extremes aftök absolute humidity rakamagn massi vatnsgufu á rúmmálseiningu lofts absolute zero alkul 0 Kelvingráður = -273,16 selsíusgráður absorption ísog geislanám (gleyping) abyssal flow djúpsjávarflæði sjávarstraumar næst botni acceptable risk viðunandi áhætta acceptance level áhættuviðmið accessory clouds hjáský sérstök minni ský sem fylgja ákveðnum skýjategundum og hafa sérstök nöfn accidental load skyndiálag acclimatization umhverfisaðlögun veðráttuaðlögun accretion áhleðsla accumulated temperature gráðudagafjöldi accumulation ákoma söfnun acid deposition súrfelli acid precipitation súr úrkoma acid rain súrt regn adaption aðlögun adiabatic innrænn bókstaflega = ekki-gegnumstreymanlegur = ófær adiabatic temperature changes innrænar hitabreytingar varðveita mættishita adret - ubac effect viðhorfsáhrif adsorption ásog (aðlögun) aðlögun advection aðstreymi advection fog aðstreymisþoka advective inversion aðstreymishitahvörf aeolian vind- aerodynamic loftstreymis-, vindorku- aerological diagram háloftarit aerology háloftaveðurfræði aeronomy háloftaeðlisfræði aerosol ar agnúði, úrsúr, sveimur af þurrum eða votum smáögnum í andrúmslofti, úði úr þrýstidós ageostrophic flow hjáþrýstiflæði ageostrophic wind hjáþrýstivindur aggregate risk heildaráhætta aggregation klístrun þyrping agroclimatology búveðurfræði agrometeorology búveðurfræði air avalanche kófhlaup Ensk heiti Íslensk heiti skýring air mass lofthlot lofthaf, loft, loftmassi air pollution loftmengun
    [Show full text]