Space Security Index Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

Space Security Index Annual Report SPACE SECURITY 2006 SPACESECURITY.ORG SPACE SECURITY 2006 SPACESECURITY.ORG PARTNERS Governance Group Simon Collard-Wexler International Security Research and Outreach Programme, Department of Foreign Affairs and International Trade, Canada Amb. Thomas Graham Jr. Cypress Fund for Peace and Security Dr. Wade Huntley Simons Centre for Disarmament and Non-proliferation Research, University of British Columbia Dr. Ram Jakhu Institute of Air and Space Law, McGill University Dr. William Marshall Belfer Centre for Science and International Affairs, Harvard University and Space Policy Institute, George Washington University John Siebert Project Ploughshares Sarah Estabrooks Project Manager, Project Ploughshares Library and Archives Canada Cataloguing in Publications Data Advisory Board Space Security 2006 Amb. Thomas Graham Jr. (Chairman of the Board), Cypress Fund for Peace and Security ISBN 13: 978-1-895722-53-6 Philip Coyle III ISBN 10: 1-895722-53-5 Center for Defense Information Air Marshall Lord Garden © 2006 Spacesecurity.org House of Lords, UK Design and layout by Graphics, University of Waterloo, Waterloo, Ontario, Canada Theresa Hitchens Center for Defense Information Cover image: ESA-J.Huart Dr. John Logsdon Space Policy Institute, George Washington University Printed in Canada Dr. Lucy Stojak Institute of Air and Space Law, McGill University First published July 2006 Dr. S. Pete Worden Brigadier General USAF (ret.) TABLE OF CONTENTS PAGE 8 Acronyms PAGE 11 Introduction PAGE 13 Executive Summary PAGE 26 Chapter One: The Space Environment PAGE 44 Chapter Two: Space Security Laws, Policies, and Doctrines PAGE 62 Chapter Three: Civil Space Programs and Global Utilities PAGE 79 Chapter Four: Commercial Space PAGE 96 Chapter Five: Space Support for Terrestrial Military Operations PAGE 114 Chapter Six: Space Systems Protection PAGE 130 Chapter Seven: Space Systems Negation PAGE 146 Chapter Eight: Space-Based Strike Weapons PAGE 157 Annex One: 2005 Space Security Survey Results PAGE 159 Annex Two: Expert Participation PAGE 162 Annex Three: Active Military Satellites PAGE 161 Endnotes Space Security 2006 Acronyms ABM Anti-Ballistic Missile GAGAN GPS and GEO Augmented Navigation ANGELS Autonomous Nanosatellite Guardian for Evaluating GEO Geostationary Orbit Local Space GEOSS Global Earth Observation System of Systems ASEAN Association of Southeast Asian Nations GLONASS Global Navigation Satellite System ASAT Anti-Satellite Weapon GMES Global Monitoring for Environment and Security ASLV Augmented Satellite Launch Vehicle GNSS Global Navigator Satellite System ATV Automated Transfer Vehicle GPS Global Positioning System AWS Advanced Wideband System HAND High Altitude Nuclear Detonation BMD Ballistic Missile Defense HEL High Energy Laser CBM Confidence-Building Measures HELSTF High Energy Laser Systems Test Facility CD Conference on Disarmament HEO Highly Elliptical Orbit CEV Crew Exploration Vehicle IADC Inter-Agency Debris Coordinating Committee CNES Centre National d’Études Spatiales ICBM Intercontinental Ballistic Missile CNSA Chinese National Space Administration ILS International Launch Services ACRONYMS CONUS Continental United States INMARSAT International Maritime Satellite Organization COPUOS United Nations Committee on the Peaceful Uses of INTELSAT International Telecommunications Satellite Consortium Outer Space ISO International Organization for Standardization COSPAR-SARSAT Committee On Space Research – Search and Rescue ISRO Indian Space Research Organization Satellite-Aided Tracking ISS International Space Station CSA Canadian Space Agency ITAR International Traffic in Arms Regulation CX-OLEV ConeXpress Orbital Life Extension Vehicle ITU International Telecommunications Union DARPA Defense Advanced Research Projects Agency JAXA Japan Aerospace Exploration Agency DART Demonstration of Autonomous Rendezvous Technology JHPSSL Joint High-Power Solid-State Laser DBS Direct Broadcasting by Satellite LEO Low Earth Orbit DGA Délégation Générale pour l’Armement MDA Missile Defense Agency DOD United States Department of Defense MEO Medium Earth Orbit DSCS Defense Satellite Communications System MIRACL Mid-Infrared Advanced Chemical Laser DSP Defense Support Program MKV Miniature Kill Vehicle DTRA Defense Threat Reduction Agency MOD Ministry of Defence (UK) EADS European Aeronautics Defence and Space Company MOST Microvariability and Oscillations of Stars EC European Commission MPX Micro-satellite Propulsion Experiment EELV Evolved Expendable Launch Vehicle MSV Mobile Satellite Ventures EHF Advanced Extremely High Frequency MTCR Missile Technology Control Regime EKV Exoatmospheric Kill Vehicle NASA National Aeronautics and Space Administration (US) ELINT Electronic Intelligence NEO Near-Earth Object ESA European Space Agency NFIRE Near-Field Infrared Experiment EU European Union NGA National Geospatial-Intelligence Agency (US) FALCON Force Application and Launch from the Continental NGO Non-Governmental Organization United States NOAA National Oceanic and Atmospheric Administration (US) FAA Federal Aviation Administration (US) NORAD North American Aerospace Defense command FCC Federal Communications Commission (US) NSTAC National Security Telecommunications Advisory Committee FMCT Fissile Material Cut-off Treaty NTM National Technical Means FOBS Fractional Orbital Bombardment System 8 9 Space Security 2006 Introduction ORS Operationally Responsive Spacelift The strategic environment of outer space is evolving rapidly. A growing number and diversity INTRODUCTION OST Outer Space Treaty of actors are accessing and using space; revenues from its commercial exploitation are growing; PAROS Prevention of an Arms Race in Outer Space satellite services affect daily life all over the world; and military space applications are continually expanding. While demonstrating the vital importance of this environment, PEIS Programmatic Environmental Impact Statement intensifying space use creates governance challenges including management of space traffic, QZSS Quazi-Zenith Satellite System orbital debris, and the distribution of scarce resources such as orbital slots and radio frequency. RAIDRS Rapid Attack Identification Detections Reporting System It has become clear that technological and political developments are outstripping the existing RAMOS Russian-American Observation Satellite program governance framework for outer space. These governance challenges will become increasingly RASCAL Responsive Access, Small Cargo, Affordable Launch salient as states’ dependence on space for national security grows. program Space Security 2006 aims to provide a comprehensive and integrated assessment of the state of RFTWARS Radio Frequency, Threat Warning, and Attack Reporting space security. It is the third such annual evaluation of space security, which for these purposes ROKVISS Robotic Components Verification on the International is defined as the secure and sustainable access to and use of space, and freedom from space- Space Station based threats. The report examines international developments in space security according to RSSS Remote Sensing Satellite System eight indicators, providing a comprehensive overview of the concerns of military, civilian, and commercial space stakeholders from around the world. SAINT Satellite Interceptor SALT Strategic Arms Limitations Talks This project accepts the position that space is a global commons, as enshrined in the 1967 SAR Search and Rescue (Satellite-based) Outer Space Treaty, bordering every community on Earth. There is no doubt that national and international security dynamics on Earth and space security are interlinked: space systems can SBI Space-Based Interceptors enhance national security by providing transparency and by supporting military operations SBIRS Space-Based Infrared System and international security concerns on Earth risk spilling over into the space environment. SBL Space-Based Laser However, our approach posits that there are policies that can enhance the security of all actors SBSS Space-Based Surveillance System in space. Space security need not be a zero-sum game but instead can be a path to prosperity SBSW Space-Based Strike Weapon and a path to peace. SDI Strategic Defense Initiative The pursuit of space security is plagued by certain contradictions. For example, the acquisition SHF Super High Frequency of independent space access by more actors could aggravate environmental concerns in space. SIGINT Signals Intelligence Technologies that enable more effective use of space for some often have the inherent potential SMV Space Maneuver Vehicle to negate the secure use of space for others. Indeed, the same assets used for space surveillance and collision avoidance could provide precision targeting of space assets. These contradictions SOI Silicon-On-Insulator are commonly interpreted from the national security vantage points of individual space actors. SSL Solid State Laser However, these concerns need to be explored and collectively managed, and, by their very SSN Space Surveillance Network nature, require a common understanding of space security. We expect this report will provide SSS Space Surveillance System food for thought in this regard. STSS Space Tracking and Surveillance System It is our hope that Space Security 2006 will improve the transparency of activity in outer space. SUPARCO Space and Upper Atmospheric Research Commission As with all security matters, perceptions and misperceptions are tremendously important. The TECSAS Technology Satellite for Demonstration and
Recommended publications
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • Satellite Systems
    Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian.
    [Show full text]
  • Synthetic Aperture Radar
    Synthetic Aperture Radar Subjects: Information Technology & Data Management Submitted by: Sung Wook Paek Definition SAR constellations Table of Contents [Hide] 1. Introduction Space-based radar observation has growing potentials for monitoring the global biospheric diversity subject to anthropogenic drivers at geological scales [1]. The performance of radar is less affected by weather and sunlight conditions than that of optical sensors. Satellites with onboard sensors can provide comprehensive coverage of remote areas or vast regions that may be too costly for unmanned aerial vehicles (UAVs) or ground-based platforms, provided that all platforms provide congruent results via calibrations [2][3][4]. Therefore, it was Seasat, the first satellite dedicated to remote sensing of the Earth’s oceans, that carried the first synthetic aperture radar (SAR) and other radar instruments operable in space. Despite these advantages, miniaturization of radar-carrying satellites was rather slow compared to satellites carrying optical devices due to the lack of commercial-off-the-shelf (COTS) components as well as challenging design requirements for the satellite platform [5][6]. Representative use cases of space-based radar include altimetry, sounding, scatterometry, and so forth in the studies of land, cryosphere, and oceans. Biospheric monitoring is another useful application because radar has high sensitivity in detecting surface changes in a target area and discriminating mobile targets against a background [7]. This paper will consider mainly SAR because of its three-dimensional mapping capability through interferometry. The heritage of Seasat has influenced many of later SAR missions for decades, as listed in Table 1 [8][9][10][11][12][13]; for instance, Shuttle Image Radar (SIR) missions used spare parts of the previous Seasat mission onboard Space Shuttles to test SAR image applications in land use, geology, hydrology, and forestry [14][15].
    [Show full text]
  • Pete Aldridge Well, Good Afternoon, Ladies and Gentlemen, and Welcome to the Fifth and Final Public Hearing of the President’S Commission on Moon, Mars, and Beyond
    The President’s Commission on Implementation of United States Space Exploration Policy PUBLIC HEARING Asia Society 725 Park Avenue New York, NY Monday, May 3, and Tuesday, May 4, 2004 Pete Aldridge Well, good afternoon, ladies and gentlemen, and welcome to the fifth and final public hearing of the President’s Commission on Moon, Mars, and Beyond. I think I can speak for everyone here when I say that the time period since this Commission was appointed and asked to produce a report has elapsed at the speed of light. At least it seems that way. Since February, we’ve heard testimonies from a broad range of space experts, the Mars rovers have won an expanded audience of space enthusiasts, and a renewed interest in space science has surfaced, calling for a new generation of space educators. In less than a month, we will present our findings to the White House. The Commission is here to explore ways to achieve the President’s vision of going back to the Moon and on to Mars and beyond. We have listened and talked to experts at four previous hearings—in Washington, D.C.; Dayton, Ohio; Atlanta, Georgia; and San Francisco, California—and talked among ourselves and we realize that this vision produces a focus not just for NASA but a focus that can revitalize US space capability and have a significant impact on our nation’s industrial base, and academia, and the quality of life for all Americans. As you can see from our agenda, we’re talking with those experts from many, many disciplines, including those outside the traditional aerospace arena.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Optimized Planning for a Multiple Space Debris Removal Mission
    Optimized Planning for a Multiple Space Debris Removal Mission Author: Mikkel Kranker Jørgensen Supervisor: Prof. Inna Sharf Doctoral Thesis Department of Mechanical Engineering McGill University Montréal, Québec, Canada December 2020 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering ©Mikkel Kranker Jørgensen, 2020 Abstract Lower Earth orbits (LEO) have become the residence for a significant number of large space debris, most of which are defunct satellites and rocket upper stages. The said debris jeopardize regular spacecraft operations in LEO and act as sources of smaller debris as a result of collisions and degradation. To mitigate the adverse effects of space debris and to remediate the LEO region, active debris removal (ADR) missions have been proposed. In this thesis, a mission plan for de-orbiting multiple pieces of large space debris is formulated and evaluated. Within this mission plan, low thrust orbital manoeuvres are used to achieve the necessary orbital transfers by considering the trade-offs between fuel mass and mission time. For the proposed mission scenario, the debris re-enters Earth’s atmosphere in an uncontrolled fashion and as such, strategies for minimizing casualty risk as a result of debris re-entry are proposed. In the first part of the thesis, two approaches for multiple debris removal are considered: recursive and mothership. The latter involves the chaser travelling directly from debris to debris and is used for benchmarking the primary (recursive) mission scenario. The recur- sive scenario requires the chaser to capture and de-orbit the debris to a disposal orbit, after which it releases the first piece of debris and performs a rendezvous with the next debris, continuing until the end of the mission in a recursive fashion.
    [Show full text]
  • Magisterarbeit
    MAGISTERARBEIT Titel der Magisterarbeit „How does China’s space program fit their development goals?“ Verfasser Manfred Steinkellner, Bakk. phil. angestrebter akademischer Grad Magister der Philosophie (Mag.phil.) Innsbruck, Juni 2009 Studienkennzahl lt. Studienblatt: A 066 811 Studienrichtung lt. Studienblatt: Sinologie Betreuer: Prof. Dr. Rüdiger Frank, Prof. Dr. Susanne Weigelin-Schwiedrzik Zusammenfassung Diese Diplomarbeit befasst sich mit dem chinesischen Weltraumprogramm und seiner Rolle im Kontext der chinesischen Entwicklungspolitik. Die Bedeutung ist einerseits durch Chinas wirtschaftlichen Aufstieg gegeben und andererseits durch das erhöhte strategische und kommerzielle Interesse am Weltraum. Der erste Teil dieser Arbeit versucht kurz den Weg Chinas zu seiner aktuellen Lage zu skizzieren. Die wichtigsten Entwicklungsschritte in Wirtschaft, Militär und Umwelt werden aufgezeigt um ein besseres Verständnis der Realität zu ermöglichen. Nach einer kurzen Analyse der aktuellen Situation werden die chinesischen Entwicklungspläne untersucht. Das Hauptaugenmerk liegt auf dem elften chinesischen Fünf-Jahres Plan, dem elften chinesischen Entwicklungsplan für Weltraum sowie dem Langzeit Entwicklungsplan für Wissenschaft und Technik. Die Analyse dieser Daten führt zu einem konkreteren Verständnis der aktuellen Ziele Chinas und ermöglicht somit eine Einordnung des Weltraumprogramms in die aktuelle chinesische Entwicklung. Der zweite Teil untersucht sechs Kernbereiche des chinesischen Weltraumprogramms. Es handelt sich dabei um das bemannte
    [Show full text]
  • Actes Du Colloque Du 2 Novembre 2005
    - 1 - ACTES DU COLLOQUE DU 2 NOVEMBRE 2005 « LA POLITIQUE SPATIALE EUROPÉENNE : QUELLES AMBITIONS POUR 2015 ? » ORGANISÉ PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ET M. CHRISTIAN CABAL, DÉPUTÉ, PRÉSIDENT DU GROUPE PARLEMENTAIRE SUR L’ESPACE - 2 - SOMMAIRE Pages I. INTERVENTIONS DE LA MATINÉE .................................................................................... 4 A. INTRODUCTION AU COLLOQUE PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ............................................................................. 4 B. INTERVENTION DE M. FRANÇOIS GOULARD, MINISTRE DÉLÉGUÉ À L’ENSEIGNEMENT SUPÉRIEUR ET À LA RECHERCHE. ................................................... 8 C. PREMIÈRE TABLE RONDE : L’AVENIR DE LA PROPULSION, LES LANCEURS DE DEMAIN ............................................................................................................................. 11 1. M. Viktor REMICHEVSKI, Directeur général adjoint de ROSKOSMOS ................................. 12 2. M. Kiyoshi HIGUCHI, Directeur exécutif de la JAXA (Japan Aerospace Exploration Agency .................................................................................................................................... 16 3. M. Jean-Yves LE GALL, Directeur général d’Arianespace ..................................................... 19 4. M. Michel EYMARD, Directeur des lanceurs du CNES..........................................................
    [Show full text]
  • Spotlight on Asia-Pacific
    Worldwide Satellite Magazine June 2008 SatMagazine Spotlight On Asia-Pacific * The Asia-Pacific Satellite Market Segment * Expert analysis: Tara Giunta, Chris Forrester, Futron, Euroconsult, NSR and more... * Satellite Imagery — The Second Look * Diving Into the Beijing Olympics * Executive Spotlight, Andrew Jordan * The Pros Speak — Mark Dankburg, Bob Potter, Adrian Ballintine... * Checking Out CommunicAsia + O&GC3 * Thuraya-3 In Focus SATMAGAZINE JUNE 2008 CONTENTS COVER FEATURE EXE C UTIVE SPOTLIGHT The Asia-Pacific Satellite Market Andrew Jordan by Hartley & Pattie Lesser President & CEO The opportunities, and challenges, SAT-GE facing the Asia-Pacific satellite market 12 are enormous 42 FEATURES INSIGHT Let The Games Begin... High Stakes Patent Litigation by Silvano Payne, Hartley & Pattie by Tara Giunta, Robert M. Masters, Lesser, and Kevin and Michael Fleck and Erin Sears The Beijing Olympic Games are ex- Like it or not, high stakes patent pected to find some 800,000 visitors wars are waging in the global satel- 47 arriving in town for the 17-day event. 04 lite sector, and it is safe to assume that they are here to stay. Transforming Satel- TBS: Looking At Further Diversification lite Broadband by Chris Forrester by Mark Dankberg Internationally, Turner Broadcasting The first time the “radical” concept has always walked hand-in-hand with 54 of a 100 Gbps satellite was intro- the growth of satellite and cable – duced was four years ago, 07 and now IPTV. Here’s Looking At Everything — Part II by Hartley & Pattie Lesser The Key To DTH Success In Asia by Jose del Rosario The Geostationary Operational Envi- Some are eyeing Asia as a haven for ronmental Satellites (GOES) continu- economic safety or even economic ously track evolution of weather over growth amidst the current global almost a hemisphere.
    [Show full text]
  • A Value Proposition for Lunar Architectures Utilizing On-Orbit Propellant Refueling
    A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING By James Jay Young In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology May 2009 Copyright © 2009 by James J. Young A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING Approved by: Dr. Alan W. Wilhite, Chairman Dr. Douglas Stanley School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Trina M. Chytka Dr. Daniel P. Schrage Vehicle Analysis Branch School of Aerospace Engineering NASA Langley Research Center Georgia Institute of Technology Dr. Carlee A. Bishop Electronics Systems Laboratory Georgia Tech Research Institute Date Approved: October 29, 2008 ACKNOWLEDGEMENTS As I sit down to acknowledge all the people who have helped me throughout my career as a student I realized that I could spend pages thanking everyone. I may never have reached all of my goals without your endless support. I would like to thank all of you for helping me achieve me goals. I would like to specifically thank my thesis advisor, Dr. Alan Wilhite, for his guidance throughout this process. I would also like to thank my committee members, Dr. Carlee Bishop, Dr. Trina Chytka, Dr. Daniel Scharge, and Dr. Douglas Stanley for the time they dedicated to helping me complete my dissertation. I would also like to thank Dr. John Olds for his guidance during my first two years at Georgia Tech and introducing me to the conceptual design field. I must also thank all of the current and former students of the Space Systems Design Laboratory for helping me overcome any technical challenges that I encountered during my research.
    [Show full text]