Atmospheric Phenomena by Feist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atmospheric Effects Are Looking Up
Atmospheric Effects are Looking Up OASI Workshop 21st May 2018 by Olaf Kirchner Ever seen one of these ? OK, so how about one of these? Atmospheric Effects - caused by sun- or moonlight interacting with liquid water or ice in the air - surprisingly common - always beautiful and one or several phenomena may be seen at the same time - can be in-your-face obvious or very subtle, and ... - ... span the entire sky - a challenge to photograph - very complicated theoretical explanations Effects caused by Liquid Water Droplets - rainbows - glories, Heiligenschein and the Spectre of the Brocken - aureoles / coronae - nacreous / iridescent / Mother-of-Pearl clouds Rainbow Rainbow Ray paths for primary rainbow Ray paths through a spherical water drop Ray paths for secondary rainbow Secondary Rainbow Secondary rainbow Alexander’s Band Supernumerary rainbow Primary rainbow Rainbow Gap in cloud behind observer = partial rainbow Rainbow in spray, Geneva Jet d’Eau Supernumerary Rainbow Interference colours from different lengths of light path Rainbow Circular rainbow seen from an aircraft Rainbows don’t reflect ... Glory Colourful diffraction rings centred on the antisolar point, caused by reflection from spherical droplets Glory ... i.e. centred on where the shadow of your head would be! Brockengespenst = Spectre of the Brocken Taken against fog from Golden Gate Bridge Brocken (1142 m) . Highest point in the Harz mountains Heiligenschein = Halo Antisolar point in hydrothermal steam ... scary stuff Heiligenschein ... i.e. a glory centred on your head -
Atmospheric Optics
53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering -
The Quest for the Gegenschein Erwin Matys, Karoline Mrazek
The Quest for the Gegenschein Erwin Matys, Karoline Mrazek The sun’s counterglow — or gegenschein — is kind of a stargazers’ legend. Every amateur astronomer has heard about it, only a few of them have actually seen it, and even fewer were lucky enough to capture an image of this dim and ghostlike apparition. As a fellow observer put it: “The gegenschein is certainly not a GOTO-object.” Matter of fact, it isn’t an object at all. But let’s start from the beginning. What exactly is the gegenschein? It is widely known that the space between the planets isn’t empty. The plane of the solar system is filled with an enormous disk of small dust particles with sizes ranging from less than 1/1000 mm up to 1 mm. It is less commonly known that this interplanetary dust cloud is a highly dynamic structure. In contrast to conventional wisdom, it is not an aeon-old leftover from the solar system’s formation. This primordial dust is long gone. Today’s interplanetary dust is — in an astronomical sense of speaking — very young, only millions of years old. Most of the particles originate from quite recent incidents, like asteroid collisions. This is not the gegenschein. The picture shows the zodiacal light, which is closely related to the gegenschein. Here imaged from a rural site, the zodiacal light is a cone of light extending from the sun along the ecliptic, visible after dusk and before dawn. The gegenschein stems from the same dust cloud, but is much harder to detect or photograph. -
Wfc3 Isr 2014
SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA Instrument Science Report WFC3 2014-11 The Near Infrared Sky Background N. Pirzkal May 13, 2014 ABSTRACT WFC3 IR observations are often background limited. In the vast majority of cases, when HST is pointed away from the Earth Limb, the main contribution to this background light is caused by zodiacal infrared light, including the Gegenschein, the diffuse glow in the sky centered upon Earth's antisolar point. In this ISR, we present direct measurements of the infrared background levels as observed by WFC3 since its launch and in several broad band filters. We compare our observations to the values currently used in the Exposure Time Calculator (ETC) and derive a model of the IR background levels as a function of Ecliptic Latitude and Sun Angle. Data and Analysis WFC3 IR images have been continuously monitored since the installation of WFC3 on board of HST, as part of the \Blob" Monitoring Program (Pirzkal et al. 2012) and the making of deep sky-flats (Pirzkal et al. 2011). The data that were used and details of the procedures used are given in Pirzkal et al. 2011 and Pirzkal et al. 2012. As part of this routine monitoring, we naturally needed to accurately measure the background level in each of the available infrared exposures. The was done by first generating an object mask using SExtractor for each individual FLT file. This mask was then used to mask out sources in each of the IMSET of the original IMA file and we then computed the background in each IMSET Copyright c 2008 The Association of Universities for Research in Astronomy, Inc. -
Atmospheric Optical Phenomena and Radiative Transfer
ATMOSPHERIC OPTICAL PHENOMENA AND RADIATIVE TRANSFER BY STANLEY DAVID GEDZELMAN AND MICHAEL VOLLMER Sky colors, rainbows, and halos are simulated using models that include light scattered as it passes through clear air and clouds of finite optical depth. ivid rainbows, ice crystal halos, coronas, iridescence, glories, mirages, sky colors, and crepuscular rays have Valways inspired awe and wonder. This makes simulating atmospheric optical phenomena both a scientific and aesthetic undertaking. Atmospheric optics has a venerable history (Pernter and Exner 1922; Minnaert 1993; Humphreys 1940; Tricker 1970; Greenler 1980; Meinel and Meinel 1983; Lynch and Livingston 2001), because the phenomena appear so simple and striking, and because scientists emphasized this branch of atmospheric science at a time when it was far more difficult to examine large-scale weather systems. Discoveries made about or involving the rainbow by Rene Descartes, Isaac Newton, and Thomas Young rank among the early triumphs of the scientific revolution (Boyer 1987). All optical phenomena are produced when air molecules, aerosol particles, or hydrometeors either scatter or absorb light as it passes through the atmosphere. Many of the observed features of the optical phenomena can be reproduced by applying a scattering theory of light to a single particle. This can be done at various levels of complexity. The most accurate and perhaps most intricate Rainbow. " University Corporation for Atmospheric theories involve • i Research, Photo by Carlye Calvin BAH5- AMERICAN METEOROLOGICAL SOCIETY Unauthenticated | DownloadedAPRIL 2008 10/09/21 01:28 AM UTC solving Maxwell's equations with appropriate bound- flattening of drops (Fraser 1983), while models of ary conditions. -
References: Snel's Law and Refraction Index of Refraction For
ESCI 340 - Cloud Physics and Precipitation Processes Lesson 13 - Atmospheric Optical Phenomena Dr. DeCaria References: One of the best sources for information about atmospheric optics is the Atmospheric Optics website, http://www.atoptics.co.uk Snel's Law and Refraction • The index of refraction for a medium is defined as m = c=c;~ (1) where c is the speed of light in a vacuum, andc ~ is the speed of light in the medium.1 • As light passes from one medium into another, there is both reflection and refraction. • Refraction occurs because the wave fronts bend as they cross from one medium into another, causing a ray of light to bend. The ray bends toward the medium that has the slower speed of light (highest index of refraction). • The bending of the ray is quantified by Snel's Law, which is stated mathematically as sin θ m 1 = 2 ; (2) sin θ2 m1 where θ1 is the angle of incidence (and reflection), θ2 is the angle of refraction, and m1 and m2 are the indices of refraction in the two mediums (see Fig. 1). • The amount by which a ray of light is deflected due to refraction can be quantified in one of two ways. { The bending angle, θ0, is the interior angle between the initial and final rays. { The deviation angle, θ00, is the complement of the bending angle, θ00 = 180◦ −θ0. { The relationship between bending angle and deviation angle is illustrated in Fig. 2. Index of Refraction for Air • Light travels faster through warm air than it does through cold air. -
Than Mountain Air and Daytime Scenery
Moonbows overYosem te By Donald W. Olson, Russell L. Doescher, and the Mitte Honors Students The rainbow occurs by day, and it was formerly thought that it never appeared by night as a moon rainbow. This opinion was due to the rarity of the phenomenon: it was not observed, for though it does happen, it does so rarely. The colors are not easy to see in the dark. The moon rainbow appears white. — Aristotle, Meteorologica, about 340 BC More than mountain Few sights evoke such spontaneous delight and wonder as a late- afternoon rainbow bursting into view in the eastern sky after a air and daytime spring downpour. Even before it appears, you sense that it might, and you keep a lookout. Maybe you once fancied fi nding a pot of scenery beckon gold where the colorful arc ends. Yet how many of us have seen a rainbow at night? While this is a visitors to Yosemite fairly rare event, nature lovers as far back as Aristotle knew it was National Park each possible for a bright Moon, like the Sun, to produce a rainbow. When rays of light from the Sun (or Moon) shine on spherical spring — many go for drops of water in a rain shower, a combination of refraction, inter- nal refl ection, and dispersion can produce a rainbow display. The a chilly, damp, night- primary bow forms a circular arc with a radius of 42°, and under good conditions a much fainter secondary rainbow can appear time vigil. with a radius of 51° and with the sequence of colors reversed. -
2003 Astronomy Magazine Index
2003 astronomy magazine index Catchall (Martian crater), 11:30 observing Mars from, 7:32 hydrogen, 10:28 Subject index CCD (charge-coupled device) cameras, planets like, 6:48–53 Hydrus (constellation), 10:72–75 3:84–87, 5:84–87 seasons of, 3:72–73 A CCD techniques, 9:100–105 tilt of axis, 2:68, 5:72–73 I accidents, space-related, 7:42–47 Celestron C6-R (refractor), 11:84 EarthExplorer web site, 4:30 Achernar (star), 10:30 iceball, found beyond Pluto, 1:24 Celestron C8-N (reflector), 11:86 eclipses India, plans to visit Moon, 10:29 Advanced Camera for Surveys, 4:28 Celestron CGE-1100 (amateur telescope), in Australia (2003), 4:80–83 ALMA (Atacama Large Millimeter Array), infrared survey, 8:31 11:88 lunar integrating wavelengths, 4:24 3:36 Celestron NexStar 8 GPS (amateur telescope), of 2003, 5:18 Amalthea (Jupiter’s moon), 4:28 interferometry 1:84–87 of May 15, 2003, 5:60, 80–83, 88–89 techniques for, 7:48–53 Amateur Achievement Award, 9:32 Celestron NexStar 8i (amateur telescope), solar Andromeda Galaxy VLT interferometer, 2:32 11:89 of May 31, 2003, 5:80–83, 88–89 International Space Station, 3:31 picture of, 2:12–13 Centaurus A (NGC 5128) galaxy Edgar Wilson Award, 11:30 young stars in, 9:86–89 Internet, virtual observatories on, 9:80–85 1,000 Mira stars discovered in, 10:28 Egg Nebula, 8:36 Intes MK67 (amateur telescope), 11:89 Annefrank (asteroid), 2:32 picture of, 10:12–13 elliptical galaxies, 8:31 antineutrinos, 4:26 Io (Jupiter’s moon), 3:30 ripped apart satellite galaxy, 2:32 Eta Carinae (nebula), 5:29 ISAAC multi-mode instrument, 4:32 antisolar point, 10:18 Centaurus (constellation), 4:74–77 ETX-90EC (amateur telescope), 11:89 Antlia (constellation), 4:74–77 cepheid variable stars, 9:90–91 Europa (Jupiter’s moon), 12:30, 77 aphelion, 6:68–69 Challenger (space shuttle), 7:42–47 exoplanet magnetosphere, 11:28 J Apollo 1 (spacecraft), 7:42–47 J002E3 satellite, 1:30 Chamaeleon (constellation), 12:80–83 extrasolar planets. -
Atmospheric Halos
Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young. -
Artificial Circumzenithal and Circumhorizontal Arcs
Artificial circumzenithal and circumhorizontal arcs Markus Selmke and Sarah Selmke* *Universit¨atLeipzig, 04103 Leipzig, Germany∗ (Dated: September 2, 2018) We revisit a water glass experiment often used to demonstrate a rainbow. On a closer look, it also turns out to be a rather close analogy of a different kind of atmospheric optics phenomenon altogether: The geometry may be used to faithfully reproduce the circumzenithal and the circum- horizontal halos, providing a missing practical demonstration experiment for those beautiful and common natural ice halo displays. I. INTRODUCTION Light which falls onto a transparent thin-walled cylin- der (e.g. a drinking glass) filled with water gets refracted. Several ray paths may be realized through what then ef- fectively represents a cylinder made of water. Light may either illuminate and enter through the side of the cylin- der, or may enter through the top or bottom interfaces, depending on the angle and spot of illumination. Indeed, FIG. 1. Rays entering through the top face of both a cylinder in the former situation, i.e. illumination from the side and (left) and a hexagonal prism (right) experience an equivalent refraction. Refraction of the skew rays by the side faces are under a shallow inclination angle reveals a rainbow in the equivalent when the effect of rotational averaging of the prism backwards direction. The reason being that the geome- is considered. The same holds true for the reverse ray path. try mimics the incidence plane geometry of a light path though a spherical raindrop: Refraction, internal reflec- tion and a second refraction upon exit, all occurring at was the first to establish an extensive quantitative frame- the cylinder's side wall, produce the familiar observable work for halos based on the (false) assumption of refract- ◦ rainbow caustic in the backwards direction at around 42 ing cylinders, did not conceive of this CZA mechanism 2,3 towards the incidence light source. -
TO LOG I'qure
GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt -
Ensk Heiti Íslensk Heiti Skýring Ablation Leysing Leysing (Einkum Á Jöklum
Ensk heiti Íslensk heiti skýring ablation leysing leysing (einkum á jöklum) absolute extremes aftök absolute humidity rakamagn massi vatnsgufu á rúmmálseiningu lofts absolute zero alkul 0 Kelvingráður = -273,16 selsíusgráður absorption ísog geislanám (gleyping) abyssal flow djúpsjávarflæði sjávarstraumar næst botni acceptable risk viðunandi áhætta acceptance level áhættuviðmið accessory clouds hjáský sérstök minni ský sem fylgja ákveðnum skýjategundum og hafa sérstök nöfn accidental load skyndiálag acclimatization umhverfisaðlögun veðráttuaðlögun accretion áhleðsla accumulated temperature gráðudagafjöldi accumulation ákoma söfnun acid deposition súrfelli acid precipitation súr úrkoma acid rain súrt regn adaption aðlögun adiabatic innrænn bókstaflega = ekki-gegnumstreymanlegur = ófær adiabatic temperature changes innrænar hitabreytingar varðveita mættishita adret - ubac effect viðhorfsáhrif adsorption ásog (aðlögun) aðlögun advection aðstreymi advection fog aðstreymisþoka advective inversion aðstreymishitahvörf aeolian vind- aerodynamic loftstreymis-, vindorku- aerological diagram háloftarit aerology háloftaveðurfræði aeronomy háloftaeðlisfræði aerosol ar agnúði, úrsúr, sveimur af þurrum eða votum smáögnum í andrúmslofti, úði úr þrýstidós ageostrophic flow hjáþrýstiflæði ageostrophic wind hjáþrýstivindur aggregate risk heildaráhætta aggregation klístrun þyrping agroclimatology búveðurfræði agrometeorology búveðurfræði air avalanche kófhlaup Ensk heiti Íslensk heiti skýring air mass lofthlot lofthaf, loft, loftmassi air pollution loftmengun