January 2008 (Volume 17, Number 1) Entire Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9S16211 Laser diagnostics of atomic hydrogen and oxygen production in RF and microwave plasma discharges Preppemau, Bryan Lee, Ph.D. The Ohio State University, 1993 UMI 300 N. -
2005 CERN–CLAF School of High-Energy Physics
CERN–2006–015 19 December 2006 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2005 CERN–CLAF School of High-Energy Physics Malargüe, Argentina 27 February–12 March 2005 Proceedings Editors: N. Ellis M.T. Dova GENEVA 2006 CERN–290 copies printed–December 2006 Abstract The CERN–CLAF School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on field theory and the Standard Model, quantum chromodynamics, CP violation and flavour physics, as well as reports on cosmic rays, the Pierre Auger Project, instrumentation, and trigger and data-acquisition systems. iii Preface The third in the new series of Latin American Schools of High-Energy Physics took place in Malargüe, lo- cated in the south-east of the Province of Mendoza in Argentina, from 27 February to 12 March 2005. It was organized jointly by CERN and CLAF (Centro Latino Americano de Física), and with the strong support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). Fifty-four students coming from eleven different countries attended the School. While most of the students stayed in Hotel Rio Grande, a few students and the Staff stayed at Microtel situated close by. However, all the participants ate their meals to- gether at Hotel Rio Grande. According to the tradition of the School the students shared twin rooms mixing nationalities and in particular Europeans together with Latin Americans. María Teresa Dova from La Plata University was the local director for the School. -
Real Time Density Functional Simulations of Quantum Scale
Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans B.A., Franklin & Marshall College (2003) Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2009 c Massachusetts Institute of Technology 2009. All rights reserved. Author............................................... ............... Department of Chemistry February 2, 2009 Certified by........................................... ............... Troy Van Voorhis Associate Professor of Chemistry Thesis Supervisor Accepted by........................................... .............. Robert W. Field Chairman, Department Committee on Graduate Theses This doctoral thesis has been examined by a Committee of the Depart- ment of Chemistry as follows: Professor Robert J. Silbey.............................. ............. Chairman, Thesis Committee Class of 1942 Professor of Chemistry Professor Troy Van Voorhis............................... ........... Thesis Supervisor Associate Professor of Chemistry Professor Jianshu Cao................................. .............. Member, Thesis Committee Associate Professor of Chemistry 2 Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans Submitted to the Department of Chemistry on February 2, 2009, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We study electronic conductance through single molecules by subjecting -
The Struggle for Quantum Theory 47 5.1Aliensignals
Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore. -
January 2007 Volume 16, No
January 2007 Volume 16, No. 1 APS NEWS www.aps.org/publications/apsnews Highlights Wireless Non-Radiative Energy Transfer A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.APS.ORG/PUBLICATIONS/APSNEWS Page 6 Particle Physicists Meet Halfway Jacksonville Hosts 2007 April Meeting The 2007 APS April Meeting will cists, a high school teachers’ day, a and registration information, be held April 14-17 in sunny students lunch with the experts, and are available online at Jacksonville, Florida. The scientific the presentation of several APS prizes http://www.aps.org/meetings/april/ program, which focuses on astro- and awards in a special ceremonial index.cfm. The abstract submission physics, particle physics, nuclear session. A public lecture, on the deadline is January 12; post-dead- physics, and related fields, will con- physics of NASCAR, will be given line abstracts received by February 5 sist of three plenary sessions, approx- by Diandra Leslie-Pelecky of the will be assigned as poster presenta- imately 75 invited sessions, more University of Nebraska. tions. Early registration closes on than 100 contributed sessions, and Further details of the program, February 23. poster sessions. Among the invited sessions will April Meeting Plenary Talks be a special Nobel Prize session at Saturday, April 14 Laboratory which both of this year’s laureates, • String Theory, Branes, and if John Mather and George Smoot, will • First Results from Gravity You Wish, the Anthropic speak. Probe B, Francis Everitt, Stanford University Principle, Shamit Kachru, APS units represented at the meet- Stanford University ing include the Divisions of • Two-Dimensional Electron Photo by Kay Kinoshita Astrophysics, Nuclear Physics, Systems, Allan MacDonald, Tuesday, April 17 Particles and Fields, Physics of University of Texas at Austin • The 21-cm Background: A The APS Division of Particles and Fields held a joint meeting with their colleagues Beams, Plasma Physics, and • New Measurement of the Probe of Reionization and the from the Japanese Physical Society in Honolulu. -
Leo P. Kadanoff (1937–2015): an Appreciation RETROSPECTIVE
RETROSPECTIVE Leo P. Kadanoff (1937–2015): An appreciation RETROSPECTIVE Susan N. Coppersmitha,1 Leo P. Kadanoff, who died on October 26, 2015, models depended greatly on devoted his scientific life to trying to elucidate how small changes in the ingre- much of the world can be understood using mathe- dients put into the models. matical models. Historically, physics has addressed this Leo recognized that this sen- problem by searching for fundamental laws that com- sitivity of the results on the pletely specify the right ingredients to put into a theo- details of the models that he retical model. For example, the standard model of constructed made it difficult to particle physics provides a specification of the proper- make robust predictions, and ties of elementary particles and their interactions. after several years he returned Inprinciple,thestandardmodelcouldbeusedto to physics research (6). Over describe macroscopic physical systems. However, the succeeding decades, Leo because of the enormous number of elementary investigated a broad variety of particles in any macroscopic amount of matter, imple- complex systems, with a particu- menting such a calculation is not feasible. Leo was the lar focus on identifying phenom- first to understand clearly that the behavior of systems ena with universal features. He on different length scales can be understood using excelled at bringing people to- different effective theories, and that the effective gether to perform interdisciplin- theories that describe macroscopic phenomena should ary investigations incorporating be derivable by a suitable mathematical procedure theory, experiment, and compu- from the microscopics (1, 2). K. G. Wilson succeeded in tation, and thought deeply about constructing a complete mathematical formulation of the role of computation in scien- Leo P. -
Nehmen Wir An, Die Kuh Ist Eine Kugel... «
dtv Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel ...« Nur keine Angst Vor Physik Nicht nur Faust wollte wissen, »was die Welt im Innersten zusammenhält.« Dabei muß man kein Physiker sein, um das moderne Weltbild der Physik – von Galilei Bis Stephen Hawking – zu verstehen. Lawrence M. Krauss zeigt uns, wie spannend und unterhaltsam die Beschäftigung mit der Physik sein kann. Deutscher Taschenbuch Verlag »Nehmen wir an, die Kuh ist eine Kugel...« Ziemlich abwegig, mag mancher denken. Aber wie sinnvoll solche radikalen Ver- einfachungen sein können, zeigt Lawrence M. Krauss an vielen anschaulichen und vergnüglichen Beispielen. Wer wissen will, »was die Welt im Innersten zusammenhält«, sieht nach der Lektüre dieses Buches klarer, denn man muß kein Physiker sein, um das moderne Weltbild der Physik - von Galilei bis Stephen Hawking - zu verstehen. «Mit der Selbstverständlichkeit eines Hausherrn führt Krauss seine Leser durch das Gedankengebäude der theoretischen Physik: von der Relativitätstheorie über die Quantendynamik hin zu einer Theorie >über alles<. Weil er dabei so originell und unkonventionell vorgeht wie sein Lehrer Richard Feynman, ist die Lektüre das reine Vergnügen.« (Physikalische Blätter, Weinheim) Lawrence M. Krauss, geboren 1954 in New York, ist Professor für Physik und Astronomie und Leiter des Instituts für Physik an der Case Western Reserve University in Cleveland. Er lieferte bedeutende Beiträge über die Vorgänge bei explodierenden Sternen bis hin zum Ursprung und der Natur des Stoffes, aus dem das Universum ist. Zahlreiche Veröffentlichungen. Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel... « Nur keine Angst vor Physik Mit 39 Schwarzweißabbildungen Aus dem Amerikanischen von Wolfram Knapp Deutscher Taschenbuch Verlag Ungekürzte Ausgabe August 1998 Deutscher Taschenbuch Verlag GmbH & Co. -
Primary Study of High-Power Graphene Beam Window
Haijing Wang IHEP, Beijing, China 30th, April, 2018, IPAC18, Vancouver Backgrounds Primary studies of high power graphene beam window Vacuum performance Thermal performance Anti-pressure ability Scattering effect Radiation lifetime Summary 2 What is high-power beam window? Used to separate high vacuum region from other atmospheres. Key device for high-power hadron beam accelerators. Beam passes through the window to impinge the target or beam dump. Beam dump window Proton beam window Beam dump window 3 Proton beam windows of some accelerators Side cooling (forced water) • CSNS (0.1 MW): A5083-O Surface cooling (forced water) • SNS (1MW): Inconel 718 • J-PARC (1MW): A5083-O • ISIS (0.16MW): Inconel 718 Multi-pipe cooling (forced water) Side cooling Surface cooling • ESS (5MW): A6061-T6 Different structure (cooling), similar materials (metal) Multi-pipe cooling 4 High power high intensity (hadron) accelerators are more and more needed for different fields of science. Spallation neutron source (eg. ESS 5MW, 2.5 GeV ) Accelerator-driven system (eg. CADS ~10 MW, 1GeV ) Neutrino facility (eg. MOMENT 15 MW, 1.5 GeV) High intensity leads to high energy deposition. High power beam windows meet bottlenecks in heat dissipation and thermal stress. Beam window in study Plasma window: in experimental stage 5 Requirements Vacuum Gas impermeability Pressure difference High thermal conductivity Vacuum Pressure Energy Enough strength side side deposition Beam Optimized structure and Thermal cooling methods pulse Low-Z material Scattering effect Thin film High power & Radiation Radiation resistant high intensity 6 Common-used Inconel GlidCop Al- A6061-T6 Beryllium materials 718 15 Thermal conductivity 167 14.7 216 365 (W/(m·C)) Questions Thermal conduction problem Graphitized Diamond Graphene Not-used materials polyimide Graphene film film film (GPI) Thermal conductivity Up to 900- Up to 4840- Up to 1750 Up to 1940 (W/(m·C)) 2320 5300 Low Questions Brittle Very thin strength Why Graphene? Low-Z. -
Chicago Physics One
CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced. -
CHICAGO PHYSICS 3 Quantum Worlds
CHICAGO PHYSICS 3 Quantum Worlds Welcome to the third issue of Chicago Physics! This past year has been an eventful one for our Department and we hope that you will join in our excitement. In our last issue, we highlighted our Strickland from University of Waterloo, the Department’s research on topological physics, third Maria Goeppert-Mayer Lecturer and the covering the breadth of what we do in this third female Physics Nobel Prize winner. research area from the nano to the cosmic The University has renamed the Physics scale and the unity in the concepts that drive Research Center that opened in 2018 as the us all. In the current issue, we will take you on Michelson Center for Physics in honor of a journey to the quantum world. former faculty member Albert A. Michelson, The year had several notable events. The a pioneering scientist who was the first physics faculty had a first-ever two-day retreat American to win a Nobel Prize in the sciences, in New Buffalo, MI. We discussed various and the first Physics Department chair at challenges in our department in a leisurely, the University of Chicago. The pioneering low-pressure atmosphere that allowed us work of Michelson is fundamental to the field to make progress on these challenges. This of physics and continues to support new retreat also helped us to bond!! We were discoveries more than a century later. pleased that many family members joined This year we also welcomed back our own lunch and dinner. This was immediately David Saltzberg (Ph.D., 1994) as the followed by a two-day retreat of our women annual Zachariasen lecturer who told of his and gender minority students. -
Mael Flament, E-Beam Welding & Machining
e- BEAM WELDING & MACHINING Mael Flament (MSI) Stony Brook University Dept. of Physics & Astronomy PHY 554, Dec. 2016 2 Outline • Introduction • Components • Principles • Advantages • Applications Applied Fusion Inc. EBW machine 3 Introduction • First electron beam welding (EBW) machine developed in 1958 by Dr. K. H. Steigerwald, rapidly used in nuclear industries • Electro-thermal advanced manufacturing method • EBW is a fusion welding process fuse welding: join two metal parts together by melting them temporarily & locally in vicinity of contact “heat source” concentrated beam of high-energy e- applied to the materials to be joined 4 Outline • Introduction • Components • Principles • Advantages • Applications Applied Fusion Inc. EBW machine 5 HV Layout (~30-200kV ) Cathode cartridge Bias grid Anode Source Aperture mirror Optical viewing system (alignment) Magnetic lens e- beam column (optics) Deflection coils Collimation/steering Aperture Schematic diagram of EBM/EBW 6 Components: gun • Production of free e- at the cathode by thermo-ionic emission Source: incandescent (~2500C) tungsten/tantalum filament • Cathode cartridge: negatively biased so that e- are strongly repelled away from the cathode • Due to pattern of E field produced by bias grid cup, e- flow as converging beam towards anode; biasing nature controls flow (biased grid used as switch to operate gun in pulsed mode) • Accelerated: high-voltage potential between a negatively charged cathode and positively charged anode 7 HV Layout (~30-200kV ) Cathode cartridge Bias grid Anode -
Experiment and Simulation of Plasma Window
Experiment and Simulation of plasma window Kun Zhu,Sheng Huang, Wang shaoze, Yuarong, Zhiyu Guo Physics school of Peking university Institute of Heavy Ion Physics UCANS2015 outline Ø Introduction Ø Plasma window test bench Ø Simulation of plasma window Ø conclusion what is plasma window cathode Arc channel anode Plasm High pressure Vacuum a Traditional solid window beam vacuum Solid window High pressure region Beryllium window Disadvantage: • Thermal damage • Radiation damage • Increase energy loss and energy spread Windowless target Windowless deuterium gas target Expensive differential pump system Complicated vacuum and mechanical system windowless hydrogen gas target for 7Be(p,�) reaction measurement Why plasma window Ø needn’t worry about thermal problem. Ø No radiation damage Ø Very thin equivalent thickness(~nm) Ø Effectively improve the performance of differential pump system Non-vacuum electron beam welding 9mA 25mA Electron beam current after exiting plasma window , Pure helium gas Aperture: 2.36mm Plasma Current: 45A window Air boring and non-vacuum electron beam welding with a plasma window, Ady hershcovitch, Physics of plasma, 12(2005) Deuterium gas target using plasma window Differentially Plasma window Deflector plate pumped gas chamber Beam Roots blower Turbo molecular pump 50kW power supply operating gas pressure is 0.5 bar for argon Diameter of plasma window: 5mm Performance of a plasma window for a high pressured differentially Pumped deuterium gas target for mono-energetic fast neutron Production-Preliminary results, A.De Beer, A. hershcovitch, et. al..NIMB, 170(2000), 259-265 High ion current beam need larger plasma window • Small diameter Plasma window(2-5mm) is successfully used for electron beam welding and gas target.