Overview of the Solar System, the Sun, and the Inner Planets Robert Fisher Items

Total Page:16

File Type:pdf, Size:1020Kb

Overview of the Solar System, the Sun, and the Inner Planets Robert Fisher Items Science 3210 001 : Introduction to Astronomy Lecture 3 : Overview of the Solar System, The Sun, and the Inner Planets Robert Fisher Items ❑ Solution sets 1 and 2 have been posted, as well as homework assignment number 4, due next week (2/23) ❑ Syllabus typo -- Spring break is the third week of March, not February. Everything moves up a week, so first midterm is in two weeks time. ❑ Homeworks Review Week 2 ❑ Celestial Sphere ❑ Zenith, Nadir, Meridian, Equinox, Solstice ❑ Retrograde Motion Review Week 3 ❑ Kepler’s Three Laws ❑ Newton’s Three Laws ❑ Spectra -- Continuum, Absorption, Emission Today’s Material ❑ A Few Comments about the Primary Colors and Color Photography ❑ Overview of the Solar System ❑ Planets, Moons, Rings, Asteroids, Comets… ❑ Fundamentals of Planetary Physics ❑ The Inner Solar System ❑ The Cratered Worlds of Mercury and the Moon ❑ Venus and Mars ❑ Earth A Few Comments About Color Theory and Color Photography The Primary Colors ❑ There are three primary colors precisely because the human eye has three types of cone photoreceptor cells, each sensitive to one band of light. Cone Cell Color Response ❑ Each of the the three types of cone cells has a different biochemical makeup with a different color response curve : Solar Spectrum ❑ The reason why our rod cells have a peak absorption at roughly 500 nm in wavelength is simply because the solar spectrum peaks at that same wavelength : First Color Photograph ❑ James Clerk Maxwell produced the first color photograph in 1861 using three images photographed on black and white positive films, filtered through each of the primary colors : Overview of the Solar System Overview of Solar System ❑ The Sun. In a sense, the sun is the solar system. 99.9% of the total mass of the solar system, and also the source of the vast majority of energy. Sun Compared with Planets ❑ A 3D computer rendering of the sun and the planets, all compared to-scale : Overview of Solar System ❑ The Planets ❑ Inner planets are close to the sun -- consisting of relatively warm rocky bodies, and thin to non-existent atmospheres. ❑ Outer planets are further from the sun -- they have rocky cores and enormous gaseous atmospheres which constitute the bulk of the planet. Comparison of Inner Planets ❑ A 3D computer rendering of the inner planets and the moon, all compared to-scale : Comparison of Outer Planets ❑ A 3D computer rendering of the outer planets, compared with the inner planets, all to-scale : Question ❑ Which planet can never be seen on the Meridian at midnight? ❑ A) Mercury ❑ B) Mars ❑ C) Jupiter ❑ D) Saturn Overview of Solar System ❑ Moons / Rings A moon is simply a natural satellite of a planet. There are over 100 known moons -- most around Jupiter and the outer planets. The largest moon in the solar system (Jupiter’s Ganymede, discovered by Galileo) is larger than Mercury. If it were orbiting the sun, it would be classified as a planet. Some of the largest moons (most noteably Saturn’s Titan) have atmospheres. Others show signs of active geological activity, including one (Jupiter’s Io) that shows direct signs of volcanic activity. Ganymede ❑ Ganymede, as photographed by the Galileo space probe. A Theoretical Model of Interior of Ganymede Io ❑ Jupiter’s moon Io is volcanically active, spewing sulfur plumes. Overview of Solar System - Rings ❑ All four of the outer solar system planets have ring systems, though Saturn’s is by far the most spectacular. ❑ These rings are the remnant material left over from the formation of the moons surrounding the planet, and are made up of enormous numbers of icy rocks. ❑ In a sense, the moon/planet systems are a kind of “mini solar system,” and the rings are analogous to a scaled-down version of the asteroid belts in our own solar system (which we will discuss in just a moment). Artist’s Conception of Saturn’s RIngs Saturn Imaged by the Cassini Spacecraft Saturn’s Rings Imaged by Voyager Overview of Solar System - Minor Bodies ❑ Dwarf Planets - a very new category. ❑ According to the new International Astronomical Union (IAU) specification laid down last year, planets are officially defined to meet three criteria : ❑ Major bodies orbiting the sun (or another star). ❑ Large enough to be spherical in shape. ❑ Have swept their neighborhood clear. ❑ Dwarf planets satisfy the first two criteria, but fail the third. Examples include Pluto and the asteroid Ceres. Disk Clearing / Gap Formation ❑ A large enough body will sweep up the material its neighborhood. Here, for instance, is the result of a simulation of the early solar system, before it had been cleared of gas and dust : Star Gap Planet Disk (in greyscale) Overview of Solar System - Minor Bodies ❑ Asteroids ❑ The asteroids were once thought to have been a “broken-up” planet, but they actually contain far too little mass to constitute a planet. They are the left-over products of planet formation. ❑ They range in size from the spherically-shaped Ceres (almost 1000 km in radius) down to much smaller bodies barely a few kilometers across. The Asteroid Belt - Minor Bodies ❑ Most asteroids are clustered between the orbits of Mars and Jupiter. It is thought that Jupiter’s enormous gravitational force kept these bodies from coalescing into a rocky planetary core. Vesta, Ceres, and the Moon ❑ Side-by-side comparison of two of the largest asteroids (Vesta and Ceres) and the Earth’s moon : Question ❑ Why are the larger bodies in previous image rounder than the smaller ones? The Asteroid Eros ❑ Eros was visited by the spaceprobe NEAR Shoemaker, which began its orbit around the asteroid on February 14, 2000. Eugene Shoemaker (1928 - 1997) Barringer (or Meteor) Crater in Arizona ❑ Shoemaker’s great legacy was to establish that catastrophic impacts do occur throughout the solar system. Overview of Solar System - Minor Bodies ❑ In addition to the asteroid belt, another belt of bodies orbits the sun beyond the orbit of Neptune -- the Kuiper Belt. ❑ It is thought that Pluto is in fact a Kuiper belt object -- one of the largest. ❑ Because of their great distance from the sun, Kuiper Belt Objects are much harder to detect than asteroids. 800 objects have been detected to date. Kuiper Belt Objects ❑ Like the case of the asteroid belt, the Kuiper Belt is “debris” left over from the early solar system. In this case, they have been missed by Neptune’s “sweeping” of its neighborhood. Overview of Solar System - Meteoroids, Dust, and the Solar Wind ❑ Meteoroids, Dust, Solar Wind ❑ The trail of comets is filled with tiny meteoroids. When the Earth’s orbit intersects a comet’s trajectory, we experience a meteoroid shower on Earth. These happen at regular dates on the calendar each year. ❑ The collision of rocky bodies over the course of history of the solar system produces smaller bodies, down to dust-sized particles. These dust-like particles are responsible for the zodiacal light effect. ❑ The outer layers of the sun continuously blow away a stream of charged particles, referred to as the solar wind. Magnetic Field ❑ The magnetic field surrounding a magnet can be visualized using iron filings. Solar Atmosphere ❑ The outer layers of the sun are incredibly active, powered by the Sun’s intense magnetic field. TRACE Satellite Image Fundamentals of Planetary Physics ❑ The properties of the planets are largely determined by a few crucial physical parameters -- its mass, rotational rate/inclination, and surface temperature. ❑ The combination of mass and surface temperature, for instance, will determine the atmospheric content of the planet. ❑ Larger bodies tend to be more geologically active than smaller bodies. ❑ More rapidly rotating bodies tend to have stronger magnetic fields. Planetary Magnetic Fields ❑ The interior of the planets contains electrically conducting iron and nickel, which flow like fluids over very long timescales. ❑ Planetary rotation sets these fluids in motion and generates currents, which in turn generate magnetic fields surrounding the planet. Earth’s Magnetic Field ❑ Earth has the strongest magnetic field of the inner planets in the solar system. ❑ This is believed to be important in protecting life on Earth from harmful charged particles from the Sun and elsewhere. Earth’s Aurora Charged particles from the solar wind become trapped in the Earth’s magnetic field and stream down to the poles, generating the phenomenon we see on earth as the Aurora. Why are Some Moons and Planets Geologically Active and Others Dormant? ❑ Geological activity requires a source of energy. ❑ That source of energy is the heat interior to a body. ❑ The amount of heat energy contained in a body is proportional to its volume. ❑ The rate at which heat energy is lost is proportional to its surface area. ❑ Consequently, smaller bodies cool more rapidly than larger ones. As a result, smaller bodies tend to be less geologically active. Examples of Planetary / Lunar Interiors Atmospheric Physics ❑ In a gas in thermal equilibrium each molecule shares the same kinetic energy. This means that lighter molecules must be moving faster on average to have the same kinetic energy as heavier molecules. O2 H2 Does Gravity or Heat Win? ❑ Gravity exerts an inward pull on atmospheric molecules. Kinetic energy (in the form of heat) causes them to want to escape. O2 Gravity H2 Atmospheric Physics and the Giant Planets ❑ The fate of a molecule is determined by the planet’s mass and the temperature of the atmosphere -- the larger the mass, the more species it can retain. ❑ What about the most common element, hydrogen, and its molecular counterpart H2? ❑ The Earth, and all inner solar system planets, lack the sufficient mass to retain H2. ❑ The outer solar planets do have sufficient mass to retain H2. ❑ This observation explains how the outer solar system planets grew to become giant planets.
Recommended publications
  • RADIAL VELOCITIES in the ZODIACAL DUST CLOUD
    A SURVEY OF RADIAL VELOCITIES in the ZODIACAL DUST CLOUD Brian Harold May Astrophysics Group Department of Physics Imperial College London Thesis submitted for the Degree of Doctor of Philosophy to Imperial College of Science, Technology and Medicine London · 2007 · 2 Abstract This thesis documents the building of a pressure-scanned Fabry-Perot Spectrometer, equipped with a photomultiplier and pulse-counting electronics, and its deployment at the Observatorio del Teide at Izaña in Tenerife, at an altitude of 7,700 feet (2567 m), for the purpose of recording high-resolution spectra of the Zodiacal Light. The aim was to achieve the first systematic mapping of the MgI absorption line in the Night Sky, as a function of position in heliocentric coordinates, covering especially the plane of the ecliptic, for a wide variety of elongations from the Sun. More than 250 scans of both morning and evening Zodiacal Light were obtained, in two observing periods – September-October 1971, and April 1972. The scans, as expected, showed profiles modified by components variously Doppler-shifted with respect to the unshifted shape seen in daylight. Unexpectedly, MgI emission was also discovered. These observations covered for the first time a span of elongations from 25º East, through 180º (the Gegenschein), to 27º West, and recorded average shifts of up to six tenths of an angstrom, corresponding to a maximum radial velocity relative to the Earth of about 40 km/s. The set of spectra obtained is in this thesis compared with predictions made from a number of different models of a dust cloud, assuming various distributions of dust density as a function of position and particle size, and differing assumptions about their speed and direction.
    [Show full text]
  • Elliptical Instability in Terrestrial Planets and Moons
    A&A 539, A78 (2012) Astronomy DOI: 10.1051/0004-6361/201117741 & c ESO 2012 Astrophysics Elliptical instability in terrestrial planets and moons D. Cebron1,M.LeBars1, C. Moutou2,andP.LeGal1 1 Institut de Recherche sur les Phénomènes Hors Equilibre, UMR 6594, CNRS and Aix-Marseille Université, 49 rue F. Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France e-mail: [email protected] 2 Observatoire Astronomique de Marseille-Provence, Laboratoire d’Astrophysique de Marseille, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France Received 21 July 2011 / Accepted 16 January 2012 ABSTRACT Context. The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. Aims. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Methods. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with an astro- physical context. In particular, generic analytical expressions of the elliptical instability growth rate are obtained using a local WKB approach, simultaneously considering for the first time (i) a local temperature gradient due to an imposed temperature contrast across the considered layer or to the presence of a volumic heat source and (ii) an imposed magnetic field along the rotation axis, coming from an external source.
    [Show full text]
  • The Composition of Planetary Atmospheres 1
    The Composition of Planetary Atmospheres 1 All of the planets in our solar system, and some of its smaller bodies too, have an outer layer of gas we call the atmosphere. The atmosphere usually sits atop a denser, rocky crust or planetary core. Atmospheres can extend thousands of kilometers into space. The table below gives the name of the kind of gas found in each object’s atmosphere, and the total mass of the atmosphere in kilograms. The table also gives the percentage of the atmosphere composed of the gas. Object Mass Carbon Nitrogen Oxygen Argon Methane Sodium Hydrogen Helium Other (kilograms) Dioxide Sun 3.0x1030 71% 26% 3% Mercury 1000 42% 22% 22% 6% 8% Venus 4.8x1020 96% 4% Earth 1.4x1021 78% 21% 1% <1% Moon 100,000 70% 1% 29% Mars 2.5x1016 95% 2.7% 1.6% 0.7% Jupiter 1.9x1027 89.8% 10.2% Saturn 5.4x1026 96.3% 3.2% 0.5% Titan 9.1x1018 97% 2% 1% Uranus 8.6x1025 2.3% 82.5% 15.2% Neptune 1.0x1026 1.0% 80% 19% Pluto 1.3x1014 8% 90% 2% Problem 1 – Draw a pie graph (circle graph) that shows the atmosphere constituents for Mars and Earth. Problem 2 – Draw a pie graph that shows the percentage of Nitrogen for Venus, Earth, Mars, Titan and Pluto. Problem 3 – Which planet has the atmosphere with the greatest percentage of Oxygen? Problem 4 – Which planet has the atmosphere with the greatest number of kilograms of oxygen? Problem 5 – Compare and contrast the objects with the greatest percentage of hydrogen, and the least percentage of hydrogen.
    [Show full text]
  • Internal Constitution of Mars
    Journalof GeophysicalResearch VOLUME 77 FEBRUARY 10., 1972 NUMBER 15 Internal Constitution of Mars Do• L. ANDERSON SeismologicalLaboratory, California Institute o/ Technology Pasadena, California 91109 Models for the internal structure of Mars that are consistentwith its mass, radius, and moment of inertia have been constructed.Mars cannot be homogeneousbut must have a core, the size of which dependson its density and, therefore, on its composition.A meteorite model for Mars implies an Fe-S-Ni core (12% by massof the planet) and an Fe- or FeO-rich mantle with a zero-pressuredensity of approximately 3.54 g/cm•. Mars has an iron content of 25 wt %, which is significantly less than the iron content of the earth, Mercury, or Venus but is close to the total iron content of ordinary and carbonaceouschondrites. A satisfactory model for Mars can be obtained by exposing ordinary chondrites to relatively modest temperatures. Core formation will start when temperaturesexceed the cutecftc temperature in the system Fe-FeS (•990øC) but will not go to completionunless temperatures exceed the liquidus through- out most of the planet. No high-temperature reduction stage is required. The size and density of the core and the density of the mantle indicate that approximately63% of the potential core-forming material (Fe-S-Ni) has entered the core. Therefore, Mars, in contrast to the earth, is an incompletely differentiated planet, and its core is substantially richer in sulfur than the earth's core. The thermal energy associated with core formation in Mars is negligible. The absenceof a magnetic field can be explained by lack of lunar precessional torques and by the small size and high resistivity of the Martian core.
    [Show full text]
  • Kuiper Belt Dust Grains As a Source of Interplanetary Dust Particles
    z( _R_:s124. 429-441) 11996) NASA-CR-2044q9 _RIIfI.E NO. 220 Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles JER-CHYI LzOU AND HERBERT A. ZOOK SN3, NASA Johnson Space Center, Houston, Texas 77058 E-mail: liou_'sn3.jsc.nasa.gov. AND STANLEYF. DERMOTT Department of Astronomy. University of Florida, Gainesuille, Florida 3261I Reccwed August 25. 1995: revised May 16. 1996 Solar System interplanetary space (e.g., Leinert and Grtin The recent discovery of the so-called Kuiper belt objects has 1990, Levasseur-Reeourd _" al. 1991 ). However, since the :,rompted the idea that these objects produce dust grains that discovery of the lirst Iran,-neptunian obiect (Jcw'ilt and :na_ contribute significantly to the interplanetary dust popula- Luu 1992. 1993) and the <ill ongoing discoveries of such uon. In this paper, the orbital evolution of dust grains, of objects (see Jewitt and Luu 1995 for an up-to-date sum- diameters 1 to 9 Jam, that originate in the region of the Kuiper mary), it has been proposed that small dust particles pro- belt is studied by means of direct numerical integration. Gravi- duced from these so-called "'Kuiper belt objects" may con- tational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are tribute significantly to the interplanetary dust population included. The interactions between charged dust grains and that constitutes the zodiacal cloud (e.g., Flynn 1994). They solar magnetic field are not considered in the model. Because may also be an important source of the interplanetary of the effects of drag forces, small dust grains will spiral toward dust particles (IDPs) collected in the stratosphere by high- the Sun once they are released from their large parent bodies.
    [Show full text]
  • A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M
    To appear in the SIGGRAPH conference proceedings A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M. Stark3 Simon Premozeˇ 3 Julie Dorsey2 Peter Shirley3 1Stanford University 2Massachusetts Institute of Technology 3University of Utah Abstract 1 Introduction This paper presents a physically-based model of the night sky for In this paper, we present a physically-based model of the night sky realistic image synthesis. We model both the direct appearance for image synthesis, and demonstrate it in the context of a Monte of the night sky and the illumination coming from the Moon, the Carlo ray tracer. Our model includes the appearance and illumi- stars, the zodiacal light, and the atmosphere. To accurately predict nation of all significant sources of natural light in the night sky, the appearance of night scenes we use physically-based astronomi- except for rare or unpredictable phenomena such as aurora, comets, cal data, both for position and radiometry. The Moon is simulated and novas. as a geometric model illuminated by the Sun, using recently mea- The ability to render accurately the appearance of and illumi- sured elevation and albedo maps, as well as a specialized BRDF. nation from the night sky has a wide range of existing and poten- For visible stars, we include the position, magnitude, and temper- tial applications, including film, planetarium shows, drive and flight ature of the star, while for the Milky Way and other nebulae we simulators, and games. In addition, the night sky as a natural phe- use a processed photograph. Zodiacal light due to scattering in the nomenon of substantial visual interest is worthy of study simply for dust covering the solar system, galactic light, and airglow due to its intrinsic beauty.
    [Show full text]
  • Zodiacal Cloud Complexes
    Earth Planets Space, 50, 465–471, 1998 Zodiacal Cloud Complexes Ingrid Mann MPI fur¨ Aeronomie, D-37191 Katlenburg-Lindau, Germany (Received October 7, 1997; Revised March 17, 1998; Accepted March 17, 1998) We discuss some aspects of the study of the Zodiacal cloud based on brightness observations. The discussion of optical properties as well as the spatial distribution of the dust cloud show that the description of the dust cloud as a homogeneous cloud is reasonable for the regions near the Earth orbit, but fails in the description of the dust in the inner solar system. The reasons for this are that different components of the dust cloud may have different types of orbital evolution depending on the parameters of their initial orbits. Also the collisional evolution of dust in the inner solar system may have some influence. As far as perspectives for future observations are concerned, the study of Doppler shifts of the Fraunhofer lines in the Zodiacal light will provide further knowledge about the orbital distribution of dust particles, as well as advanced infrared observations will help towards a better understanding of the outer solar system dust cloud beyond the asteroid belt. 1. Introduction properties per volume element. A common method of data Small bodies in our solar system cover a broad size range analysis applies forward calculations of the line of sight inte- from asteroids and comets to dust particles of micrometer gral under reasonable assumptions about particle properties size and below. Brightness observations do mainly cover a and spatial distribution. Detailed descriptions of the line of range of particles of 1 to 100 micron in size, i.e.
    [Show full text]
  • The Three-Dimensional Structure of the Zodiacal Dust Bands
    ICARUS 127, 461±484 (1997) ARTICLE NO. IS975704 The Three-Dimensional Structure of the Zodiacal Dust Bands William T. Reach Universities Space Research Association and NASA Goddard Space Flight Center, Code 685, Greenbelt, Maryland 20771, and Institut d'Astrophysique Spatiale, BaÃtiment 121, Universite Paris XI, 91405 Orsay Cedex, France E-mail: [email protected] Bryan A. Franz General Sciences Corporation, NASA Goddard Space Flight Center, Code 970.1, Greenbelt, Maryland 20771 and Janet L. Weiland Hughes STX, NASA Goddard Space Flight Center, Code 685.9, Greenbelt, Maryland 20771 Received July 18, 1996; revised January 2, 1997 model, the dust is distributed among the asteroid family mem- Using observations of the infrared sky brightness by the bers with the same distributions of proper orbital inclination Cosmic Background Explorer (COBE)1 Diffuse Infrared Back- and semimajor axis but a random ascending node. In the mi- ground Experiment (DIRBE) and Infrared Astronomical Satel- grating model, particles are presumed to be under the in¯uence lite (IRAS), we have created maps of the surface brightness of Poynting±Robertson drag, so that they are distributed Fourier-®ltered to suppress the smallest (, 18) structures and throughout the inner Solar System. The migrating model is the large-scale background (.158). Dust bands associated with better able to match the parallactic variation of dust-band lati- the Themis, Koronis, and Eos families are readily evident. A tude as well as the 12- to 60-mm spectrum of the dust bands. dust band associated with the Maria family is also present. The The annual brightness variations can be explained only by the parallactic distances to the emitting regions of the Koronis, migrating model.
    [Show full text]
  • The Quest for the Gegenschein Erwin Matys, Karoline Mrazek
    The Quest for the Gegenschein Erwin Matys, Karoline Mrazek The sun’s counterglow — or gegenschein — is kind of a stargazers’ legend. Every amateur astronomer has heard about it, only a few of them have actually seen it, and even fewer were lucky enough to capture an image of this dim and ghostlike apparition. As a fellow observer put it: “The gegenschein is certainly not a GOTO-object.” Matter of fact, it isn’t an object at all. But let’s start from the beginning. What exactly is the gegenschein? It is widely known that the space between the planets isn’t empty. The plane of the solar system is filled with an enormous disk of small dust particles with sizes ranging from less than 1/1000 mm up to 1 mm. It is less commonly known that this interplanetary dust cloud is a highly dynamic structure. In contrast to conventional wisdom, it is not an aeon-old leftover from the solar system’s formation. This primordial dust is long gone. Today’s interplanetary dust is — in an astronomical sense of speaking — very young, only millions of years old. Most of the particles originate from quite recent incidents, like asteroid collisions. This is not the gegenschein. The picture shows the zodiacal light, which is closely related to the gegenschein. Here imaged from a rural site, the zodiacal light is a cone of light extending from the sun along the ecliptic, visible after dusk and before dawn. The gegenschein stems from the same dust cloud, but is much harder to detect or photograph.
    [Show full text]
  • The Kuiper Belt: What We Know and What We Don’T
    The Kuiper Belt: What We Know and What We Don’t David Jewitt, UCLA, September 2012 The best indication of the significance of the Kuiper belt lies in its multiple connections to other aspects of the Solar system. The dust in the Zodiacal cloud, the rocks in the meteor streams, the nuclei of comets, the Centaurs, perhaps also the irregular moons of the planets and the Trojans that lead and trail planets in their orbits, are all related to the parent population in the Kuiper belt. Further afield, the dusty debris disks of other stars are likely produced by collisional shattering of parent bodies in unseen Kuiper belts about them. Because of these many connections, Kuiper belt science has already had significant impact on the study of the contents, origin and evolution of the Solar system, and on understanding the Solar system in the context set by other stars. While we know much more than we used to, we still don’t know many things about the Kuiper belt. The Solar system formed from a flattened, rotating disk of gas and dust, itself produced by gravitational collapse from the interstellar medium. The explosion of a nearby massive star, a “supernova”, may have provided the initial compression causing the cloud to collapse, as suggested by the products of decay of short-lived radioactive elements (esp. 26Al) embedded in meteorites (Lee et al. 1977, Dauphas and Chaussidon 2011). Planets formed quickly in the dense inner portions of this disk but the process of growth in the rarefied outer regions was very slow.
    [Show full text]
  • Pplanetary Materials Research At
    N. L. CHABOT ET AL . Planetary Materials Research at APL Nancy L. Chabot, Catherine M. Corrigan, Charles A. Hibbitts, and Jeffrey B. Plescia lanetary materials research offers a unique approach to understanding our solar system, one that enables numerous studies and provides insights that are not pos- sible from remote observations alone. APL scientists are actively involved in many aspects of planetary materials research, from the study of Martian meteorites, to field work on hot springs and craters on Earth, to examining compositional analogs for asteroids. Planetary materials research at APL also involves understanding the icy moons of the outer solar system using analog materials, conducting experiments to mimic the conditions of planetary evolution, and testing instruments for future space missions. The diversity of these research projects clearly illustrates the abundant and valuable scientific contributions that the study of planetary materials can make to Pspace science. INTRODUCTION In most space science and astronomy fields, one is When people think of planetary materials, they com- limited to remote observations, either from telescopes monly think of samples returned by space missions. Plan- or spacecraft, to gather data about celestial objects and etary materials available for study do include samples unravel their origins. However, for studying our solar returned by space missions, such as samples of the Moon system, we are less limited. We have samples of plan- returned by the Apollo and Luna missions, comet dust etary materials from multiple bodies in our solar system. collected by the Stardust mission, and implanted solar We can inspect these samples, examine them in detail wind ions collected by the Genesis mission.
    [Show full text]
  • Accretion and Differentiation of the Terrestrial Planets with Implications for the Compositions of Early-Formed Solar
    Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water D.C. Rubie1*, S.A. Jacobson1,2, A. Morbidelli2, D.P. O’Brien3, E.D. Young4, J. de Vries1, F. Nimmo5, H. Palme6, D.J. Frost1 1Bayerisches Geoinstitut, University of Bayreuth, D-95490 Bayreuth, Germany ([email protected]) 2Observatoire de la Cote d’Azur, Nice, France 3Planetary Science Institute, Tucson, Arizona, USA 4Dept. of Earth and Space Sciences, UCLA, Los Angeles, USA 5 Dept. of Earth & Planetary Sciences, UC Santa Cruz, USA 6 Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main, Germany * Corresponding author Submitted to Icarus 8 April 2014; revised 19 August 2014; accepted 9 October 2014 Abstract. In order to test accretion simulations as well as planetary differentiation scenarios, we have integrated a multistage core-mantle differentiation model with N-body accretion simulations. Impacts between embryos and planetesimals are considered to result in magma ocean formation and episodes of core formation. The core formation model combines rigorous chemical mass balance with metal-silicate element partitioning data and requires that the bulk compositions of all starting embryos and planetesimals are defined as a function of their heliocentric distances of origin. To do this, we assume that non-volatile elements are present in Solar System (CI) relative abundances in all bodies and that oxygen and H2O contents are the main compositional variables. The primary constraint on the combined model is the composition of the Earth’s primitive mantle. In 1 addition, we aim to reproduce the composition of the Martian mantle and the mass fractions of the metallic cores of Earth and Mars.
    [Show full text]