Nehmen Wir An, Die Kuh Ist Eine Kugel... «

Total Page:16

File Type:pdf, Size:1020Kb

Nehmen Wir An, Die Kuh Ist Eine Kugel... « dtv Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel ...« Nur keine Angst Vor Physik Nicht nur Faust wollte wissen, »was die Welt im Innersten zusammenhält.« Dabei muß man kein Physiker sein, um das moderne Weltbild der Physik – von Galilei Bis Stephen Hawking – zu verstehen. Lawrence M. Krauss zeigt uns, wie spannend und unterhaltsam die Beschäftigung mit der Physik sein kann. Deutscher Taschenbuch Verlag »Nehmen wir an, die Kuh ist eine Kugel...« Ziemlich abwegig, mag mancher denken. Aber wie sinnvoll solche radikalen Ver- einfachungen sein können, zeigt Lawrence M. Krauss an vielen anschaulichen und vergnüglichen Beispielen. Wer wissen will, »was die Welt im Innersten zusammenhält«, sieht nach der Lektüre dieses Buches klarer, denn man muß kein Physiker sein, um das moderne Weltbild der Physik - von Galilei bis Stephen Hawking - zu verstehen. «Mit der Selbstverständlichkeit eines Hausherrn führt Krauss seine Leser durch das Gedankengebäude der theoretischen Physik: von der Relativitätstheorie über die Quantendynamik hin zu einer Theorie >über alles<. Weil er dabei so originell und unkonventionell vorgeht wie sein Lehrer Richard Feynman, ist die Lektüre das reine Vergnügen.« (Physikalische Blätter, Weinheim) Lawrence M. Krauss, geboren 1954 in New York, ist Professor für Physik und Astronomie und Leiter des Instituts für Physik an der Case Western Reserve University in Cleveland. Er lieferte bedeutende Beiträge über die Vorgänge bei explodierenden Sternen bis hin zum Ursprung und der Natur des Stoffes, aus dem das Universum ist. Zahlreiche Veröffentlichungen. Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel... « Nur keine Angst vor Physik Mit 39 Schwarzweißabbildungen Aus dem Amerikanischen von Wolfram Knapp Deutscher Taschenbuch Verlag Ungekürzte Ausgabe August 1998 Deutscher Taschenbuch Verlag GmbH & Co. KG, München © 1993 BasicBooks, Titel der amerikanischen Originalausgabe: >Fear of Physics: A Guide for the Perplexed< (New York 1993) © 1996 der deutschsprachigen Ausgabe: Deutsche Verlags-Anstalt GmbH, Stuttgart ISBN 3-421-2772-2 Umschlagkonzept: Balk & Brumshagen Umschlagbild: Tullio Pericoli Satz: Fotosatz Sauter, Donzdorf Druck und Bindung: C. H. Beck'sche Buchdruckerei, Nördlingen Gedruckt auf säurefreiem, chlorfrei gebleichtem Papier Printed in Germany - ISBN 3-423-33024-4 Inhalt Vorwort 9 1 Suchen, wo es hell ist 13 2 Zahlenkünste 43 3 Kreatives Kopieren 77 4 Verborgene Realitäten 133 5 Auf der Suche nach Symmetrie 181 6 Nichts ist vorüber, bevor es vorüber ist 225 Dank 247 Register 249 Das Mysterium, das den Start zu einer jeden Reise umhüllt, ist: Wie kam der Reisende zunächst einmal an den Startpunkt? Louise Boga: Journey Around My Room Vorwort Es ist immer wieder dasselbe: Wir sind auf einer Party, und irgend jemand hört, daß ich Physiker bin. Prompt wechselt sie oder er das Gesprächsthema und fragt nach dem Urknall, nach fremden Universen. nach Quarks ... oder schneidet ein Thema aus dem »Super-Dreigestirn« der modernen Forschung an: die Supraleitung, die Superstrings oder den Superbeschleuniger. Manche geben offen zu. daß sie sich in der Schule vor der Physik gedrückt und sich auch später nie mehr darum gekümmert haben, doch heute sind sie fasziniert von den geheimnisvollen Phänomenen, die von der modernen Forschung aufgedeckt werden. Die Physik befaßt sich eben auch mit vielen kosmischen Rät- seln, über die jeder schon mal nachgedacht hat. Die Probleme erscheinen jedoch meist als viel zu schwierig und unverständ- lich-in erster Linie wohl deshalb, weil diese Forschungen heute weitab von dem liegen, was einem tagtäglich begegnet. Aber es gibt noch ein viel tiefer liegendes Hindernis, das den Zugang zu den Fragen der modernen Physik versperrt: Die Art. wie Physiker an Probleme herangehen, und die Sprache, mit der sie von diesen Problemen reden, ist für die meisten weit von ihrer verständlichen Alltagssprache entfernt. Ohne einen kundi- gen Führer durch die Menagerie dieser Phänomene in der modernen Forschungswelt bleiben sie verschlossen und abwei- send. So entsteht Abneigung gegen Physik. Urn diese Barriere zu durchbrechen und für jedermann einen Weg zur Physik von heute zu bahnen, halte ich es für sinnvoll, nicht gleich die komplizierten Spezialprobleme aufzurollen, sondern einen Blick auf das Handwerkszeug zu werfen, mit dem die Physiker täglich arbeiten. Will man eine Würdigung der For- schungen in der Physik erreichen, und zwar sowohl für die gei- stige Arbeit, die dahinter steckt, als auch für das Resultat dieser Forschungen, unser modernes Weltbild, ist es viel leichter und weniger abschreckend, zuerst einmal zu überlegen, was das eigentlich ist: Physik treiben. Was ich hier mit diesem Buch vorhabe, ist weniger, ein Berg- führer zu sein durch die Steilwände der modernen Physik, als vielmehr ein Wanderführer: Welche Ausrüstung brauchen wir, wie vermeiden wir Dornendickichte und Stolpersteine, welche Wege sind die abwechslungsreichsten und die mit der schönsten Aussicht, und wie kommen wir wieder heil nach Hause. Die Physiker selbst können die modernen Entwicklungen nur verstehen, weil sie die gleichen Grundprinzipien beherrschen, die sie auch erfolgreich zur Erklärung alltäglicher Geschehnisse anwenden. Die theoretische Physik heute befaßt sich mit Phä- nomenen, die Räume und Zeiten umfassen, die über sechzig Größenordnungen reichen. Das heißt, das Größte ist 10000 ... (hier müßte eine l mit 60 Nullen stehen)-mal größer als das Kleinste. Auch wenn die Spannweite der Experimente um eini- ges enger ist: Wo auch immer man aus diesem schier unüberseh- baren Feld ein Phänomen herauspickt, das von einem Physiker beschrieben wird, es ist in aller Regel für jeden anderen verständ- lich - dank einem guten Dutzend Grundvorstellungen, auf die schließlich alle Phänomene zurückgehen. Kein anderes Reich des menschlichen Wissens ist so uferlos groß und zugleich so überschaubar klein. Das ist mit ein Grund dafür, daß dieses Buch in einem beschei- denen Rahmen geblieben ist. Es sind nur wenige grundlegende Sätze, die die Physik tragen. Zugegeben: Es erfordert schon pro- fundes Können, sie tatsächlich zu beherrschen, doch man braucht keinen dicken Wälzer, um sie zu erläutern. Wenn Sie also durch jedes der sechs Kapitel hindurchwandern, werden Sie immer wieder Erörterungen von Schlüssel-Ideen oder von Schlüssel-Themen finden, die die Physiker bei ihrer Forschung leiteten. Um diese Gedanken klarzumachen, habe ich Beispiele ausge- wählt, die sich durch die gesamte Physik ziehen,von den altehr- würdigen Grundlagen bis zu jenen geheimnisvollen Teilchen, die hin und wieder durch die Wissenschaftsseiten der Tageszei- tungen geistern. Die Auswahl mag zuweilen wenig phantasievoll erscheinen. Sie ist dadurch bedingt, daß ich zunächst in den Mittelpunkt stelle, was die Physiker bis heute geführt hat, und gegen Ende konzentriere ich mich auf die Zukunftsperspektiven der Physik. Deshalb hatte ich mir vorgenommen, mit Begriffen zu operie- ren, die für die Darstellung dieses Themas durchaus zeitgemäß sind. Manche Leser mögen das als angenehme Erleichterung gegenüber dem empfinden, was sie an physikalischen Ausdrük- ken und Begriffen bisher gewöhnt sind. Anderen dagegen erscheinen sie auf den ersten Blick als schwierig. Einige der Ideen in diesem Buch wurden, obwohl sie so grundlegend sind, vorher nie in der populären Literatur vorgestellt. Keine Angst, ich will sie nicht an Ihnen ausprobieren, Meine Absicht ist viel- mehr, Ihnen die Physik schmackhaft zu machen, und nicht, sie von Grund auf und in allen Details vor Ihnen auszurollen. Es geht mir hier mehr um das Verstehen als um anwendbares Wissen. Dieses letztere mag äußerst nützlich sein, und es wird ja auch von Nichtwissenschaftlern im täglichen Leben gebraucht, doch mit diesem Buch möchte ich weniger auf dieses Äußer- liche, sondern mehr darauf zielen, was dahinter steckt. Was wir an der Oberfläche sehen, sind Phänomene, die ich mit dem üppigen barocken Zierwerk in einer Kirche vergleichen möchte. Wichtiger als diese äußere Schönheit ist das Unsicht- bare dahinter: ein zartes, wunderbares Netzwerk, das die sicht- baren Verzierungen zusammenhält und miteinander verknüpft. Genauso sind es Verbindungen unter der Oberfläche, die das Gebäude der Physik ausmachen. Für die theoretischen Physiker ist es ein Vergnügen, sie zu entdecken, und für den Experimen- talphysiker, ihre »Wahrheit« zu testen. Letzten Endes liefern sie den Zugang zur Physik. Wenn Sie darüber hinaus das Bedürfnis nach vertiefenden Studien haben sollten, gibt es dafür eine Menge weiterer Nachschlagewerke. Schließlich möchte ich betonen, daß Physik eine menschliche, kreative Geistestätigkeit ist, ebenso wie Kunst und Musik. Phy- sik hat unser kulturelles Erbe ganz wesentlich geprägt. Ich bin nicht sicher, was den größten Einfluß auf dieses Erbe hatte, das wir übernommen haben und weitergeben, aber ich bin sicher, daß es ein schwerwiegender Fehler wäre, den kulturellen Aspekt unserer wissenschaftlichen Tradition zu ignorieren. Denn schließlich ist das, was die Wissenschaft tut, meist nur ein Verlas- sen eingefahrener Gleise, ein neues Nachdenken über die Welt und unseren Plat£ in ihr. Wissenschaftlich unwissend zu sein ist gleichbedeutend damit, in hohem Maße kulturlos zu bleiben. Die Haupttugend kultureller Betätigung, sei es in der Kunst, der Musik, der Literatur oder der Wissenschaft, ist die Art, wie sie unser Leben bereichert. Durch sie erfahren wir Freude. Anre- gungen, Schönes, Geheimnisvolles, Abenteuerliches. Das ein- zige, was meiner Meinung nach die Wissenschaft tatsächlich von den anderen
Recommended publications
  • 2005 CERN–CLAF School of High-Energy Physics
    CERN–2006–015 19 December 2006 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2005 CERN–CLAF School of High-Energy Physics Malargüe, Argentina 27 February–12 March 2005 Proceedings Editors: N. Ellis M.T. Dova GENEVA 2006 CERN–290 copies printed–December 2006 Abstract The CERN–CLAF School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on field theory and the Standard Model, quantum chromodynamics, CP violation and flavour physics, as well as reports on cosmic rays, the Pierre Auger Project, instrumentation, and trigger and data-acquisition systems. iii Preface The third in the new series of Latin American Schools of High-Energy Physics took place in Malargüe, lo- cated in the south-east of the Province of Mendoza in Argentina, from 27 February to 12 March 2005. It was organized jointly by CERN and CLAF (Centro Latino Americano de Física), and with the strong support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). Fifty-four students coming from eleven different countries attended the School. While most of the students stayed in Hotel Rio Grande, a few students and the Staff stayed at Microtel situated close by. However, all the participants ate their meals to- gether at Hotel Rio Grande. According to the tradition of the School the students shared twin rooms mixing nationalities and in particular Europeans together with Latin Americans. María Teresa Dova from La Plata University was the local director for the School.
    [Show full text]
  • Real Time Density Functional Simulations of Quantum Scale
    Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans B.A., Franklin & Marshall College (2003) Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2009 c Massachusetts Institute of Technology 2009. All rights reserved. Author............................................... ............... Department of Chemistry February 2, 2009 Certified by........................................... ............... Troy Van Voorhis Associate Professor of Chemistry Thesis Supervisor Accepted by........................................... .............. Robert W. Field Chairman, Department Committee on Graduate Theses This doctoral thesis has been examined by a Committee of the Depart- ment of Chemistry as follows: Professor Robert J. Silbey.............................. ............. Chairman, Thesis Committee Class of 1942 Professor of Chemistry Professor Troy Van Voorhis............................... ........... Thesis Supervisor Associate Professor of Chemistry Professor Jianshu Cao................................. .............. Member, Thesis Committee Associate Professor of Chemistry 2 Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans Submitted to the Department of Chemistry on February 2, 2009, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We study electronic conductance through single molecules by subjecting
    [Show full text]
  • The Struggle for Quantum Theory 47 5.1Aliensignals
    Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore.
    [Show full text]
  • January 2007 Volume 16, No
    January 2007 Volume 16, No. 1 APS NEWS www.aps.org/publications/apsnews Highlights Wireless Non-Radiative Energy Transfer A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.APS.ORG/PUBLICATIONS/APSNEWS Page 6 Particle Physicists Meet Halfway Jacksonville Hosts 2007 April Meeting The 2007 APS April Meeting will cists, a high school teachers’ day, a and registration information, be held April 14-17 in sunny students lunch with the experts, and are available online at Jacksonville, Florida. The scientific the presentation of several APS prizes http://www.aps.org/meetings/april/ program, which focuses on astro- and awards in a special ceremonial index.cfm. The abstract submission physics, particle physics, nuclear session. A public lecture, on the deadline is January 12; post-dead- physics, and related fields, will con- physics of NASCAR, will be given line abstracts received by February 5 sist of three plenary sessions, approx- by Diandra Leslie-Pelecky of the will be assigned as poster presenta- imately 75 invited sessions, more University of Nebraska. tions. Early registration closes on than 100 contributed sessions, and Further details of the program, February 23. poster sessions. Among the invited sessions will April Meeting Plenary Talks be a special Nobel Prize session at Saturday, April 14 Laboratory which both of this year’s laureates, • String Theory, Branes, and if John Mather and George Smoot, will • First Results from Gravity You Wish, the Anthropic speak. Probe B, Francis Everitt, Stanford University Principle, Shamit Kachru, APS units represented at the meet- Stanford University ing include the Divisions of • Two-Dimensional Electron Photo by Kay Kinoshita Astrophysics, Nuclear Physics, Systems, Allan MacDonald, Tuesday, April 17 Particles and Fields, Physics of University of Texas at Austin • The 21-cm Background: A The APS Division of Particles and Fields held a joint meeting with their colleagues Beams, Plasma Physics, and • New Measurement of the Probe of Reionization and the from the Japanese Physical Society in Honolulu.
    [Show full text]
  • Leo P. Kadanoff (1937–2015): an Appreciation RETROSPECTIVE
    RETROSPECTIVE Leo P. Kadanoff (1937–2015): An appreciation RETROSPECTIVE Susan N. Coppersmitha,1 Leo P. Kadanoff, who died on October 26, 2015, models depended greatly on devoted his scientific life to trying to elucidate how small changes in the ingre- much of the world can be understood using mathe- dients put into the models. matical models. Historically, physics has addressed this Leo recognized that this sen- problem by searching for fundamental laws that com- sitivity of the results on the pletely specify the right ingredients to put into a theo- details of the models that he retical model. For example, the standard model of constructed made it difficult to particle physics provides a specification of the proper- make robust predictions, and ties of elementary particles and their interactions. after several years he returned Inprinciple,thestandardmodelcouldbeusedto to physics research (6). Over describe macroscopic physical systems. However, the succeeding decades, Leo because of the enormous number of elementary investigated a broad variety of particles in any macroscopic amount of matter, imple- complex systems, with a particu- menting such a calculation is not feasible. Leo was the lar focus on identifying phenom- first to understand clearly that the behavior of systems ena with universal features. He on different length scales can be understood using excelled at bringing people to- different effective theories, and that the effective gether to perform interdisciplin- theories that describe macroscopic phenomena should ary investigations incorporating be derivable by a suitable mathematical procedure theory, experiment, and compu- from the microscopics (1, 2). K. G. Wilson succeeded in tation, and thought deeply about constructing a complete mathematical formulation of the role of computation in scien- Leo P.
    [Show full text]
  • Chicago Physics One
    CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced.
    [Show full text]
  • CHICAGO PHYSICS 3 Quantum Worlds
    CHICAGO PHYSICS 3 Quantum Worlds Welcome to the third issue of Chicago Physics! This past year has been an eventful one for our Department and we hope that you will join in our excitement. In our last issue, we highlighted our Strickland from University of Waterloo, the Department’s research on topological physics, third Maria Goeppert-Mayer Lecturer and the covering the breadth of what we do in this third female Physics Nobel Prize winner. research area from the nano to the cosmic The University has renamed the Physics scale and the unity in the concepts that drive Research Center that opened in 2018 as the us all. In the current issue, we will take you on Michelson Center for Physics in honor of a journey to the quantum world. former faculty member Albert A. Michelson, The year had several notable events. The a pioneering scientist who was the first physics faculty had a first-ever two-day retreat American to win a Nobel Prize in the sciences, in New Buffalo, MI. We discussed various and the first Physics Department chair at challenges in our department in a leisurely, the University of Chicago. The pioneering low-pressure atmosphere that allowed us work of Michelson is fundamental to the field to make progress on these challenges. This of physics and continues to support new retreat also helped us to bond!! We were discoveries more than a century later. pleased that many family members joined This year we also welcomed back our own lunch and dinner. This was immediately David Saltzberg (Ph.D., 1994) as the followed by a two-day retreat of our women annual Zachariasen lecturer who told of his and gender minority students.
    [Show full text]
  • April 8-11, 2019 the 2019 Franklin Institute Laureates the 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019
    april 8-11, 2019 The 2019 Franklin Institute Laureates The 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019 Welcome to The Franklin Institute Awards, the range of disciplines. The week culminates in a grand oldest comprehensive science and technology medaling ceremony, befitting the distinction of this awards program in the United States. Each year, the historic awards program. Institute recognizes extraordinary individuals who In this convocation book, you will find a schedule of are shaping our world through their groundbreaking these events and biographies of our 2019 laureates. achievements in science, engineering, and business. We invite you to read about each one and to attend We celebrate them as modern day exemplars of our the events to learn even more. Unless noted otherwise, namesake, Benjamin Franklin, whose impact as a all events are free and open to the public and located scientist, inventor, and statesman remains unmatched in Philadelphia, Pennsylvania. in American history. Along with our laureates, we honor Franklin’s legacy, which has inspired the We hope this year’s remarkable class of laureates Institute’s mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From shedding light on the mechanisms of human Institute Awards Week. memory to sparking a revolution in machine learning, from sounding the alarm about an environmental crisis to making manufacturing greener, from unlocking the mysteries of cancer to developing revolutionary medical technologies, and from making the world III better connected to steering an industry giant with purpose, this year’s Franklin Institute laureates each reflect Ben Franklin’s trailblazing spirit.
    [Show full text]
  • Quantum Emergence: Entangling the Universe 1 Leo P. Kadanoff
    Quantum Emergence: Entangling the Universe Leo P. Kadanoff ([email protected]) University of Chicago Perimeter Institute Pitt Emergence October 2015 1 Monday, August 24, 2015 abstract This talk is about emergence as seen by a theoretical physicist. Simply stated, I see an emergent result as any scientific conclusion that is a subtle or unexpected result of the basic postulates of a scientific field. The talk starts by describing some of the ways this can happen. It continues with a detailed discussion of entanglement in quantum mechanics. Quantum entanglement is an idea that was added to the basic quantum theory ten years after that theory was put together in 1924-5. Its impact began to be felt only twenty-five years later with the work of John Bell. Since then the entanglement concept has formed the basis for entire fields of science. For example, it has had a dominating influence on “hard” condensed matter physics. Pitt Emergence October 2015 2 Monday, August 24, 2015 Possible Views of Emergence: I. An Emergent result is anything that surprises the investigator. In 1665, the scientist and clockmaker Christiaan Huygens noticed that two pendulum clocks hanging on a wall tended to synchronize the motion of their pendulums. A similar scenario occurs with two metronomes placed on a piano: they interact through vibrations in the wood and will eventually coordinate their motion. abstract This result is somewhat surprising since the coupling between two clocks or two metronomes is likely to be very weak. abstract Huygens then looked further into his accidental discovery by setting up an experiment to demonstrate the synchronization phenomenon.lab manager The material on Huygens is taken from an unpublished work by Mogens Jensen and LPK.
    [Show full text]
  • Frederick Seitz 1 9 1 1 – 2 0 0 8
    NATIONAL ACADEMY OF SCIENCES FREDERICK SEITZ 1 9 1 1 – 2 0 0 8 A Biographical Memoir by CHARLES P. SLICHTER Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Courtesy of the Rockefeller Archive Center. FREDERICK SEITZ July 4, 1911–March 2, 2008 BY CHARLES P . SLICHTER REDERICK SEITZ WAS A BRILLIANT SCIENTIST. He was one of the Ffounders of the field that became known as the physics of condensed matter; a wise and insightful leader of academic and scientific organizations; an influential spokesman for science nationally and internationally; a trusted counselor and adviser of many organizations. His contributions to the field of solid-state physics, to the National Academy of Sciences, and to The Rockefeller University were transforma- tive. Ever alert, he used his influence to help many scientists at crucial stages of their careers. He died in New York on March 2, 2008. I met Fred in 1949 when we both joined the faculty of the Department of Physics of the University of Illinois, he as research professor and I as a brand-new Ph.D. with the rank of instructor. Although he was only 8 years old, he was already a famous scientist. He had been elected a member of the American Philosophical Society in 1946, and he was elected a member of the National Academy of Sciences five years later. He was deeply and actively involved in solid-state physics.
    [Show full text]
  • Public Lecture Series Speakers: 1936 – 2019
    Public Lecture Series Speakers: 1936 – 2019 The Graduate School has been fortunate to host the following speakers as part of the Public Lecture Series. Lecturers on this list are not eligible for the upcoming nomination cycle. Please contact [email protected] with any questions about the nomination process. Signature Speakers Series Menhaz Afridi Maria Hinojosa Donna Shalala Morehshin Allahyari Ralina Joseph Ellen Schur Harry Belafonte Verlaine Keith-Miller Nate Silver Carl Bergstrom Marieka Klawitter Kristen Soltis Anderson Misty Copeland Anthony Leiserowitz Touré Laverne Cox Ulf Leonhardt Jose Antonio Vargas Robin DiAngelo Sharon Maeda Jevin West Junot Díaz Trinh Mai Joy Williamson-Lott Lori Dorfman Peggy McIntosh Tim Wise Adam Drewnowski Megan Ming Francis Kevin Young Ronan Farrow Kathy Najimy Sara Zewde Larry Gossett Emile Pitre Temple Grandin Rogelio Riojas Walker-Ames Scholars Alexander Nagel Kirk Johnson Louis Nirenberg John Beverley Charles Keil Rithy Panh Peter Brewer James Lawson Valerie Smith Ming Cho Lee Samuel NC Lieu Roger Strasser Deborah Dryden Helen Longino Elizabeth Wilson Carole Gassert Philip Kumar Maini Joy James Guiseppe Mazzotta Walker-Ames Lecturers Jeno Adam James Balog George Benedek Julian Agyeman Leonard Barkan Seyla Benhabib Huda Akil George Bartholemew T. Brooke Benjamin Hans Albrecht Bethe Paul Bartlett Margaret Bent Emilio Amero George Batchelor Russell Berman Alexander Archipenko Joseph Beach Howard Bern Kenneth Bailey Hugh Beales Jagdish Bhagwati Bernard Bailyn Arnold Beckett Bhabani Bhattacharya Mieke Bal Jean-Albert Bede Garrett Birkhoff Alan Bittles Alfred Chandler, Jr. Robert Dicke J. Bjerknes Li Chi Liselotte Dieckmann Felix Bloch Brock Chisholm Jean Dieudonne Bruce Blumberg Gustave Choquet Andrea (Andy) DiSessa Larry Bobo Ralph Cicerone Stuart Dodd Christoph Bode Marion Clawson Denis Donoghue Bart Bok Cornell Clayton Sterling Dow Bert Bolin William Clebsch Curt Ducasse Paul Bonifas JM Coetzee John Dunning Gabriel Bonno Philip Cohen J.
    [Show full text]
  • From Clockwork to Crapshoot: a History of Physics
    From Clockwork to Crapshoot a history of physics From Clockwork to Crapshoot a history of physics Roger G. Newton The Belknap Press of Harvard University Press Cambridge, Massachusetts • London, England • 2007 Copyright © 2007 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Newton, Roger G. From clockwork to crapshoot : a history of physics / Roger G. Newton p. cm. Includes bibliographical references. ISBN-13: 978–0–674–02337–6 (alk. paper) ISBN-10: 0–674–02337–4 (alk. paper) 1. Physics—History. I. Title. QC7.N398 2007 530.09—dc22 2007043583 To Ruth, Julie, Rachel, Paul, Lily, Eden, Isabella, Daniel, and Benjamin Preface This book is a survey of the history of physics, together with the as- sociated astronomy, mathematics, and chemistry, from the begin- nings of science to the present. I pay particular attention to the change from a deterministic view of nature to one dominated by probabilities, from viewing the universe as running like clockwork to seeing it as a crapshoot. Written for the general scientifically inter- ested reader rather than for professional scientists, the book presents, whenever needed, brief explanations of the scientific issues involved, biographical thumbnail sketches of the protagonists, and descrip- tions of the changing instruments that enabled scientists to discover ever new facts begging to be understood and to test their theories. As does any history of science, it runs the risk of overemphasizing the role of major innovators while ignoring what Thomas Kuhn called “normal science.”To recognize a new experimental or observa- tional fact as a discovery demanding an explanation by a new theory takes a community of knowledgeable and active participants, most of whom remain anonymous.
    [Show full text]