Supplementary Materials

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Materials Supplementary Material S1. Level values of candidate oncogenes. Ensembl ID Gene symbol Level value ENSP00000304565 RAB31 0.9105 ENSP00000421799 ENSG00000257184 0.8868 ENSP00000469872 RAB4B-EGLN2 0.8500 ENSP00000283921 HOXA10 0.8289 ENSP00000385586 HOXD12 0.8184 ENSP00000348429 ACSL5 0.8184 ENSP00000256953 RERG 0.8105 ENSP00000341032 WNT7B 0.8053 ENSP00000321805 RIT2 0.7763 ENSP00000285735 RHOC 0.7763 ENSP00000282397 FLT1 0.7763 ENSP00000264711 DNAJC27 0.7737 ENSP00000339787 ACSL4 0.7737 ENSP00000357306 RIT1 0.7684 ENSP00000301068 RHEBL1 0.7684 ENSP00000267996 TPM1 0.7632 ENSP00000354219 TPM2 0.7579 ENSP00000249501 HOXD10 0.7579 ENSP00000249499 HOXD9 0.7553 ENSP00000292408 FGFR4 0.7553 ENSP00000358698 WNT2B 0.7500 ENSP00000369375 TEK 0.7500 ENSP00000313572 NIM1 0.7500 ENSP00000296870 IL3 0.7474 ENSP00000263253 EP300 0.7447 ENSP00000308576 RHOD 0.7395 ENSP00000241463 RASL11A 0.7395 ENSP00000224337 BLNK 0.7368 ENSP00000272369 MEIS1 0.7342 ENSP00000222139 EPOR 0.7342 ENSP00000310036 CD34 0.7342 ENSP00000258873 ACSBG1 0.7342 ENSP00000265441 WNT2 0.7316 ENSP00000325836 DIRAS1 0.7316 ENSP00000264818 TYK2 0.7263 ENSP00000302836 HOXC9 0.7263 ENSP00000262187 RHEB 0.7237 ENSP00000337088 MEN1 0.7237 ENSP00000358162 HIST2H4A 0.7237 ENSP00000239882 ELF1 0.7237 ENSP00000252669 ACSBG2 0.7237 ENSP00000264834 KLF1 0.7184 ENSP00000222462 WNT16 0.7158 ENSP00000295713 SRGAP2 0.7158 ENSP00000267205 RHOF 0.7158 ENSP00000307321 HOXC10 0.7158 ENSP00000378702 BRD2 0.7158 ENSP00000331327 WT1 0.7105 ENSP00000471921 SPIB 0.7105 ENSP00000309439 HOXB9 0.7105 ENSP00000348258 HIST1H4L 0.7105 ENSP00000339007 GRB2 0.7105 ENSP00000259089 BLK 0.7105 ENSP00000347198 SRGAP1 0.7079 ENSP00000343477 RUNX3 0.7079 ENSP00000396259 PAX2 0.7079 ENSP00000363822 AR 0.7079 ENSP00000215781 OSM 0.7053 ENSP00000366974 HIST1H4F 0.7053 ENSP00000262995 GAB1 0.7053 ENSP00000242159 HOXA7 0.7026 ENSP00000350159 HIST1H4K 0.7026 ENSP00000265495 ELF2 0.7026 ENSP00000364919 DIRAS2 0.7026 ENSP00000263239 DDX18 0.7026 ENSP00000305422 CEBPB 0.7026 ENSP00000394932 CDKN2A 0.7026 ENSP00000310170 FOSL1 0.7000 ENSP00000338018 HIF1A 0.6974 ENSP00000216101 RASL10A 0.6947 ENSP00000312436 NFE2 0.6947 ENSP00000234091 ID2 0.6947 ENSP00000368632 GATA3 0.6947 ENSP00000220003 CSK 0.6947 ENSP00000341208 STAT5A 0.6921 ENSP00000419692 RXRA 0.6921 ENSP00000360493 RUNX2 0.6921 ENSP00000466680 RND2 0.6921 ENSP00000314151 KLK3 0.6921 ENSP00000358153 HIST2H4B 0.6921 ENSP00000365012 HCK 0.6921 ENSP00000352673 ELF3 0.6921 ENSP00000264972 ZAP70 0.6895 ENSP00000290167 WNT4 0.6895 ENSP00000220507 RHOV 0.6895 ENSP00000249071 RAC2 0.6895 ENSP00000226574 NFKB1 0.6895 ENSP00000356234 KDM5B 0.6895 ENSP00000261937 FLT4 0.6895 ENSP00000380033 DDX17 0.6895 ENSP00000362195 CSF3R 0.6895 ENSP00000155926 TRIB2 0.6868 ENSP00000320147 EZH2 0.6868 ENSP00000300134 STAT6 0.6842 ENSP00000364190 PBX2 0.6842 ENSP00000353624 HIST1H4E 0.6842 ENSP00000226317 CXCL6 0.6842 ENSP00000256495 BHLHE40 0.6842 ENSP00000242261 TWIST1 0.6816 ENSP00000380921 SH3KBP1 0.6816 ENSP00000263895 RND3 0.6816 ENSP00000339467 RHOG 0.6816 ENSP00000352336 PLCG2 0.6816 ENSP00000229307 NANOG 0.6816 ENSP00000353483 MAPK8 0.6816 ENSP00000290295 HOXB13 0.6816 ENSP00000311010 ELF5 0.6816 ENSP00000296027 CXCL5 0.6816 ENSP00000336790 ATF4 0.6816 ENSP00000281455 ACSL1 0.6816 ENSP00000369981 SH3GL2 0.6789 ENSP00000277120 NTRK2 0.6789 ENSP00000379330 NFATC2 0.6789 ENSP00000376309 HNRNPA3 0.6789 ENSP00000366581 HIST1H4B 0.6789 ENSP00000271450 FCGR2A 0.6789 ENSP00000248070 EPS15L1 0.6789 ENSP00000316338 BAIAP2 0.6789 ENSP00000362634 TSSK3 0.6763 ENSP00000274376 RASA1 0.6763 ENSP00000364163 NOTCH4 0.6763 ENSP00000357470 IL6R 0.6763 ENSP00000350767 HIST4H4 0.6763 ENSP00000357615 FRK 0.6763 ENSP00000384675 SOS1 0.6737 ENSP00000401303 SHC1 0.6737 ENSP00000220062 RASL12 0.6737 ENSP00000304283 RAC3 0.6737 ENSP00000228280 KITLG 0.6737 ENSP00000343282 HIST1H4D 0.6737 ENSP00000294702 GFI1 0.6737 ENSP00000272164 WNT9A 0.6711 ENSP00000346440 TCF4 0.6711 ENSP00000346879 NKX2-1 0.6711 ENSP00000363689 ID3 0.6711 ENSP00000328928 HOXB4 0.6711 ENSP00000322898 EBF1 0.6711 ENSP00000297268 COL1A2 0.6711 ENSP00000384869 CLHC1 0.6711 ENSP00000339179 TSSK4 0.6684 ENSP00000375081 TSSK1B 0.6684 ENSP00000370421 PDX1 0.6684 ENSP00000378485 MATK 0.6684 ENSP00000364550 KDM5C 0.6684 ENSP00000298229 INPPL1 0.6684 ENSP00000367034 HIST1H4C 0.6684 ENSP00000354952 GAB2 0.6684 ENSP00000289902 FCER1G 0.6684 ENSP00000343925 ESR2 0.6684 ENSP00000435835 EHF 0.6684 ENSP00000244741 CDKN1A 0.6684 ENSP00000378699 CDK1 0.6684 ENSP00000354568 BRDT 0.6684 ENSP00000308461 RND1 0.6658 ENSP00000358525 NGF 0.6658 ENSP00000323178 KSR1 0.6658 ENSP00000356946 FCGR3A 0.6658 ENSP00000225474 CSF3 0.6658 ENSP00000359424 CHUK 0.6658 ENSP00000302564 BCL2L1 0.6658 ENSP00000370912 TEC 0.6632 ENSP00000368401 PAX6 0.6632 ENSP00000289352 HIST1H4H 0.6632 ENSP00000206249 ESR1 0.6632 ENSP00000264634 WNT5A 0.6605 ENSP00000265440 TFEC 0.6605 ENSP00000358092 PRDM1 0.6605 ENSP00000274335 PIK3R1 0.6605 ENSP00000362588 PBX3 0.6605 ENSP00000288986 NCK1 0.6605 ENSP00000352980 HIST1H4A 0.6605 ENSP00000330054 EEF1A1 0.6605 ENSP00000344352 ATF3 0.6605 ENSP00000293328 STAT5B 0.6579 ENSP00000348461 RAC1 0.6579 ENSP00000332353 PTCH1 0.6579 ENSP00000362690 NR5A1 0.6579 ENSP00000254227 NR0B2 0.6579 ENSP00000352834 MYO1C 0.6579 ENSP00000269243 MYH10 0.6579 ENSP00000222390 HGF 0.6579 ENSP00000356694 FASLG 0.6579 ENSP00000386165 CEBPD 0.6579 ENSP00000231656 CDX1 0.6579 ENSP00000293549 WNT1 0.6553 ENSP00000320493 TRIP10 0.6553 ENSP00000264731 TP63 0.6553 ENSP00000329357 SP1 0.6553 ENSP00000329418 SOCS1 0.6553 ENSP00000400175 RHOA 0.6553 ENSP00000268712 NCOR1 0.6553 ENSP00000250003 MYOD1 0.6553 ENSP00000444293 KDM5D 0.6553 ENSP00000347168 HIST1H4J 0.6553 ENSP00000266000 DAXX 0.6553 ENSP00000437940 CD19 0.6553 ENSP00000290015 WNT9B 0.6526 ENSP00000396211 WASF2 0.6526 ENSP00000446280 PCSK5 0.6526 ENSP00000353427 NR4A1 0.6526 ENSP00000263388 NOTCH3 0.6526 ENSP00000380252 NFE2L2 0.6526 ENSP00000384018 NCOR2 0.6526 ENSP00000344782 GFI1B 0.6526 ENSP00000252723 EPO 0.6526 ENSP00000265372 CREM 0.6526 ENSP00000369889 COL2A1 0.6526 ENSP00000302216 ATOH1 0.6526 ENSP00000405176 TWIST2 0.6500 ENSP00000350720 SMARCA4 0.6500 ENSP00000265717 PRKAR2B 0.6500 ENSP00000216797 NFKBIA 0.6500 ENSP00000306157 IL7R 0.6500 ENSP00000243103 HOXC12 0.6500 ENSP00000341826 HNRNPA1 0.6500 ENSP00000268171 FURIN 0.6500 ENSP00000350512 COPS5 0.6500 ENSP00000351671 CCL20 0.6500 ENSP00000413234 AP2A2 0.6500 ENSP00000223023 WASL 0.6474 ENSP00000264554 SHC2 0.6474 ENSP00000300954 PCSK4 0.6474 ENSP00000262545 PCSK2 0.6474 ENSP00000231509 NR3C1 0.6474 ENSP00000245503 MYH2 0.6474 ENSP00000344544 IKZF3 0.6474 ENSP00000222726 HOXA5 0.6474 ENSP00000346839 FN1 0.6474 ENSP00000206513 CEBPE 0.6474 ENSP00000411552 CDKN1C 0.6474 ENSP00000265741 CDK14 0.6474 ENSP00000308774 BMX 0.6474 ENSP00000215115 BCL7C 0.6474 ENSP00000391669 BCAR1 0.6474 ENSP00000348602 AMPH 0.6474 ENSP00000308887 WNT5B 0.6447 ENSP00000297261 SHH 0.6447 ENSP00000284957 RABGEF1 0.6447 ENSP00000354855 NFE2L1 0.6447 ENSP00000046794 LCP2 0.6447 ENSP00000365280 ID1 0.6447 ENSP00000313199 HNRNPD 0.6447 ENSP00000230882 GHR 0.6447 ENSP00000295822 EIF5A2 0.6447 ENSP00000369461 ECI2 0.6447 ENSP00000345571 E2F1 0.6447 ENSP00000342136 CREB3 0.6447 ENSP00000343818 CDK5RAP2 0.6447 ENSP00000419782 CDK5 0.6447 ENSP00000308176 BTK 0.6447 ENSP00000233948 WNT6 0.6421 ENSP00000447173 VDR 0.6421 ENSP00000269305 TP53 0.6421 ENSP00000264657 STAT3 0.6421 ENSP00000364995 SHC3 0.6421 ENSP00000361120 RALGDS 0.6421 ENSP00000327850 NFATC1 0.6421 ENSP00000317580 NEUROG1 0.6421 ENSP00000361066 NCOA3 0.6421 ENSP00000301067 MLL2 0.6421 ENSP00000346389 MEF2A 0.6421 ENSP00000362649 HDAC1 0.6421 ENSP00000266970 CDK2 0.6421 ENSP00000243440 BATF3 0.6421 ENSP00000364893 ARHGEF7 0.6421 ENSP00000288266 APPL1 0.6421 ENSP00000284523 WNT3A 0.6395 ENSP00000301061 WNT10B 0.6395 ENSP00000222270 WBP7 0.6395 ENSP00000256474 VHL 0.6395 ENSP00000356999 USF1 0.6395 ENSP00000364912 SPEN 0.6395 ENSP00000356022 SOD2 0.6395 ENSP00000338345 SNCA 0.6395 ENSP00000341551 SMAD4 0.6395 ENSP00000391592 PTPN6 0.6395 ENSP00000251203 PBX4 0.6395 ENSP00000263800 LTK 0.6395 ENSP00000303830 INSR 0.6395 ENSP00000264716 FOSL2 0.6395 ENSP00000389934 EXOC5 0.6395 ENSP00000317955 EEA1 0.6395 ENSP00000296871 CSF2 0.6395 ENSP00000364979 COL4A1 0.6395 ENSP00000282050 ATP5A1 0.6395 ENSP00000264110 ATF2 0.6395 ENSP00000303909 ABR 0.6395 ENSP00000283195 RANBP2 0.6368 ENSP00000382177 MYO5A 0.6368 ENSP00000378845 LAT 0.6368 ENSP00000370719 ITSN1 0.6368 ENSP00000333950 FMN1 0.6368 ENSP00000338934 EZR 0.6368 ENSP00000342626 EYA1 0.6368 ENSP00000295206 EN1 0.6368 ENSP00000332171 DMTF1 0.6368 ENSP00000400088 CDK3 0.6368 ENSP00000431445 CD3G 0.6368 ENSP00000295095 ARHGAP15 0.6368 ENSP00000257430 APC 0.6368 ENSP00000216037 XBP1 0.6342 ENSP00000368924 TFAP2A 0.6342 ENSP00000309572 TERT 0.6342 ENSP00000473233 SPIB 0.6342 ENSP00000244745 SOX4 0.6342 ENSP00000231487 SKP1 0.6342 ENSP00000329668 SHC4 0.6342 ENSP00000332296 RARB 0.6342 ENSP00000291547 PKNOX1 0.6342 ENSP00000325120 PGR 0.6342 ENSP00000344220 PDPK1 0.6342 ENSP00000254846 KDM6B 0.6342 ENSP00000358997 IRAK1 0.6342 ENSP00000263851 IL7 0.6342 ENSP00000258743 IL6 0.6342 ENSP00000359531 GTF2B 0.6342 ENSP00000321797 FGF8 0.6342 ENSP00000325527 FBN1 0.6342 ENSP00000324464 CSNK1D 0.6342 ENSP00000427550 CEP192 0.6342 ENSP00000382271 CEP152 0.6342 ENSP00000284000 CEBPG 0.6342 ENSP00000361359 CD40 0.6342 ENSP00000359206 BTRC 0.6342 ENSP00000362777 ATOH7 0.6342 ENSP00000264316 TXK 0.6316 ENSP00000217233 TRIB3 0.6316 ENSP00000265354 SRF 0.6316 ENSP00000332973 SMAD3 0.6316 ENSP00000316729
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Browsing Genes and Genomes with Ensembl
    The Bioinformatics Roadshow Tórshavn, The Faroe Islands 28-29 November 2012 BROWSING GENES AND GENOMES WITH ENSEMBL EXERCISES AND ANSWERS 1 BROWSER 3 BIOMART 8 VARIATION 13 COMPARATIVE GENOMICS 18 2 Note: These exercises are based on Ensembl version 69 (October 2012). After in future a new version has gone live, version 69 will still be available at http://e69.ensembl.org/. If your answer doesn’t correspond with the given answer, please consult the instructor. ______________________________________________________________ BROWSER ______________________________________________________________ Exercise 1 – Exploring a gene (a) Find the human F9 (coagulation factor IX) gene. On which chromosome and which strand of the genome is this gene located? How many transcripts (splice variants) have been annotated for it? (b) What is the longest transcript? How long is the protein it encodes? Has this transcript been annotated automatically (by Ensembl) or manually (by Havana)? How many exons does it have? Are any of the exons completely or partially untranslated? (c) Have a look at the external references for ENST00000218099. What is the function of F9? (d) Is it possible to monitor expression of ENST00000218099 with the ILLUMINA HumanWG_6_V2 microarray? If so, can it also be used to monitor expression of the other two transcripts? (e) In which part (i.e. the N-terminal or C-terminal half) of the protein encoded by ENST00000218099 does its peptidase activity reside? (f) Have any missense variants been discovered for the protein encoded by ENST00000218099? (g) Is there a mouse orthologue predicted for the human F9 gene? (h) If you have yourself a gene of interest, explore what information Ensembl displays about it! ______________________________________________________________ Answer (a) 8 Go to the Ensembl homepage (http://www.ensembl.org/).
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • Large Meta-Analysis of Genome-Wide Association Studies
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.01.20200659; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Large meta-analysis of genome-wide association studies expands knowledge of the genetic etiology of Alzheimer’s disease and highlights potential translational opportunities Céline Bellenguez1,*,#, Fahri Küçükali2,3,4*, Iris Jansen5,6*, Victor Andrade7,8*, Sonia Morenau- Grau9,10,*, Najaf Amin11,12, Benjamin Grenier-Boley1, Anne Boland13, Luca Kleineidam7,8, Peter Holmans14, Pablo Garcia9,10, Rafael Campos Martin7, Adam Naj15,16, Yang Qiong17, Joshua C. Bis18, Vincent Damotte1, Sven Van der Lee5,6,19, Marcos Costa1, Julien Chapuis1, Vilmentas Giedraitis20, María Jesús Bullido10,21, Adolfo López de Munáin10,22, Jordi Pérez- Tur10,23, Pascual Sánchez-Juan10,24, Raquel Sánchez-Valle25, Victoria Álvarez26, Pau Pastor27, Miguel Medina10,28, Jasper Van Dongen2,3,4, Christine Van Broeckhoven2,3,4, Rik Vandenberghe29,30, Sebastiaan Engelborghs31,32, Gael Nicolas33, Florence Pasquier34, Olivier Hanon35, Carole Dufouil36, Claudine Berr37, Stéphanie Debette36, Jean-François Dartigues36, Gianfranco Spalletta38, Benedetta Nacmias39,40, Vincenzo Solfrezzi41, Barbara Borroni42, Lucio Tremolizzo43, Davide Seripa44, Paolo Caffarra45, Antonio Daniele46,47, Daniela Galimberti48,49, Innocenzo Rainero50, Luisa Benussi51, Alesio Squassina52, Patrizia Mecoci53, Lucilla Parnetti54, Carlo Masullo55, Beatrice Arosio56, John Hardy57, Simon Mead58, Kevin Morgan59, Clive Holmes60, Patrick Kehoe61, Bob Woods62, EADB, Charge, ADGC, Jin Sha15,16, Yi Zhao15,63, Chien-Yueh Lee15,63, Pavel P.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Onderstaande Coverage Is Berekend Over 1000 Exomen, Welke Geprept Zijn Met De Agilent Sureselect XT Exome V6 Kit
    Onderstaande coverage is berekend over 1000 exomen, welke geprept zijn met de Agilent SureSelect XT exome v6 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 met een gemiddelde coverage van 100X , dekking 20x >95% over het gehele exoom. Gemiddelde Gen Coverage 20x A1BG 124 89,46 A1CF 123 98,03 A2ML1 120 98,19 A2M 114 95,38 A3GALT2 123 97,65 A4GALT 222 98,21 A4GNT 153 98,21 AAAS 147 98,21 AACS 139 98,20 AADACL2 118 97,73 AADACL3 139 98,21 AADACL4 156 98,21 AADAC 118 98,05 AADAT 107 89,53 AAED1 67 83,20 AAGAB 106 97,95 AAK1 115 97,79 AAMDC 101 88,39 AAMP 117 98,14 AANAT 124 98,16 AAR2 103 76,39 AARD 82 98,61 AARS2 133 98,12 AARSD1 105 84,15 AARS 123 98,17 AASDHPPT 127 97,08 AASDH 98 97,40 AASS 102 97,35 AATF 139 97,98 AATK 115 96,20 ABAT 111 94,77 ABCA1 124 97,79 ABCA2 152 97,17 ABCA3 129 98,12 ABCA4 126 98,14 ABCA5 59 88,83 ABCA6 88 95,52 ABCA7 163 98,07 ABCA8 102 96,10 ABCA9 109 97,71 ABCA10 74 85,59 ABCA12 116 97,77 ABCA13 129 96,43 ABCB1 114 97,45 ABCB4 96 96,93 ABCB5 105 97,75 ABCB6 140 98,21 ABCB7 126 99,13 ABCB8 140 98,05 ABCB9 139 98,13 ABCB10 85 89,17 ABCB11 118 97,74 ABCC1 123 92,71 ABCC2 127 98,16 ABCC3 147 97,94 ABCC4 112 96,52 ABCC5 121 92,63 ABCC6 115 91,98 ABCC8 129 98,17 ABCC9 108 97,76 ABCC10 144 97,99 ABCC11 126 98,16 ABCC12 134 98,20 ABCD1 113 72,00 ABCD2 96 97,46 ABCD3 90 91,11 ABCD4 118 98,16 ABCE1 63 86,86 ABCF1 116 98,04 Pagina 1 van 295 Onderstaande coverage is berekend over 1000 exomen, welke geprept zijn met de Agilent SureSelect XT exome v6 kit.
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • OR2AJ1 (P-13): Sc-104521
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . OR2AJ1 (P-13): sc-104521 BACKGROUND APPLICATIONS Olfactory receptors are G protein-coupled receptors that localize to the cilia OR2AJ1 (P-13) is recommended for detection of OR2AJ1 of human origin of olfactory sensory neurons where they display affinity for and bind to a by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), variety of odor molecules. The genes encoding olfactory receptors comprise immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and the largest family in the human genome. The binding of olfactory receptor solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); may proteins to odor molecules triggers a signal transduction that propagates cross-react with OR2T27. nerve impulses throughout the body, ultimately leading to transmission of the OR2AJ1 (P-13) is also recommended for detection of OR2AJ1 in additional signal to the brain and the subsequent perception of smell. OR2AJ1 (olfac - species, including equine, canine, bovine and porcine. tory receptor 2AJ1) is a 328 amino acid protein. The gene encoding OR2AJ1 maps to human chromosome 1. RECOMMENDED SECONDARY REAGENTS REFERENCES To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 1. Malnic, B., Hirono, J., Sato, T. and Buck, L.B. 1999. Combinatorial receptor (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey codes for odors. Cell 96: 713-723. anti- goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ 2.
    [Show full text]
  • An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors
    Ecology and Evolutionary Biology 2021; 6(3): 53-77 http://www.sciencepublishinggroup.com/j/eeb doi: 10.11648/j.eeb.20210603.11 ISSN: 2575-3789 (Print); ISSN: 2575-3762 (Online) An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors Miguel Angel Fuertes*, Carlos Alonso Department of Microbiology, Centre for Molecular Biology “Severo Ochoa”, Spanish National Research Council and Autonomous University, Madrid, Spain Email address: *Corresponding author To cite this article: Miguel Angel Fuertes, Carlos Alonso. An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecology and Evolutionary Biology. Vol. 6, No. 3, 2021, pp. 53-77. doi: 10.11648/j.eeb.20210603.11 Received: April 24, 2021; Accepted: May 11, 2021; Published: July 13, 2021 Abstract: Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events.
    [Show full text]