The Quest for the Gegenschein Erwin Matys, Karoline Mrazek
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RADIAL VELOCITIES in the ZODIACAL DUST CLOUD
A SURVEY OF RADIAL VELOCITIES in the ZODIACAL DUST CLOUD Brian Harold May Astrophysics Group Department of Physics Imperial College London Thesis submitted for the Degree of Doctor of Philosophy to Imperial College of Science, Technology and Medicine London · 2007 · 2 Abstract This thesis documents the building of a pressure-scanned Fabry-Perot Spectrometer, equipped with a photomultiplier and pulse-counting electronics, and its deployment at the Observatorio del Teide at Izaña in Tenerife, at an altitude of 7,700 feet (2567 m), for the purpose of recording high-resolution spectra of the Zodiacal Light. The aim was to achieve the first systematic mapping of the MgI absorption line in the Night Sky, as a function of position in heliocentric coordinates, covering especially the plane of the ecliptic, for a wide variety of elongations from the Sun. More than 250 scans of both morning and evening Zodiacal Light were obtained, in two observing periods – September-October 1971, and April 1972. The scans, as expected, showed profiles modified by components variously Doppler-shifted with respect to the unshifted shape seen in daylight. Unexpectedly, MgI emission was also discovered. These observations covered for the first time a span of elongations from 25º East, through 180º (the Gegenschein), to 27º West, and recorded average shifts of up to six tenths of an angstrom, corresponding to a maximum radial velocity relative to the Earth of about 40 km/s. The set of spectra obtained is in this thesis compared with predictions made from a number of different models of a dust cloud, assuming various distributions of dust density as a function of position and particle size, and differing assumptions about their speed and direction. -
Atmospheric Effects Are Looking Up
Atmospheric Effects are Looking Up OASI Workshop 21st May 2018 by Olaf Kirchner Ever seen one of these ? OK, so how about one of these? Atmospheric Effects - caused by sun- or moonlight interacting with liquid water or ice in the air - surprisingly common - always beautiful and one or several phenomena may be seen at the same time - can be in-your-face obvious or very subtle, and ... - ... span the entire sky - a challenge to photograph - very complicated theoretical explanations Effects caused by Liquid Water Droplets - rainbows - glories, Heiligenschein and the Spectre of the Brocken - aureoles / coronae - nacreous / iridescent / Mother-of-Pearl clouds Rainbow Rainbow Ray paths for primary rainbow Ray paths through a spherical water drop Ray paths for secondary rainbow Secondary Rainbow Secondary rainbow Alexander’s Band Supernumerary rainbow Primary rainbow Rainbow Gap in cloud behind observer = partial rainbow Rainbow in spray, Geneva Jet d’Eau Supernumerary Rainbow Interference colours from different lengths of light path Rainbow Circular rainbow seen from an aircraft Rainbows don’t reflect ... Glory Colourful diffraction rings centred on the antisolar point, caused by reflection from spherical droplets Glory ... i.e. centred on where the shadow of your head would be! Brockengespenst = Spectre of the Brocken Taken against fog from Golden Gate Bridge Brocken (1142 m) . Highest point in the Harz mountains Heiligenschein = Halo Antisolar point in hydrothermal steam ... scary stuff Heiligenschein ... i.e. a glory centred on your head -
Atmospheric Phenomena by Feist
Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two. -
Sample Ipad Apps for Elementary School
Sample iPad Apps for Elementary School Alphabet Fun Learning the A-B-Cs was never like this. Alphabet Fun makes the most of Multi-Touch technology on iPad to teach kids letters, numbers, and colors. They’ll swipe through colorful images and easy-to-read text. They’ll trace over letters with their fingers right on the iPad display. They’ll even write entire words. Kids think it’s a game. Parents think it’s educational. Everybody wins. Math Magic – Don’t you just love how much your child has improved in adding, subtracting, multiplying and dividing? You never get tired of hearing, “Can I do math?” from your six year old, do you? Of course you don’t. Star Walk is a winner of APPLE DESIGN AWARDS 2010 for technical excellence, innovation, superior technology adoption, high performance, and outstanding design! Star Walk is installed for demonstration on iPads at Apple Stores! Try it out in the shops! Enjoy NEW Picture of the Day and Bookmarks sections, share your astronomy observations via Facebook and Twitter! iPhone best astronomy app *Featured by Apple – Best Apps of 2009!* is now available for iPad! On a bigger screen starry night sky looks fantastic with 3D graphics and one of the user-friendliest interfaces ever. Star Walk is your personal planetarium that can answer to all your curiosities about the sky! For anyone who is interested in stargazing, amateurs or professionals Star Walk makes discovering more than 9,000 stars, planets, constellations, messiers as beautiful and easy as it has never been before! National Geographic’s World Atlas HD – Designed specifically for the iPad, National Geographic’s World Atlas HD puts our best maps in the palm of your hand. -
Ipad Educational Apps This List of Apps Was Compiled by the Following Individuals on Behalf of Innovative Educator Consulting: Naomi Harm Jenna Linskens Tim Nielsen
iPad Educational Apps This list of apps was compiled by the following individuals on behalf of Innovative Educator Consulting: Naomi Harm Jenna Linskens Tim Nielsen INNOVATIVE 295 South Marina Drive Brownsville, MN 55919 Home: (507) 750-0506 Cell: (608) 386-2018 EDUCATOR Email: [email protected] Website: http://naomiharm.org CONSULTING Inspired Technology Leadership to Transform Teaching & Learning CONTENTS Art ............................................................................................................... 3 Creativity and Digital Production ................................................................. 5 eBook Applications .................................................................................... 13 Foreign Language ....................................................................................... 22 Music ........................................................................................................ 25 PE / Health ................................................................................................ 27 Special Needs ............................................................................................ 29 STEM - General .......................................................................................... 47 STEM - Science ........................................................................................... 48 STEM - Technology ..................................................................................... 51 STEM - Engineering ................................................................................... -
Atmospheric Optics
53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering -
Kuiper Belt Dust Grains As a Source of Interplanetary Dust Particles
z( _R_:s124. 429-441) 11996) NASA-CR-2044q9 _RIIfI.E NO. 220 Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles JER-CHYI LzOU AND HERBERT A. ZOOK SN3, NASA Johnson Space Center, Houston, Texas 77058 E-mail: liou_'sn3.jsc.nasa.gov. AND STANLEYF. DERMOTT Department of Astronomy. University of Florida, Gainesuille, Florida 3261I Reccwed August 25. 1995: revised May 16. 1996 Solar System interplanetary space (e.g., Leinert and Grtin The recent discovery of the so-called Kuiper belt objects has 1990, Levasseur-Reeourd _" al. 1991 ). However, since the :,rompted the idea that these objects produce dust grains that discovery of the lirst Iran,-neptunian obiect (Jcw'ilt and :na_ contribute significantly to the interplanetary dust popula- Luu 1992. 1993) and the <ill ongoing discoveries of such uon. In this paper, the orbital evolution of dust grains, of objects (see Jewitt and Luu 1995 for an up-to-date sum- diameters 1 to 9 Jam, that originate in the region of the Kuiper mary), it has been proposed that small dust particles pro- belt is studied by means of direct numerical integration. Gravi- duced from these so-called "'Kuiper belt objects" may con- tational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are tribute significantly to the interplanetary dust population included. The interactions between charged dust grains and that constitutes the zodiacal cloud (e.g., Flynn 1994). They solar magnetic field are not considered in the model. Because may also be an important source of the interplanetary of the effects of drag forces, small dust grains will spiral toward dust particles (IDPs) collected in the stratosphere by high- the Sun once they are released from their large parent bodies. -
A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M
To appear in the SIGGRAPH conference proceedings A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M. Stark3 Simon Premozeˇ 3 Julie Dorsey2 Peter Shirley3 1Stanford University 2Massachusetts Institute of Technology 3University of Utah Abstract 1 Introduction This paper presents a physically-based model of the night sky for In this paper, we present a physically-based model of the night sky realistic image synthesis. We model both the direct appearance for image synthesis, and demonstrate it in the context of a Monte of the night sky and the illumination coming from the Moon, the Carlo ray tracer. Our model includes the appearance and illumi- stars, the zodiacal light, and the atmosphere. To accurately predict nation of all significant sources of natural light in the night sky, the appearance of night scenes we use physically-based astronomi- except for rare or unpredictable phenomena such as aurora, comets, cal data, both for position and radiometry. The Moon is simulated and novas. as a geometric model illuminated by the Sun, using recently mea- The ability to render accurately the appearance of and illumi- sured elevation and albedo maps, as well as a specialized BRDF. nation from the night sky has a wide range of existing and poten- For visible stars, we include the position, magnitude, and temper- tial applications, including film, planetarium shows, drive and flight ature of the star, while for the Milky Way and other nebulae we simulators, and games. In addition, the night sky as a natural phe- use a processed photograph. Zodiacal light due to scattering in the nomenon of substantial visual interest is worthy of study simply for dust covering the solar system, galactic light, and airglow due to its intrinsic beauty. -
Zodiacal Cloud Complexes
Earth Planets Space, 50, 465–471, 1998 Zodiacal Cloud Complexes Ingrid Mann MPI fur¨ Aeronomie, D-37191 Katlenburg-Lindau, Germany (Received October 7, 1997; Revised March 17, 1998; Accepted March 17, 1998) We discuss some aspects of the study of the Zodiacal cloud based on brightness observations. The discussion of optical properties as well as the spatial distribution of the dust cloud show that the description of the dust cloud as a homogeneous cloud is reasonable for the regions near the Earth orbit, but fails in the description of the dust in the inner solar system. The reasons for this are that different components of the dust cloud may have different types of orbital evolution depending on the parameters of their initial orbits. Also the collisional evolution of dust in the inner solar system may have some influence. As far as perspectives for future observations are concerned, the study of Doppler shifts of the Fraunhofer lines in the Zodiacal light will provide further knowledge about the orbital distribution of dust particles, as well as advanced infrared observations will help towards a better understanding of the outer solar system dust cloud beyond the asteroid belt. 1. Introduction properties per volume element. A common method of data Small bodies in our solar system cover a broad size range analysis applies forward calculations of the line of sight inte- from asteroids and comets to dust particles of micrometer gral under reasonable assumptions about particle properties size and below. Brightness observations do mainly cover a and spatial distribution. Detailed descriptions of the line of range of particles of 1 to 100 micron in size, i.e. -
The Three-Dimensional Structure of the Zodiacal Dust Bands
ICARUS 127, 461±484 (1997) ARTICLE NO. IS975704 The Three-Dimensional Structure of the Zodiacal Dust Bands William T. Reach Universities Space Research Association and NASA Goddard Space Flight Center, Code 685, Greenbelt, Maryland 20771, and Institut d'Astrophysique Spatiale, BaÃtiment 121, Universite Paris XI, 91405 Orsay Cedex, France E-mail: [email protected] Bryan A. Franz General Sciences Corporation, NASA Goddard Space Flight Center, Code 970.1, Greenbelt, Maryland 20771 and Janet L. Weiland Hughes STX, NASA Goddard Space Flight Center, Code 685.9, Greenbelt, Maryland 20771 Received July 18, 1996; revised January 2, 1997 model, the dust is distributed among the asteroid family mem- Using observations of the infrared sky brightness by the bers with the same distributions of proper orbital inclination Cosmic Background Explorer (COBE)1 Diffuse Infrared Back- and semimajor axis but a random ascending node. In the mi- ground Experiment (DIRBE) and Infrared Astronomical Satel- grating model, particles are presumed to be under the in¯uence lite (IRAS), we have created maps of the surface brightness of Poynting±Robertson drag, so that they are distributed Fourier-®ltered to suppress the smallest (, 18) structures and throughout the inner Solar System. The migrating model is the large-scale background (.158). Dust bands associated with better able to match the parallactic variation of dust-band lati- the Themis, Koronis, and Eos families are readily evident. A tude as well as the 12- to 60-mm spectrum of the dust bands. dust band associated with the Maria family is also present. The The annual brightness variations can be explained only by the parallactic distances to the emitting regions of the Koronis, migrating model. -
The Kuiper Belt: What We Know and What We Don’T
The Kuiper Belt: What We Know and What We Don’t David Jewitt, UCLA, September 2012 The best indication of the significance of the Kuiper belt lies in its multiple connections to other aspects of the Solar system. The dust in the Zodiacal cloud, the rocks in the meteor streams, the nuclei of comets, the Centaurs, perhaps also the irregular moons of the planets and the Trojans that lead and trail planets in their orbits, are all related to the parent population in the Kuiper belt. Further afield, the dusty debris disks of other stars are likely produced by collisional shattering of parent bodies in unseen Kuiper belts about them. Because of these many connections, Kuiper belt science has already had significant impact on the study of the contents, origin and evolution of the Solar system, and on understanding the Solar system in the context set by other stars. While we know much more than we used to, we still don’t know many things about the Kuiper belt. The Solar system formed from a flattened, rotating disk of gas and dust, itself produced by gravitational collapse from the interstellar medium. The explosion of a nearby massive star, a “supernova”, may have provided the initial compression causing the cloud to collapse, as suggested by the products of decay of short-lived radioactive elements (esp. 26Al) embedded in meteorites (Lee et al. 1977, Dauphas and Chaussidon 2011). Planets formed quickly in the dense inner portions of this disk but the process of growth in the rarefied outer regions was very slow. -
Backyard Astronomy Santa Fe Public Library
Backyard Astronomy Santa Fe Public Library Photo Credit: NASA, A Mess of Stars,08-10-2015 1. What will you need? 2. What am I looking at? 3. What you can See a. August 2020 b. September 2020 c. October 2020 4. Star Stories 5. Activities a. Tracking the Sunset/Sunrise b. Moon Watching c. Tracking the International Space Station d. Constellation Discovery 6. What to Read Backyard Astronomy Santa Fe Public Library What will you need? The most important things you will need are your curiosity, your naked eyes, and the ability to observe. You do not need fancy telescopes to begin enjoying the wonders of our amazing night skies. Here in Northern New Mexico, we are blessed with the ability to step out of our homes, look up, and see the Milky Way displayed above us without too much obstruction. Photo Credit: NASA, A Glimpse of the Milky Way, 12-13-2005 While the following Items can help you to begin exploring the wonders of the Universe, they are not required. These items include: 1. Binoculars 2. Telescope (a small inexpensive one is fine) 3. Star Chart Planisphere 4. Free Astronomy Apps for both iPhones and Androids There are several really good free apps that help you identify, locate, and track celestial objects. One that I use is Star Walk 2 but there are other good apps available. Backyard Astronomy Santa Fe Public Library What am I looking at? When you look up at night, what do you see? Probably more than you think! Below is a list of the Celestial Items you can see.