References [18] Apkarian a V, Hodge CJ (1989) Primate Spinothalamic Pa- Thways: III

Total Page:16

File Type:pdf, Size:1020Kb

References [18] Apkarian a V, Hodge CJ (1989) Primate Spinothalamic Pa- Thways: III References [18] Apkarian A V, Hodge CJ (1989) Primate spinothalamic pa- thways: III. Thalamic terminations of the dorsolateral and [1] Aamador LV, Blundell JE, Wahren W (1959) Description of ventral spinothalamic pathways. J Comp Neurol 288: 493- coordinates of the deep structures. In: Schaltenbrand G, 511 Bailey P (eds) Introduction to Stereotaxis with an Atlas of [19] Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, the Human Brain, vol 1. Thieme, Stuttgart, pp 16-28 Reis DJ (1988) Catecholaminergic neurons in the vent- [2] Abbie AA (1933) The blood supply of the lateral geniculate rolateral medulla and nucleus of the solitary tract in the body, with a note on the morphology of the choroidal ar- human. J Comp Neurol 273: 224-240 teries. J Anat (London) 67: 491-521 [20] Arshavsky YI, Gelfand IM, Orlovsky GN (1983) The cere- [3] Abbie AA (1933) The clinical significance of the anterior bellum and control of rhythmical movements. Trends choroidal artery. Brain 56 (3): 233-246 Neurosci 6: 417-422 [4] Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of [21] Atkinson WJ (1949) The anterior inferior cerebellar arte- ry. Its variations, pontine distribution, and significance in the human brainstem and cerebellar nuclei. A variability the surgery of cerebellopontine angle tumours. J Neurol study. Raven, New York Neurosurg Psychiatry 12: 137-151 [5] Akar ZC, Dujovny M, Gomez-Tortosa E, Slavin KV, Aus- [22] Aylward EH, Reiss A (1991) Area and volume measure- man JI (1995) Microvascular anatomy of the anterior sur- ment of posterior fossa structures in MRI. J Psychiatr Res face of the medulla oblongata and olive. J Neurosurg 82: 25: 159-168 97-105 [23] Baeres FM, Moller M (2001) Plastination of dissected [6] Albus JS (1971) A theory of cerebellar function. Math brain specimens and Mulligan-stained sections of the hu- Biosci 10: 25-61 man brain. Eur J Morphol 39(5): 307-311 [7] Aleksic S, Budzilovich G (1973) Lateral inferior pontine [24] Baker AB (1961) Cerebrovascular disease. IX: The medul- syndrome. Clinicopathologic study and review of litera- lary blood supply and the lateral medullary syndrome. ture. J Neurol Sci 18: 317-322 Neurology (Minneapolis) 1: 852-861 [8] Alexander L, Suh TH (1937) Arterial supply of lateral pa- [25] Baker KG, Tork I, Hornung JP, Halasz P. (1989) The human rolivary area of the medulla oblongata in man. Arch Neu- locus coeruleus complex: an immunohistochemical and rol Psychiatry 38: 1243-1260 three-dimensional reconstruction study. Exp Brain Res [9] Alezais, D’Astors L (1892) La circulation artèrielle du pè- 77: 257-270 doncule cèrèbral. Journ de l’ Anat et de la physiol (Paris) [26] Baker PC, Bernat JL (1985) The neuroanatomy of vomiting 28: 519-528 in man: association of projectile vomiting with a solitary [10] Alezais, D’Astors L (1892) Les artères nourricières des metastasis in the lateral tegmentum of the pons and the noyaux du moteur oculaire commun et du pathètique CR middle cerebellar peduncle. J Neurol Neurosurg Psychia- Soc Biol (Paris) 44: 492-493 try 48: 1165-1168 [11] Allen JS, Bruss J, Damasio H. (2006) Looking for the Lu- [27] Baleydier C, Magnin M, Cooper HM (1990) Macaque ac- nate Sulcus: A Magnetic Resonance Imaging Study in cessory optic stem: II. Connections with the pretectum. J Modern Humans. Anat Rec A Discov Mol Cell Evol Biol Comp Neurol 302: 405-416 288(8): 867-876 [28] Bammer R, Auer M, Keeling SL (2002) Diffusion tensor [12] Amarenco P, Hauw JJ (1989) Anatomie des arteres cere- imaging using single-shot-EPI. Magn Reson Med 48(1): belleuses. Rev Neurol (Paris) 145: 267-276 128-136 [13] Amarenco P, Hauw JJ, Henin D, Duyckaerts C, Roullet E, [29] Bargman W (1943) Die Epiphysis Cerebri. In: Von Mollen- Laplane D, Gautier JC, Lhermitte F, Buge A, Castaigne P dorf W (ed) Handbuch der mikroscopischen Anatomie (1989) Les infarcts du territoire de l’artere cerebelleuse des Menschen, VI – 4. Berlin, Springer, pp 309-349 posteroinferieure. Etude clinico-pathologique de 28 cas. [30] Barrington FJF (1925) The effect of lesion of the hind- and Rev Neurol (Paris) 145: 277-286 midbrain on micturition in the cat. J Exp Physiol 15:81- [14] Andrew J, Watkins ES (1969) A stereotaxic atlas of the hu- 102 man thalamus and adjacent structures. Williams & Wil- [31] Basbaum AI, Fields HL (1978) Endogenous pain control kins, Baltimore mechanisms: review and hypothesis. Ann Neurol 4: 451- [15] Angevine JB, Mancall EL, Yakovlev PI (1961) The human 462 cerebellum. An atlas of gross topography in serial sec- [32] Basmajian JV (1975) Grant’s method of anatomy, 9th ed. tions. Little Brown, Boston Williams & Wilkins, Baltimore [16] Apkarian AV, Hodge CJ (1989) Primate spinothalamic pa- [33] Bassetti C, Bogousslasky J, Barth A, Regli F (1996) Isola- thways: I. A quantitative study of the cells of origin of the ted infarcts of the pons. Neurology 46: 165-175 spinothalamic pathway. J Comp Neurol 288: 447-473 [34] Batchelor PG, Atkinson D, Hill DL, Calamante F, Connelly [17] Apkarian AV, Hodge CJ (1989) Primate spinothalamic pa- A (2003) Anisotropic noise propagation in diffusion ten- thways: II. The cells of origin of the dorsolateral and vent- sor MRI sampling schemes. Magn Reson Med 49(6): 1143- ral spinothalamic pathways. J Comp Neurol 288: 474-492 1151 836 REFERENCES [35] Bebin J (1968) The cerebellopontine angle, the blood sup- [50] Braak H (1970) Über die Kerngebiete des menschlichen ply of the brain stem and the reticular formation. Anato- Hirnstammes. I: Oliva inferior, Nucleus conterminalis mical and functional correlations relevant to surgery of und Nucleus vermiformis corporis restiformis. Z Zell- acoustic tumors. Henry Ford Hosp Med J 16: 61-86 forsch 105: 442-456 [36] Behbehani MM, Zemlan FP (1986) Response of nucleus [51] Braak H (1970) Über die Kerngebiete des menschlichen raphe magnus neurons to electrical stimulation of nucle- Hirnstammes. II: Die Raphekerne. Z Zellforsch 107: 123- us cuneiformis: role of acetylcholine. Brain Res 369: 110- 141 [52] Braak H (1972) Über die Kerngebiete des menschlichen 118 Hirnstammes. V: Das dorsale Glossopharyngeus und Va- [37] Bekov DB (1995) Some structural differences among pos- gusgebiet. Z Zellforsch 135: 415-438 terolateral tributaries of the great cerebral vein. Fed Proc [53] Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh Suppl 24: 166-170 B, Scholz E, Wessel K, Diener HC (1989) The cerebellum [38] Belknap DB, McCrea RA (1988) Anatomical connections contributes to mental skills. Behav Neurosci 103: 442-446 of the prepositus and abducens nuclei in the squirrel [54] Bradac GB (1970) The ponto-mesencephalic veins. Neuro- monkey. J Comp Neurol 268: 13-28 radiology 1: 52-57 [39] Bertram EGM, Moore KL (1982) An atlas of the human [55] Brodal A (1981) Neurological Anatomy in relation to Cli- brain and spinal cord. Williams & Wilkins, Baltimore nical Medicine. Oxford [40] Besson JM (1982) Physiologie de la nociception. J Physiol [56] Bradley WG (1991) MR of the brain stem: a practical ap- (Paris) 78: 7-107 proach. Radiology, 179: 319-332 [41] Besson JM, Chaouch A (1987) Descending serotoninergic [57] Brass SD, Chen NK, Mulkern RV, Bakshi R (2006) Magne- systems. In: Akil H, Lewis JW (eds) Pain and headache, tic resonance imaging of iron deposition in neurological vol. 9. Karger, Basel, 64-100 [Friedmann AP, Granger ME disorders. Top Magn Reson Imaging 17(1): 31-40 (eds) Pain and headache] [58] Brittenham GM, Farrell DE, Harris JW (1982) Magnetic [42] Biemond A (1951) Thrombosis of the basilar artery and susceptibility measurements of human iron stores. N the vascularization of the brain stem. Brain 74: 300-317 Engl J Med 307: 1671-1675 [43] Blake PY, Mark AS, Kattah J, Kolsky M (1995) MR of oculo- [59] Brody MJ (1986) Central nervous system mechanisms of arterial pressure regulation. Fed Proc FASEB 45: 2700- motor nerve palsy. AJNR Am J Neuroradiol 16: 1665–1672 2706 [44] Block CH, Estes ML (1990) The cytoarchitectural organi- [60] Brody MJ, Alper RH, O‘Neill TP, Porter JP (1986) 1. Central zation of the human parabrachial nuclear complex. Brain neural control of the cardiovascular system. In: Zanchetti Res Bull 24: 617-626 A, Tarazi RC (eds) Handbook of hypertension, vol 8; Pa- [45] Bogerts VA (1981) Brainstem atlas of catecholaminergic thophysiology of hypertension – regulatory mechanisms. neurons in man, using melanin as a natural marker. J Elsevier, Amsterdam, pp 1–25 Comp Neurol 197: 63-80 [61] Brodal A (1981) Neurological Anatomy in Relation to Cli- [46] Bogousslavsky J, Maeder PH, Regli F, Meuli R (1994) Pure nical Medicine. Oxford University Press, Oxford midbrain infarction clinical syndromes, MRI, and etiolo- [62] Brooks VB (1986) The neural basis of motor control. Ox- gic patterns. Neurology 44: 2032-2040 ford University Press, Oxford [47] Böhnge C (1972) Über die arterielle Versorgung des Ge- [63] Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, hirns. II. Über die arterielle Blutversorgung der Medulla Zilles K (2006) White matter fiber tracts of the human oblongata. Z Anat Entwickl -Gesch 84: 760-776 brain: three-dimensional mapping at microscopic resolu- [47a] Borges A, Casselman J. (2007) Eur Radiol 17: 2112-2125. tion, topography and intersubject variability. Neuroimage Imaging the cranial nerves: Part I: Methodology, infec- 29(4): 1092-105 tious and inflammatory, traumatic and congenital lesi- [64] Burgess RE, YU Y, Christoforisdis GA, Bourekas EC, Cha- ons. DOI 10.1007/s00330-006- 0575-9 keres DW, Spigos D, Kangarlu A, Abduljalil AM, Robitaille PM (1999) Human leptomeningeal and cortical vascular [47b] Borges A, Casselman J. (2007) Eur Radiol 17: 2332-2344. anatomy of the cerebral cortex at 8 Testa. J Comput Assist Imaging the cranial nerves: part II: primary and secondary Tomogr 23 (6): 850-856 neoplastic conditions and neurovascular conflicts.
Recommended publications
  • Brainstem: Midbrainmidbrain
    Brainstem:Brainstem: MidbrainMidbrain 1.1. MidbrainMidbrain –– grossgross externalexternal anatomyanatomy 2.2. InternalInternal structurestructure ofof thethe midbrain:midbrain: cerebral peduncles tegmentum tectum (guadrigeminal plate) Midbrain MidbrainMidbrain –– generalgeneral featuresfeatures location – between forebrain and hindbrain the smallest region of the brainstem – 6-7g the shortest brainstem segment ~ 2 cm long least differentiated brainstem division human midbrain is archipallian – shared general architecture with the most ancient of vertebrates embryonic origin – mesencephalon main functions:functions a sort of relay station for sound and visual information serves as a nerve pathway of the cerebral hemispheres controls the eye movement involved in control of body movement Prof. Dr. Nikolai Lazarov 2 Midbrain MidbrainMidbrain –– grossgross anatomyanatomy dorsal part – tectum (quadrigeminal plate): superior colliculi inferior colliculi cerebral aqueduct ventral part – cerebral peduncles:peduncles dorsal – tegmentum (central part) ventral – cerebral crus substantia nigra Prof. Dr. Nikolai Lazarov 3 Midbrain CerebralCerebral cruscrus –– internalinternal structurestructure CerebralCerebral peduncle:peduncle: crus cerebri tegmentum mesencephali substantia nigra two thick semilunar white matter bundles composition – somatotopically arranged motor tracts: corticospinal } pyramidal tracts – medial ⅔ corticobulbar corticopontine fibers: frontopontine tracts – medially temporopontine tracts – laterally
    [Show full text]
  • The Brain Stem Medulla Oblongata
    Chapter 14 The Brain Stem Medulla Oblongata Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Central sulcus Parietal lobe • embryonic myelencephalon becomes Cingulate gyrus leaves medulla oblongata Corpus callosum Parieto–occipital sulcus Frontal lobe Occipital lobe • begins at foramen magnum of the skull Thalamus Habenula Anterior Epithalamus commissure Pineal gland • extends for about 3 cm rostrally and ends Hypothalamus Posterior commissure at a groove between the medulla and Optic chiasm Mammillary body pons Cerebral aqueduct Pituitary gland Fourth ventricle Temporal lobe • slightly wider than spinal cord Cerebellum Midbrain • pyramids – pair of external ridges on Pons Medulla anterior surface oblongata – resembles side-by-side baseball bats (a) • olive – a prominent bulge lateral to each pyramid • posteriorly, gracile and cuneate fasciculi of the spinal cord continue as two pair of ridges on the medulla • all nerve fibers connecting the brain to the spinal cord pass through the medulla • four pairs of cranial nerves begin or end in medulla - IX, X, XI, XII Medulla Oblongata Associated Functions • cardiac center – adjusts rate and force of heart • vasomotor center – adjusts blood vessel diameter • respiratory centers – control rate and depth of breathing • reflex centers – for coughing, sneezing, gagging, swallowing, vomiting, salivation, sweating, movements of tongue and head Medulla Oblongata Nucleus of hypoglossal nerve Fourth ventricle Gracile nucleus Nucleus of Cuneate nucleus vagus
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • …Going One Step Further
    …going one step further C20 (1017868) 2 Latin A Encephalon Mesencephalon B Telencephalon 31 Lamina tecti B1 Lobus frontalis 32 Tegmentum mesencephali B2 Lobus temporalis 33 Crus cerebri C Diencephalon 34 Aqueductus mesencephali D Mesencephalon E Metencephalon Metencephalon E1 Cerebellum 35 Cerebellum F Myelencephalon a Vermis G Circulus arteriosus cerebri (Willisii) b Tonsilla c Flocculus Telencephalon d Arbor vitae 1 Lobus frontalis e Ventriculus quartus 2 Lobus parietalis 36 Pons 3 Lobus occipitalis f Pedunculus cerebellaris superior 4 Lobus temporalis g Pedunculus cerebellaris medius 5 Sulcus centralis h Pedunculus cerebellaris inferior 6 Gyrus precentralis 7 Gyrus postcentralis Myelencephalon 8 Bulbus olfactorius 37 Medulla oblongata 9 Commissura anterior 38 Oliva 10 Corpus callosum 39 Pyramis a Genu 40 N. cervicalis I. (C1) b Truncus ® c Splenium Nervi craniales d Rostrum I N. olfactorius 11 Septum pellucidum II N. opticus 12 Fornix III N. oculomotorius 13 Commissura posterior IV N. trochlearis 14 Insula V N. trigeminus 15 Capsula interna VI N. abducens 16 Ventriculus lateralis VII N. facialis e Cornu frontale VIII N. vestibulocochlearis f Pars centralis IX N. glossopharyngeus g Cornu occipitale X N. vagus h Cornu temporale XI N. accessorius 17 V. thalamostriata XII N. hypoglossus 18 Hippocampus Circulus arteriosus cerebri (Willisii) Diencephalon 1 A. cerebri anterior 19 Thalamus 2 A. communicans anterior 20 Sulcus hypothalamicus 3 A. carotis interna 21 Hypothalamus 4 A. cerebri media 22 Adhesio interthalamica 5 A. communicans posterior 23 Glandula pinealis 6 A. cerebri posterior 24 Corpus mammillare sinistrum 7 A. superior cerebelli 25 Hypophysis 8 A. basilaris 26 Ventriculus tertius 9 Aa. pontis 10 A.
    [Show full text]
  • Waxholm Space Atlas of the Sprague Dawley Rat Brain
    NeuroImage 97 (2014) 374–386 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Waxholm Space atlas of the Sprague Dawley rat brain Eszter A. Papp a,TrygveB.Leergaarda, Evan Calabrese b, G. Allan Johnson b, Jan G. Bjaalie a,⁎ a Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway b Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA article info abstract Article history: Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for Accepted 1 April 2014 understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. Available online 12 April 2014 We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this Keywords: template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for Digital brain atlas Waxholm Space each structure. We have applied a spatial reference system based on internal brain landmarks according to the Sprague Dawley Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial Rat brain template reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related Segmentation stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. Magnetic resonance imaging With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial Diffusion tensor imaging orientationanalysis of neuroanatomical location, and planning and guidance of experimental procedures in the Neuroinformatics rat brain.
    [Show full text]
  • Post-Mortem 1.5T MR Quantification of Regular Anatomical Brain Structures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Int J Legal Med (2016) 130:1071–1080 DOI 10.1007/s00414-016-1318-3 ORIGINAL ARTICLE Post-mortem 1.5T MR quantification of regular anatomical brain structures Wolf-Dieter Zech1,3 & Anna-Lena Hottinger1 & Nicole Schwendener1 & Frederick Schuster1,2 & Anders Persson3 & Marcel J. Warntjes3 & Christian Jackowski1 Received: 17 November 2015 /Accepted: 13 January 2016 /Published online: 12 February 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Recently, post-mortem MR quantification has been anatomical brain structures among each other in Group 1 introduced to the field of post-mortem magnetic resonance and Group 2 based on their quantitative values. Temperature imaging. By usage of a particular MR quantification se- dependence was observed mainly for T1 values, which were quence, T1 and T2 relaxation times and proton density (PD) slightly increasing with rising temperature in the investigated of tissues and organs can be quantified simultaneously. The brain structures in both groups. The results provide a base for aim of the present basic research study was to assess the quan- future computer-aided diagnosis of brain pathologies and le- titative T1, T2, and PD values of regular anatomical brain sions in post-mortem magnetic resonance imaging. structures for a 1.5T application and to correlate the assessed values with corpse temperatures. In a prospective study, 30 Keywords Brain .MRquantification .Post-mortemmagnetic forensic cases were MR-scanned with a quantification se- resonance imaging (PMMR) . Forensic . Neuroimaging quence prior to autopsy.
    [Show full text]
  • Is Composed from Spinal Cord and Brain
    doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral
    [Show full text]
  • Foundational Model of Structural Connectivity in the Nervous System
    Foundational model of structural connectivity in the INAUGURAL ARTICLE nervous system with a schema for wiring diagrams, connectome, and basic plan architecture Larry W. Swanson1 and Mihail Bota Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010. Contributed by Larry W. Swanson, October 8, 2010 (sent for review September 13, 2010) The nervous system is a biological computer integrating the body’s ular, cellular, systems, and behavioral organization levels. A reflex and voluntary environmental interactions (behavior) with Human Connectome Project goal might be framed as providing a relatively constant internal state (homeostasis)—promoting sur- the detailed structural data needed to create a foundational vival of the individual and species. The wiring diagram of the nervous system structural model analogous to the DNA double- nervous system’s structural connectivity provides an obligatory helix structural model. foundational model for understanding functional localization at Neuroinformatics offers powerful new tools to store, share, molecular, cellular, systems, and behavioral organization levels. mine, analyze, and model data about neural connectivity in- This paper provides a high-level, downwardly extendible, concep- cluding the human brain—by far the most complex system tual framework—like a compass and map—for describing and known. Databases and inference engines for automatic reasoning exploring in neuroinformatics systems (such as our Brain Architec- in neuroinformatics workbenches require an integrated concep- ture Knowledge Management System) the structural architecture tual framework: (i)adefined universe of discourse (concept of the nervous system’s basic wiring diagram.
    [Show full text]
  • CENTRAL NERVOUS SYSTEM Composed from Spinal Cord and Brain
    CENTRAL NERVOUS SYSTEM composed from spinal cord and brain SPINAL CORD − is developmentally the oldest part of CNS − is long about 45 cm in adult − fills upper 2/3 of vertebral canal cranial border at level of: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 vertebra – medullary cone – filum terminale made by pia mater (ends at level of S2 vertebra) – spinal roots below L1 vertebra form cauda equina two enlargements: • cervical enlargement (CV – ThI): origin of nerves for upper extremity – brachial plexus • lumbosacral enlargement (LI – SII): origin of nerves for lower extremity – lumbosacral plexus Spinal segment is part of spinal cord where 1 pair of spinal n. exits. Spinal cord consists of 31 spinal segments and 31 pairs of spinal nn.: 8 cervical, 12 thoracic, 5 lumbar, 1 coccygeal. Spinal nn. leave spinal cord through íntervertebral foramens. Denticulate ligg. attach spinal segments to vertebral canal. Dermatome is part of skin innervated by 1 spinal nerve. external features: • anterior median fissure • anterolateral sulcus – exits of anterior roots of spinal nn. (laterally to anterior median fissure) • posterolateral sulcus – exits of posterior roots of spinal nn. • posterior median sulcus • posterior intermediate sulcus internal features: White matter • anterior funiculus (between anterior median fissure and anterolateral sulcus) • lateral funiculus (between anterolateral and posterolateral sulci) • posterior funiculus (between posterolateral sulcus and posterior median sulcus) is divided by posterior intermediate sulcus to: − gracile fasciculus – medial one − cuneate fasciculus – lateral one, both for sensory tracts of fine sensation White matter of spinal cord contains fibres of ascending and descending nerve tracts.
    [Show full text]
  • Text-Mining Tools for Optimizing Community Database Curation Workflows in Neuroscience
    Text-mining Tools for Optimizing Community Database Curation Workflows in Neuroscience Kyle H. Ambert Department of Biomedical Informatics Oregon Health & Science University A thesis submitted for the degree of Doctor of Philosophy April 29th, 2013 ! Contents Contents ii List of Figuresv List of Tables xi Nomenclature xii 1 Introduction9 1.1 The Importance of Terminologies & Data Integration to Neuroscience 11 1.1.1 NeuroNames: A Neuroanatomical Nomenclature . 12 1.1.2 Leveraging Neuroscience Ontologies & Vocabularies in New Resources . 12 1.2 Information Retrieval in Neuroscience . 15 1.2.0.1 Textpresso for Neuroscience: A Combination In- formation Retrieval & Extraction System . 17 1.2.0.2 Information Retrieval Using the Neuroscience In- formation Framework . 19 1.3 Supervised Text Classification in the Neurosciences . 23 1.3.0.3 Classification for the CoCoMac Database { An Example of Text-mining for the Neurosciences . 25 1.3.0.4 Efficient Approaches to Classification: Knowledge Mining . 33 1.4 A Case Study in Neuroinformatics Knowledge Base Maintenance: The Neuron Registry . 35 1.4.1 Databases & Research Science in the Information Age . 36 1.4.2 The Importance of Databases to Neuroscience Research . 37 1.4.3 The Neuron Registry: A Community-Curated Knowledge Base for Neuroscience . 38 1.4.3.1 Do we need another knowledge base? . 39 ii CONTENTS 1.4.3.2 A Clinically-relevant Use Case for the Neuron Reg- istry . 40 1.4.3.3 The Neuron Registry as an Aid to Developing Neuroinformatics . 42 1.5 Key Contributions of this Dissertation . 46 1.6 Thesis Overview . 47 2 Virk: An Active Learning System for Bootstrapping New Cu- rated Neuroinformatics Knowledge Bases 50 2.1 Introduction .
    [Show full text]
  • Brainstem: Midbrain
    Brainstem: Midbrain 1. Midbrain – gross external anatomy 2. Internal structure of the midbrain: cerebral peduncles tegmentum tectum (guadrigeminal plate) Midbrain Midbrain – general features location – between forebrain and hindbrain the smallest region of the brainstem – 6-7g the shortest brainstem segment ~ 2 cm long least differentiated brainstem division human midbrain is archipallian – shared general architecture with the most ancient of vertebrates embryonic origin – mesencephalon main functions: a sort of relay station for sound and visual information serves as a nerve pathway of the cerebral hemispheres controls the eye movement involved in control of body movement Prof. Dr. Nikolai Lazarov 2 Midbrain Midbrain – gross anatomy dorsal part – tectum (quadrigeminal plate): superior colliculi inferior colliculi cerebral aqueduct ventral part – cerebral peduncles: dorsal – tegmentum (central part) ventral – cerebral crus substantia nigra Prof. Dr. Nikolai Lazarov 3 Midbrain Cerebral crus – internal structure Cerebral peduncle: crus cerebri tegmentum mesencephali substantia nigra two thick semilunar white matter bundles composition – somatotopically arranged motor tracts: corticospinal } pyramidal tracts – medial ⅔ corticobulbar corticopontine fibers: frontopontine tracts – medially temporopontine tracts – laterally interpeduncular fossa (of Tarin ) posterior perforated substance Prof. Dr. Nikolai Lazarov 4 Midbrain Midbrain tegmentum – internal structure crus cerebri tegmentum mesencephali substantia
    [Show full text]