Atmospheric Optical Phenomena and Radiative Transfer

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Optical Phenomena and Radiative Transfer ATMOSPHERIC OPTICAL PHENOMENA AND RADIATIVE TRANSFER BY STANLEY DAVID GEDZELMAN AND MICHAEL VOLLMER Sky colors, rainbows, and halos are simulated using models that include light scattered as it passes through clear air and clouds of finite optical depth. ivid rainbows, ice crystal halos, coronas, iridescence, glories, mirages, sky colors, and crepuscular rays have Valways inspired awe and wonder. This makes simulating atmospheric optical phenomena both a scientific and aesthetic undertaking. Atmospheric optics has a venerable history (Pernter and Exner 1922; Minnaert 1993; Humphreys 1940; Tricker 1970; Greenler 1980; Meinel and Meinel 1983; Lynch and Livingston 2001), because the phenomena appear so simple and striking, and because scientists emphasized this branch of atmospheric science at a time when it was far more difficult to examine large-scale weather systems. Discoveries made about or involving the rainbow by Rene Descartes, Isaac Newton, and Thomas Young rank among the early triumphs of the scientific revolution (Boyer 1987). All optical phenomena are produced when air molecules, aerosol particles, or hydrometeors either scatter or absorb light as it passes through the atmosphere. Many of the observed features of the optical phenomena can be reproduced by applying a scattering theory of light to a single particle. This can be done at various levels of complexity. The most accurate and perhaps most intricate Rainbow. " University Corporation for Atmospheric theories involve • i Research, Photo by Carlye Calvin BAH5- AMERICAN METEOROLOGICAL SOCIETY Unauthenticated | DownloadedAPRIL 2008 10/09/21 01:28 AM UTC solving Maxwell's equations with appropriate bound- flattening of drops (Fraser 1983), while models of ary conditions. Thus, for example, rainbows, coronas, complex halo displays include a number of ice crystal and glories are assumed to be generated by light scat- shapes and orientations (Greenler 1980). Even so, tered by homogeneous spheres. This was the approach these theories still essentially treat light as if it were taken by Mie (1908), and is often referred to as Mie scattered once by a single "integrated" particle. theory (Bohren and Huffman 1983). In fact, all optical phenomena are produced when Much simpler approximations to scattering can light is scattered as it passes through a cloud, a rain reproduce many of the principal features of most opti- shaft, and the atmosphere. Light reaching the ob- cal phenomena. Thus, for example, many features of server may be scattered any number of times. Except rainbows and halos are explained by using the geomet- when the sun is near the horizon, most sunlight ric optics of reflection and refraction as an approxi- passes through clear air and through very tenuous mation to scattering by spherical (or near spherical) clouds without being scattered, while most sunlight raindrops and by simple hexagonal ice crystal prisms. is scattered several times before exiting thick clouds. In a similar manner, many features of coronas can be Thus, as was noted by Meyer (1929), the brightest described using the Fresnel-Kirchhoff formula for halos are produced by clouds of modest optical depth diffraction as an approximation to light scattered by r,,, because extreme tenuous clouds contain too few clcr cloud droplets (Fowles 1989). Similarly, some features ice crystals to scatter much light, while thick clouds of sky color are explained by the simple theory first de- contain so many ice crystals that light is scattered rived by Rayleigh to express light scattered by particles many times before exiting the cloud so that halos much smaller than the wavelength of light, such as air and coronas and even direct sunlight are blurred into molecules, and by Mie theory to represent scattering incoherent, almost isotropic cloud light. by aerosol particles, even though most aerosol particles Optical depth and optical thickness are two terms are neither homogeneous nor spherical. we use here to express how effectively a layer of cloud These theories for describing atmospheric optical or air scatters or absorbs light. Assuming Bouguer's phenomena amount to finding the angular distri- law [see Eq. (1)] to be valid, a medium has optical bution of radiance scattered by a single particle. depth (thickness) r when a fraction e~T of a vertical One major limitation of such an approach becomes (oblique) sunbeam penetrates without being scattered obvious when applied to sky colors, because no or absorbed. single particle that scatters shortwaves with greater The color and radiance of atmospheric optical efficiency than longwaves can produce the orange or phenomena, therefore, depend on the optical depth red color of the horizon sky at twilight. of the cloud and/or clear air and must be treated When the angular distribution of radiance var- as problems in radiative transfer. A robust theory ies with particle size, shape, and orientation, it is of atmospheric optical phenomena must include necessary to integrate over all of the illuminated the role of multiple scattering of light. This article particles. Recent models of coronas, glories, and is, therefore, designed to develop simple radiative rainbows include the drop size distribution (Lock and transfer models that show how the radiance and Yang 1991; Cowley et al. 2005) and size-dependent color of atmospheric optical phenomena depend on the optical depth of the cloud and clear air (Meyer 1929; Minnaert 1993). This approach is routinely AFFILIATIONS: GEDZELMAN—Department of Earth and taken in climate modeling (Lacis and Hansen 1974), Atmospheric Sciences, and NOAA/CREST Center, City College remote sensing (Menzel et al. 1998), and models of of New York, New York, New York; VOLLMER—Physikalische skylight and color (Adams et al. 1974; Gedzelman Technik, Brandenburg University of Applied Sciences, 1975; Bohren and Fraser 1985; Gedzelman 2005), but Brandenburg, Germany not often in modeling rainbows, halos, coronas, and CORRESPONDING AUTHOR: Stanley David Gedzelman, glories (Gedzelman 1980; Trankle and Greenler 1987; Department of Earth and Atmospheric Sciences, and NOAA/ Gedzelman 2003; Gedzelman and Lock 2003). CREST Center, City College of New York, New York, NY 10013 E-mail: [email protected] Any rigorous theory involving multiple scattering is complex and cumbersome, but a model that treats The abstract for this article can be found in this issue, following the atmospheric optical phenomena as beams of singly table of contents. scattered sunlight that are depleted by a second DON 0.1175/BAMS-89-4-47I scattering on their way to the observer provides a In final form 5 October 2007 ©2008 American Meteorological Society simple first-order approximation for two reasons. First, the brightest rainbows, halos, coronas, and 472 I BAflfr APRIL 2008 Unauthenticated | Downloaded 10/09/21 01:28 AM UTC glories are produced when the optical thickness of of skylight except in extremely hazy air. This indi- the light path through the atmosphere and/or cloud cates that the predominant role of scattering for the is small, so that relatively little light is scattered more appearance of sunlight is depletion. than once. Second, rainbows, halos, coronas, and Aerosol particles scatter less selectively than air glories involve light scattering from particles with molecules, but most still scatter shortwaves more effi- pronounced peaks of radiance in certain directions ciently than longwaves, and thereby act to redden the and hence are much brighter than multiply scattered sun further. The wavelength dependence of scattering light, which spreads more uniformly around the sky. is often approximated by A~a, where a is the Angstrom When modeling these phenomena, we use simple, coefficient. For air molecules a ~ 4, a ranges from 0.1 approximate expressions for multiply scattered back- to 1.2 for desert dust and from 1.1 to 2.4 for urban ground light. As a result, the theory developed here aerosols and products of biomass burning (Dubovik is simple enough and the resulting simulations are et al. 2002). Large forest fires or massive volcanic convincing enough to be presented in courses that eruptions eject micrometer-sized particles that may treat atmospheric optics. scatter longwaves more efficiently than shortwaves The rest of this article is organized as follows. (Bohren 1995; Koziol and Pudykiewicz 1998), and so Observed "Features of optical phenomena related to have Angstrom coefficients a < 0. In these rare cases radiative transfer", are described and then explained they may turn the sun and moon green or blue even qualitatively. "Light scattering processes by individual when these celestial bodies are high in the sky. particles" including air molecules, cloud droplets, raindrops and ice crystals are presented. "Radiative Sky colors. Sky colors are more varied than the colors transfer theory for optical phenomena" used to con- of the sun because skylight is both produced and de- struct the models is then developed and used to create pleted by scattering. When the sun is high in the sky "Simulations of atmospheric optical phenomena." and the air is pure, the sky is blue with a maximum The final section contains the "Summary and color purity of 42% for a dominant wavelength of conclusions." 0.475 f/m at the zenith, but grades to near white at the horizon (Bohren and Fraser 1985). At that time, FEATURES OF OPTICAL PHENOMENA skylight consists mainly of singly scattered sunlight RELATED TO RADIATIVE TRANSFER. that has been depleted by a second scattering before it Colors of the sun and moon. The brightness and color reaches the observer. As the sun nears the horizon, its of sunlight and moonlight constitute the simplest optical path through the atmosphere lengthens. This applications of radiative transfer theory for optical increases the probability of scattering, particularly of phenomena. Sunlight and moonlight dim and redden shortwaves, so that both sunlight and skylight redden. as they approach the horizon because they must pass Thus, in Fig. 2, the violet and blue colors in sunlight through much more air to reach an observer (Fig.
Recommended publications
  • Atmospheric Effects Are Looking Up
    Atmospheric Effects are Looking Up OASI Workshop 21st May 2018 by Olaf Kirchner Ever seen one of these ? OK, so how about one of these? Atmospheric Effects - caused by sun- or moonlight interacting with liquid water or ice in the air - surprisingly common - always beautiful and one or several phenomena may be seen at the same time - can be in-your-face obvious or very subtle, and ... - ... span the entire sky - a challenge to photograph - very complicated theoretical explanations Effects caused by Liquid Water Droplets - rainbows - glories, Heiligenschein and the Spectre of the Brocken - aureoles / coronae - nacreous / iridescent / Mother-of-Pearl clouds Rainbow Rainbow Ray paths for primary rainbow Ray paths through a spherical water drop Ray paths for secondary rainbow Secondary Rainbow Secondary rainbow Alexander’s Band Supernumerary rainbow Primary rainbow Rainbow Gap in cloud behind observer = partial rainbow Rainbow in spray, Geneva Jet d’Eau Supernumerary Rainbow Interference colours from different lengths of light path Rainbow Circular rainbow seen from an aircraft Rainbows don’t reflect ... Glory Colourful diffraction rings centred on the antisolar point, caused by reflection from spherical droplets Glory ... i.e. centred on where the shadow of your head would be! Brockengespenst = Spectre of the Brocken Taken against fog from Golden Gate Bridge Brocken (1142 m) . Highest point in the Harz mountains Heiligenschein = Halo Antisolar point in hydrothermal steam ... scary stuff Heiligenschein ... i.e. a glory centred on your head
    [Show full text]
  • Atmospheric Phenomena by Feist
    Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two.
    [Show full text]
  • Atmospheric Optics
    53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering
    [Show full text]
  • The Quest for the Gegenschein Erwin Matys, Karoline Mrazek
    The Quest for the Gegenschein Erwin Matys, Karoline Mrazek The sun’s counterglow — or gegenschein — is kind of a stargazers’ legend. Every amateur astronomer has heard about it, only a few of them have actually seen it, and even fewer were lucky enough to capture an image of this dim and ghostlike apparition. As a fellow observer put it: “The gegenschein is certainly not a GOTO-object.” Matter of fact, it isn’t an object at all. But let’s start from the beginning. What exactly is the gegenschein? It is widely known that the space between the planets isn’t empty. The plane of the solar system is filled with an enormous disk of small dust particles with sizes ranging from less than 1/1000 mm up to 1 mm. It is less commonly known that this interplanetary dust cloud is a highly dynamic structure. In contrast to conventional wisdom, it is not an aeon-old leftover from the solar system’s formation. This primordial dust is long gone. Today’s interplanetary dust is — in an astronomical sense of speaking — very young, only millions of years old. Most of the particles originate from quite recent incidents, like asteroid collisions. This is not the gegenschein. The picture shows the zodiacal light, which is closely related to the gegenschein. Here imaged from a rural site, the zodiacal light is a cone of light extending from the sun along the ecliptic, visible after dusk and before dawn. The gegenschein stems from the same dust cloud, but is much harder to detect or photograph.
    [Show full text]
  • Wfc3 Isr 2014
    SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA Instrument Science Report WFC3 2014-11 The Near Infrared Sky Background N. Pirzkal May 13, 2014 ABSTRACT WFC3 IR observations are often background limited. In the vast majority of cases, when HST is pointed away from the Earth Limb, the main contribution to this background light is caused by zodiacal infrared light, including the Gegenschein, the diffuse glow in the sky centered upon Earth's antisolar point. In this ISR, we present direct measurements of the infrared background levels as observed by WFC3 since its launch and in several broad band filters. We compare our observations to the values currently used in the Exposure Time Calculator (ETC) and derive a model of the IR background levels as a function of Ecliptic Latitude and Sun Angle. Data and Analysis WFC3 IR images have been continuously monitored since the installation of WFC3 on board of HST, as part of the \Blob" Monitoring Program (Pirzkal et al. 2012) and the making of deep sky-flats (Pirzkal et al. 2011). The data that were used and details of the procedures used are given in Pirzkal et al. 2011 and Pirzkal et al. 2012. As part of this routine monitoring, we naturally needed to accurately measure the background level in each of the available infrared exposures. The was done by first generating an object mask using SExtractor for each individual FLT file. This mask was then used to mask out sources in each of the IMSET of the original IMA file and we then computed the background in each IMSET Copyright c 2008 The Association of Universities for Research in Astronomy, Inc.
    [Show full text]
  • Than Mountain Air and Daytime Scenery
    Moonbows overYosem te By Donald W. Olson, Russell L. Doescher, and the Mitte Honors Students The rainbow occurs by day, and it was formerly thought that it never appeared by night as a moon rainbow. This opinion was due to the rarity of the phenomenon: it was not observed, for though it does happen, it does so rarely. The colors are not easy to see in the dark. The moon rainbow appears white. — Aristotle, Meteorologica, about 340 BC More than mountain Few sights evoke such spontaneous delight and wonder as a late- afternoon rainbow bursting into view in the eastern sky after a air and daytime spring downpour. Even before it appears, you sense that it might, and you keep a lookout. Maybe you once fancied fi nding a pot of scenery beckon gold where the colorful arc ends. Yet how many of us have seen a rainbow at night? While this is a visitors to Yosemite fairly rare event, nature lovers as far back as Aristotle knew it was National Park each possible for a bright Moon, like the Sun, to produce a rainbow. When rays of light from the Sun (or Moon) shine on spherical spring — many go for drops of water in a rain shower, a combination of refraction, inter- nal refl ection, and dispersion can produce a rainbow display. The a chilly, damp, night- primary bow forms a circular arc with a radius of 42°, and under good conditions a much fainter secondary rainbow can appear time vigil. with a radius of 51° and with the sequence of colors reversed.
    [Show full text]
  • 2003 Astronomy Magazine Index
    2003 astronomy magazine index Catchall (Martian crater), 11:30 observing Mars from, 7:32 hydrogen, 10:28 Subject index CCD (charge-coupled device) cameras, planets like, 6:48–53 Hydrus (constellation), 10:72–75 3:84–87, 5:84–87 seasons of, 3:72–73 A CCD techniques, 9:100–105 tilt of axis, 2:68, 5:72–73 I accidents, space-related, 7:42–47 Celestron C6-R (refractor), 11:84 EarthExplorer web site, 4:30 Achernar (star), 10:30 iceball, found beyond Pluto, 1:24 Celestron C8-N (reflector), 11:86 eclipses India, plans to visit Moon, 10:29 Advanced Camera for Surveys, 4:28 Celestron CGE-1100 (amateur telescope), in Australia (2003), 4:80–83 ALMA (Atacama Large Millimeter Array), infrared survey, 8:31 11:88 lunar integrating wavelengths, 4:24 3:36 Celestron NexStar 8 GPS (amateur telescope), of 2003, 5:18 Amalthea (Jupiter’s moon), 4:28 interferometry 1:84–87 of May 15, 2003, 5:60, 80–83, 88–89 techniques for, 7:48–53 Amateur Achievement Award, 9:32 Celestron NexStar 8i (amateur telescope), solar Andromeda Galaxy VLT interferometer, 2:32 11:89 of May 31, 2003, 5:80–83, 88–89 International Space Station, 3:31 picture of, 2:12–13 Centaurus A (NGC 5128) galaxy Edgar Wilson Award, 11:30 young stars in, 9:86–89 Internet, virtual observatories on, 9:80–85 1,000 Mira stars discovered in, 10:28 Egg Nebula, 8:36 Intes MK67 (amateur telescope), 11:89 Annefrank (asteroid), 2:32 picture of, 10:12–13 elliptical galaxies, 8:31 antineutrinos, 4:26 Io (Jupiter’s moon), 3:30 ripped apart satellite galaxy, 2:32 Eta Carinae (nebula), 5:29 ISAAC multi-mode instrument, 4:32 antisolar point, 10:18 Centaurus (constellation), 4:74–77 ETX-90EC (amateur telescope), 11:89 Antlia (constellation), 4:74–77 cepheid variable stars, 9:90–91 Europa (Jupiter’s moon), 12:30, 77 aphelion, 6:68–69 Challenger (space shuttle), 7:42–47 exoplanet magnetosphere, 11:28 J Apollo 1 (spacecraft), 7:42–47 J002E3 satellite, 1:30 Chamaeleon (constellation), 12:80–83 extrasolar planets.
    [Show full text]
  • The Isophote Maps of the Gegenschein Obtained by CCD Observations
    Earth Planets Space, 50, 477–480, 1998 The isophote maps of the Gegenschein obtained by CCD observations Masateru Ishiguro1, Hideo Fukushima2, Daisuke Kinoshita3, Tadashi Mukai1, Ryosuke Nakamura4, Jun-ichi Watanabe2, Takeshi Watanabe1, and John F. James5 1The Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan 2National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan 3Department of Physics, Faculty of Science, Tohoku University, Sendai 980-77, Japan 4Information Processing Center, Kobe University, Nada, Kobe 657-8501, Japan 529, Merchants’ Quay, Salford, M5 2XF, England (Received December 8, 1997; Revised January 16, 1998; Accepted February 3, 1998) We summarize the results of our Gegenschein observations at Norikura (altitude 2876 m, Japan) in Sept. 18, 1996, and at Kiso (altitude 1130 m, Japan) in Feb. 9–14, and March 4 and 5,1997. The instrument consisting of fish-eye lens or the wide angle lens attached to the cooled CCD camera was used with green filter. It is found that the position of the maximum brightness near the antisolar point (the Gegenschein) is slightly deviated approximately 0.◦4 from the antisolar point to the south in September, whereas nearly 0.◦7 to the north in February/March. Furthermore, a gradient of the relative intensity along a line perpendicular to the ecliptic is remarkably different with changing seasons, i.e. the brightness decreases faster towards the north in September, in contrast with its quick decrease towards the south in February/March. Our observed evidence suggests that these variations of the peak position and the brightness gradient of the Gegenschein are caused by the annual motion of the Earth with respect to the plane of the zodiacal cloud, and does not conflict with the predictions deduced from the cloud model having its symmetric plane beyond the Earth’s orbit coinciding with the invariable plane of the solar system.
    [Show full text]
  • RAINBOWS Written by Peg Zenko with Special Edit by Les Cowley
    The Weather Observers Guide to RAINBOWS Written by Peg Zenko with special edit by Les Cowley Even after the most destructive thunderstorms have just passed, the sky can display a bright, stunning blend of colors in the graceful, perfectly circular arc of a rainbow. The subject of song, verse and Biblical prophecy, rainbows are associated with light and peace. Many cultures have myths surrounding the rainbow. In Norse, it is called Bifrost (The Trembling Roadway). They are the easiest of atmospheric optic phenomena to spot, even though they occur in our observing area roughly an average of only 5% as often as the common 22-degree solar halo. The first step in spotting rainbows is to recognize sky colors that are commonly mistaken for rainbows. The solar halo (left) is sometimes mistaken for a rainbow because it displays similar colors, and is also circular. The halo, however, appears around the sun, in a radial arc of 22 degrees, and the much larger rainbow is always opposite the sun. Another difference is that the red band of the halo Continued (RAINBOWS continued) appears on the inner circumference of the circle, and red is on the outside of the rainbow. Another misconception is that a very frequent colorful solar companion, the sundog, is a little piece of rainbow. Sundogs (right) also appear near the 22-degree radius halo. In this instance it’s difficult to detect an arc, but the obvious clue is that it is near the sun. The optic phenomena that most closely resembles a rainbow is the circumzenithal arc, or CZA.
    [Show full text]
  • The Fall Sky by Dr
    The Fall Sky by Dr. Arthur Babcock Planets Leonids on 17 November and the Geminids on 14 December, will be washed out by the Moon. Mercury will be visible in the western evening sky from the start of the quarter through early November. It Comets then becomes lost in the glare of the Sun, but take heart: Comet C/2018 W2 (Africano) is predicted to be at on 11 November there will be a transit of Mercury, the 8th magnitude (i.e., visible in binoculars) for the first part of first since 2016. On the Central Coast, we will miss the the season. C/2017 T2 (PanSTARRS) may brighten to 9th beginning of the transit, which begins before sunrise. The magnitude in December and 8th magnitude in earlt 2020. moment of greatest transit occurs at about 7:20am, and by Seiichi Yoshida’s Home Page (www.aerith.net) is a good 10:03, the transit will be over. Because the disc of the place to get finder charts and other information on comets. planet as seen from Earth is so small (much smaller than the disc of Venus during a transit), observing the transit of Eclipses Mercury requires a telescope with a magnification of at No eclipses will be visible from the Central Coast least 50x. Since the telescope will be pointed squarely during this quarter. There will be an annular solar eclipse on at the Sun, a proper solar filter is an absolute require- 26 December, but it won’t be visible from these parts. ment. After the transit, the planet becomes visible in the Interplanetary Dust morning sky from late November until the end of the period.
    [Show full text]
  • Joe Orman's Naked-Eye
    Joe Orman’s Naked‐Eye 100 Title Description All‐Night Sky Stay up all night and watch the sky change as the earth turns. This faint patch of light is the farthest thing visible to the naked eye, over Andromeda Galaxy 2 million light‐years away! This red giant star in Scorpius is sometimes close to Mars, and they look Antares, The Rival Of Mars the same‐ bright and pink. Crepuscular rays converging on the antisolar point; often very faint and Anticrepuscular Rays diffuse. Follow the curve of the Big Dipper's handle to a bright star‐ Arcturus in Arc To Arcturus Bootes. ISS, HST etc. look like stars moving steadily across the sky. Check Artificial Satellites heavens‐above.com for visibility. Usually too faint to see, but on April13, 2029, asteroid 2004MN will Asteroids make a close naked‐eye pass. Bright glow around the sun or moon, colorless and only a few degrees Aureole across. Northern Lights. From the southern U.S., can occasionally be seen as a Aurora Borealis reddish glow in the northern sky. Sunlight peeking between the mountains of the moon during a total Bailey's Beads solar eclipse. A band of pink above the horizon; look opposite the sun just before Belt Of Venus sunrise or just after sunset Betelgeuse The Hunter's left shoulder is a red giant star, bright and pink to the eye. The body and tail of Ursa Major, the Big Bear. Close to Polaris in the Big Dipper northern sky. The star where the dipper's handle bends, Mizar, has a fainter Big Dipper Double‐Star companion Alcor‐ a good test of vision.
    [Show full text]
  • MSE3 Ch22 Atmospheric Optics
    Chapter 22 Copyright © 2011, 2015 by Roland Stull. Meteorology for Scientists and Engineers, 3rd Ed. OptiCs COntents Light can be considered as photon particles or electromagnetic waves, ei- Ray Geometry 833 ther of which travel along paths called Reflection 833 22 rays. To first order, light rays are straight lines Refraction 834 within a uniform transparent medium such as air Huygens’ Principle 837 or water, but can reflect (bounce back) or refract Critical Angle 837 (bend) at an interface between two media. Gradual Liquid-Drop Optics 837 refraction (curved ray paths) can also occur within Primary Rainbow 839 a single medium containing a smooth variation of Secondary Rainbow 840 optical properties. Alexander’s Dark Band 841 Other Rainbow Phenomena 841 The beauty of nature and the utility of physics come together in the explanation of rainbows, halos, Ice Crystal Optics 842 and myriad other atmospheric optical phenomena. Parhelic Circle 844 Subsun 844 22° Halo 845 46° Halo 846 Halos Associated with Pyramid Crystals 847 ray GeOmetry Circumzenith & Circumhorizon Arcs 848 Sun Dogs (Parhelia) 850 Subsun Dogs (Subparhelia) 851 When a monochromatic (single color) light ray Tangent Arcs 851 reaches an interface between two media such as air Other Halos 853 and water, a portion of the incident light from the Scattering 856 air can be reflected back into the air, some can be re- Background 856 fracted as it enters the water (Fig. 22.1), and some can Rayleigh Scattering 857 be absorbed and changed into heat (not sketched). Geometric Scattering 857 Similar processes occur across an air-ice interface.
    [Show full text]