Atmospheric Phenomena Transcript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contrail-Cirrus and Their Potential for Regional Climate Change
Contrail-Cirrus and Their Potential for Regional Climate Change Kenneth Sassen Department of Meteorology, University of Utah, Salt Lake City, Utah ABSTRACT After reviewing the indirect evidence for the regional climatic impact of contrail-generated cirrus clouds (contrail- cirrus), the author presents a variety of new measurements indicating the nature and scope of the problem. The assess- ment concentrates on polarization lidar and radiometric observations of persisting contrails from Salt Lake City, Utah, where an extended Project First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) cirrus cloud dataset from the Facility for Atmospheric Remote Sensing has captured new information in a geographical area previously identified as being affected by relatively heavy air traffic. The following contrail properties are consid- ered: hourly and monthly frequency of occurrence; height, temperature, and relative humidity statistics; visible and in- frared radiative impacts; and microphysical content evaluated from in situ data and contrail optical phenomenon such as halos and coronas. Also presented are high-resolution lidar images of contrails from the recent SUCCESS experiment, and the results of an initial attempt to numerically simulate the radiative effects of an observed contrail. The evidence indicates that the direct radiative effects of contrails display the potential for regional climate change at many midlati- tude locations, even though the sign of the climatic impact may be uncertain. However, new information suggests that the unusually small particles typical of many persisting contrails may favor the albedo cooling over the greenhouse warming effect, depending on such factors as the geographic distribution and patterns in day versus night aircraft usage. -
Atmospheric Phenomena by Feist
Atmospheric optical phenomena An introductory guide by Mike Feist Effects caused by water droplets— rainbows and coronae The most well known optical sky effect is the rainbow. This, as most people know, sometimes occurs when the Sun is out and it is raining. To see a rainbow you must stand with your back to the Sun with the raindrops in front of you. It does not have to be raining where you are standing but in the direction that you are looking. The arc of the primary (main) bow is centred on the antisolar point, the spot directly oppo- site the Sun, and has a radius of 42°. The antisolar point is actually centred on the shadow of your head. If the Sun is rising or setting and therefore on the horizon, the primary rainbow will be a complete semi- circle and the top will be 42° up in the sky. If, on the other hand, the Sun is 42° up in the sky, the primary bow will be on the horizon, the top just rising or setting. Con- ventionally the rainbow is said to have John Constable. Hampstead Heath with a Rainbow (1836). seven colours but all we need to remember seen in the spray near waterfalls and artifi- ous forms but with a six-sided shape. They is that, in the primary bow, the red is on cial rainbows can be made using a garden may be as flat hexagonal plates or long the outside and the blue on the inside. Out- hose. Rainbows are one of the easiest opti- hexagonal prisms or as a combination of side the primary bow sometimes there is cal effects to photograph although they the two. -
Direccion De Personal Aeronautico Dpto. De
DIRECCION DE PERSONAL AERONAUTICO 26/09/2021 MTC DPTO. DE INSTRUCCION OGMS/DINF PREGUNTAS Y OPCIONES POR TEMA 14:03 Pag: 1 TEMA: 0626 ATP-RTC - Meteorology and Weather Services - Chap.8 COD_PREG: PREGUNTA: RPTA: PREG20098166 What is indicated on the Weather Depiction Chart by a continuous smooth C (9299) line enclosing a hatched geographic area? OPCION A: The entire area has ceilings less than 1,000 feet and/or visibility less than 3 miles OPCION B: More than 50 percent of the area enclosed by the smooth line is predicted to have IFR conditions OPCION C: Reporting stations within the enclosed area are all showing IFR conditions at the time of the report OPCION D: PREG20098167 The horizontal wind shear, critical for turbulence (moderate or greater) per B (9701) 150 miles is OPCION A: 18 knots or less OPCION B: greater than 18 knots OPCION C: not a factor, only vertical shear is a factor OPCION D: PREG20098168 A severe thunderstorm is one in which he surface wind is A (9706) OPCION A: 50 knots or greater and/or surface hail is 3/4 inch or more in diameter. OPCION B: 55 knots or greater and/or surface hail is 1/2 inch or more in diameter. OPCION C: 45 knots or greater and/or surface hail is 1 inch or more in diameter. OPCION D: PREG20098169 A squall is a sudden increase of at least 16 knots in average wind speed to a B (9708) sustained speed of OPCION A: 24 knots or more for at least 1 minute OPCION B: 22 knots or more for at least 1 minute OPCION C: 20 knots or more for at least 1 minute OPCION D: PREG20098170 A calm wind that is forecast, in the international Terminal Aerodrome B (9709) Forecast (TAF) is encoded as OPCION A: VRB00KT OPCION B: 00000KT OPCION C: 00003KT OPCION D: PREG20098171 In the International Terminal Aerodrome Forecast (TAF), a variable wind C (9710) direction is noted by "VRB" where the three digit direction usually appears. -
Atmospheric Optics
53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering -
Einstein's Mirage
Paul L. Schechter Einstein’s Mirage he first prediction of Einstein’s general theoryof relativity T to be verified experimentallywas the deflection of light by a massive body—the Sun. In weak gravitational fields (and for such purposes the Sun’s field is considered weak), light behaves as if there were an index of refraction proportional to the gravitational potential. The stronger the gravitational field, the larger the angu- lar deflection of the light. The Sun is not unique in this regard, and it was quickly appreci- ated that stars in our own galaxy (the MilkyWay) and the combined mass of stars in other galaxies would also, on very rare occasions, produce observable deflections. Variations in the “gravitational” index of refraction would also distort images, stretching them in some directions and shrinking them in others. In the analogous case of terrestrial mirages, the deflections and distortions are due to thermal variations in the index of refraction of air. 36 ) schechter mit physics annual 2003 OTH TERRESTRIAL AND GRAVITATIONAL Bmirages sometimes produce multiple distorted images of the same object. When they do, at least one of the images has the opposite handedness of the object being imaged—it is a mirror image, but distorted. At least one of the other images must have the correct handedness, but it will also be distorted. The French call such distorted images gravitational mirages. In the half century following the confirmation of general relativity, the idea that cosmic mirages might actually be observed was taken seriously byonly a small number of astrophysicists. Most of the papers written on the subject treated them as academic curiosities, far too unlikely to actually be observed. -
International Atlas of Clouds and of States of the Sky
INTERNATIONAL METEOROLOGICAL COMMITTEE COMMISSION FOR THE STUDY OF CLOUDS International Atlas of Clouds and of States of the Sky ABRIDGED EDITION FOR THE USE OF OBSERVERS PARIS Office National Meteorologique, Rue de I'Universite, 176 193O International Atlas of Clouds and of States of the Sky THIS WORK FOR THE USE OF OBSERVERS CONSISTS OF : 1. This volume of text. 2. An album of 41 plates. It is an abreviation of the complete work : The International Atlas of Clouds and of States of the Sky. It is published thanks to the generosity of The Paxtot Institute of Catalonia. INTERNATIONAL METEOROLOGICAL COMMITTEE COMMISSION FOR THE STUDY OF CLOUDS International Atlas of Clouds and of States of the Sky ABRIDGED EDITION FOR THE USE OF OBSERVERS Kon. Nad. Metoor. Intl. De Bilt PARIS Office National Meteorologique. Rue de I'Universite. 176 193O In memory of our Friend A. DE QUERVAIN Member of the International Commluion for the Study of Cloudt INTRODUCTION Since 1922 the International Commission for the Study of Clouds has been engaged in studying the classification of clouds for a new International Atlas. The complete work will appear shortly, and in it will be found a history of the undertaking. This atlas is only a summary of the complete work, and is intended for the use of observers. The necessity for it was realised by the Inter- national Conference of Directors, in order to elucidate the new inter- national cloud code; this is based on the idea of the state of the sky, but observers should be able to use it without difficulty for the separate analysis of low, middle, and high clouds. -
References: Snel's Law and Refraction Index of Refraction For
ESCI 340 - Cloud Physics and Precipitation Processes Lesson 13 - Atmospheric Optical Phenomena Dr. DeCaria References: One of the best sources for information about atmospheric optics is the Atmospheric Optics website, http://www.atoptics.co.uk Snel's Law and Refraction • The index of refraction for a medium is defined as m = c=c;~ (1) where c is the speed of light in a vacuum, andc ~ is the speed of light in the medium.1 • As light passes from one medium into another, there is both reflection and refraction. • Refraction occurs because the wave fronts bend as they cross from one medium into another, causing a ray of light to bend. The ray bends toward the medium that has the slower speed of light (highest index of refraction). • The bending of the ray is quantified by Snel's Law, which is stated mathematically as sin θ m 1 = 2 ; (2) sin θ2 m1 where θ1 is the angle of incidence (and reflection), θ2 is the angle of refraction, and m1 and m2 are the indices of refraction in the two mediums (see Fig. 1). • The amount by which a ray of light is deflected due to refraction can be quantified in one of two ways. { The bending angle, θ0, is the interior angle between the initial and final rays. { The deviation angle, θ00, is the complement of the bending angle, θ00 = 180◦ −θ0. { The relationship between bending angle and deviation angle is illustrated in Fig. 2. Index of Refraction for Air • Light travels faster through warm air than it does through cold air. -
Superior Mirage: Aesthetic Recollections of the Great Lakes
Rochester Institute of Technology RIT Scholar Works Theses 12-2014 Superior Mirage: Aesthetic Recollections of the Great Lakes S Caswell Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Caswell, S, "Superior Mirage: Aesthetic Recollections of the Great Lakes" (2014). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Superior Mirage {Aesthetic Recollections of the Great Lakes} By S. Caswell December 2014 A Thesis Submitted in Candidacy for the Degree of Master of Fine Arts-Fine Arts Studio School of Art College of Imaging Arts and Sciences Rochester Institute of Technology Rochester, N.Y. Thesis Approval Superior Mirage By S. Caswell Dr. Tom Lightfoot Date Committee Chair Professor Luvon Sheppard Date Committee Member Professor Elizabeth Kronfield Date Committee Member Acknowledgements I would like to thank the committee of Dr. Tom Lightfoot, Prof. Luvon Sheppard, and Prof. Elizabeth Kronfield for their inspiration, guidance and support in the fruition of this thesis work. Each of your guidance has propelled my work to a higher level due to your individual input and depth of knowledge both artistically and intellectually. This is also the place to thank those who mentored me at Roberts Wesleyan College who were monumental in shaping the way I see as an artist. Thank you to Prof. Scot Bennett, Prof. Douglas Giebel, Prof. Jill Kepler, and Prof Alice Drew. -
Analysis of an Infrared Mirage Sequence
Analysis of an infrared mirage sequence Waldemar H. Lehn Infrared observations of seaborne thermal sources are subject to the effects of atmospheric refraction. For low elevation angles at long ranges, out to the limit of visibility, the inevitable atmospheric temper- ature gradients frequently produce mirages. I present an analysis of a 22-min sequence of images recorded on 18 February 1994 at the U.S. Naval Surface Warfare Center at Wallops Island, Virginia. The infrared target is a heat source carried on a ship moving in a straight line toward the camera. The images show a quasi-periodic variation of the horizon elevation, as well as an extended range of visibility. A model that reasonably reproduces the observed features consists of a small temperature inversion in a slightly sloped atmosphere, with an atmospheric gravity wave moving across the line of sight. © 1997 Optical Society of America Key words: Infrared mirage, atmospheric refraction. 1. Introduction ~i! parallel to shore at a nominal bearing angle of 199° All long-range optical observations are affected by toward a fixed station, where the target was a heat refraction in the atmosphere. A well-known exam- source that could be moved up or down a mast ~ele- ple is astronomical refraction that creates a small vations 4.4–26.6 m above mean sea level! and ~ii! apparent vertical displacement of a star or distant directly out to sea at nominal bearing 130°, observing object. Refraction within the surface layer, how- a heat source target on a ship sailing directly toward ever, is not always uniform and on occasion can cause or away from the test site, with two possible target considerable distortion. -
Mirage in Geometrical Optics and the Horizontal Ray
STUDENT JOURNAL OF PHYSICS Mirage in geometrical optics and the horizontal ray Dhiman Biswas1 ,∗ Simran Chourasia2 ,y Rathindra Nath Das1 ,z Rajesh B. Khaparde3 ,x Ajit M. Srivastava4 { 1. B.Sc. final year, Ramakrishna Mission Residential College Narendrapur, Kolkata - 700103 2. M.Sc. 3rd year, National Institute of Science Education and Research, Bhubaneswar 3. Homi Bhabha Centre for Science Education, TIFR, Mankhurd, MUMBAI – 400088 4. Institute of Physics, Bhubaneswar 751005 Abstract. Mirage forms when light rays traversing a medium with spatially varying refractive index bend and undergo total internal reflection. Typical example is when downward going light rays bend upward when heated air in contact with hot earth surface leads to vertical gradient of refractive index with refractive index increasing in upward direction. A conceptual issue arises when considering the part of the light trajectory where light ray becomes horizontal. With refractive index varying only in the vertical direction, one will expect from symmetry considerations that a horizontal ray should not bend, contrary to the observed phenomenon of mirage. This issue has been discussed in literature, e.g. by Raman and Pancharatnam and by Berry. We discuss their arguments and argue that there are subtle conceptual issues in understanding mirage strictly in the framework of geometrical optics. In particular, we consider a horizontally moving light ray and argue that within geometrical optics, such a ray should continue to move horizontally. Bending of such a ray, as required by the mirage phenomenon, must require considerations of wave nature of light. Keywords: Mirage, geometrical optics, wave optics, Fermat’s principle, horizontal ray 1. -
Regional Codes and National Coding Practices, Volume II
Manual on Codes Regional Codes and National Coding Practices Volume II 2011 edition Updated in 2018 WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 306 Manual on Codes Regional Codes and National Coding Practices Volume II 2011 edition Updated in 2018 WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 306 WMO-No. 306 © World Meteorological Organization, 2011 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-10306-2 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. PUBLICATION REVISION TRACK RECORD Purpose of Date Part/chapter/section -
Guide to Surface Weather Observations
Antigua and Barbuda Meteorological Services Guide to Surface Weather Observations First Edition August 2018 First Edition, August 2018 Forward The contents of this guide prescribes the standard procedures of the Antigua and Barbuda Meteorological Services (ABMS) for observing, recording and reporting weather conditions. It has been prepared in accordance with internationally recommended procedures as established by the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO). The practices and procedures in this document apply to all ABMS observering personnel who provide weather observation services. Weather observer personnel are required to apply the provision of this guide as it pertains to their observational responsibilities. Observers are expected to exercise experienced judgment when encountering situations not covered by this guide. This is a living document and will be revised at intervals to take account of changes in regulations, feedback from the industry and recognised best practices. Inquiries on the content of this guide should be directed to the management of the ABMS through appropriate channels. Guide to Surface Weather Observations Page | 1 First Edition, August 2018 Record of Revisions Section Revision description Guide to Surface Weather Observations Page | 2 First Edition, August 2018 Record of Amendments This document will be kept under continual review to ensure its relevance to the Quality Management System Amendments No. Date Entered Entered by Approved August 2018, initial