General Coastal Notes + Landforms! 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California's Coastal Sea Caves, NSS News, October 1998
California’s Coastal Sea Caves by Dave Bunnell Large chamber in Cave-in-Rock Cave, San Luis Obispo County elmets, lights, wetsuits, fins, face California, with its more accessible caves, are undoubtedly caves in Humboldt and Del masks and snorkels, vertical gear, has yielded as many again to the surveyor’s Norte counties, no survey work has been H and sea kayaks were not what I was tape and doubtless many more remain, undertaken there. I’ll begin with the southern used to packing for a cave trip until I especially in the remote northern counties. counties, for that was the original focus of moved to California. But after a couple of Much has been published over the years in sea cave survey. years of caving here, I realized that there were grotto and regional publications, but this is large numbers of caves here that had been the first time I’ve written an overall summary SAN DIEGO COUNTY largely ignored. After all, what caver wants of the Survey’s work on coastal caves. Perhaps the most famous of the sea caves to spend his weekends at the beach? on the California coast are the “seven caves” Systematic exploration and survey of GENERALITIES at La Jolla, formed in a 200’ high cliff of California’s many sea caves really began While not as large on average as the Cretaceous-age sandstone. A perennial when Carol Vesely and I chartered the island caves, the coastal caves are found in tourist favorite, La Jolla Cove and its cavey Southern California Sea Cave Survey in numerous host rocks that lend diverse cliffs are featured on dozens of old postcards. -
St George's Academy Geography OCR B
St George’s Academy Geography OCR B REVISION BOOKLET – Distinctive Landscapes Name: _______________________ Class teacher: _____________Tutor Group ______ PERSONAL LEARNING CHECKLIST The first thing to do whenever you start revising is to find out what you know and what you aren’t as confident on. Complete the table below by shading or ticking the correct ranking for your confidence level. 1 = Not confident at all 4 = Really confident and I can prove it! Distinctive Landscapes 1 2 3 4 1. What are the key words? 2. What is a distinctive landscape? 3. What are the upland and lowland landscapes like in the UK? 4. How does geology influence the landscape of the UK? 5. How does climate influence the landscape of the UK? 6. How does human activity influence the landscape of the UK? 7. What are the geomorphic processes that affect the UK landscape? 8. What coastal landforms are caused by erosion? 9. What coastal landforms are caused by deposition? 10. What is coastal management? 11. Coastal Case Study – Hunstanton – Norfolk Coastline 12. What is a river basin? 13. What features are found along a river’s long profile? 14. River Case Study – River Tees Once you have this grid completed you will have a good idea of where you will want to focus your revision. The following booklet will help you in all areas but you will want to focus more on the areas where you are less confident in your extra revision slots Task 1 – What are the Key Words? Abrasion Aquifer Arch Attrition Backwash Bay Beach Beach nourishment Biological weathering Abrasion Aquifer -
Beaches Unit (4.5 Pts) Section
T. James Noyes, El Camino College Beaches Unit (Topic 6A) – page 1 Name: Beaches Unit (4.5 pts) Section: Beaches and Shorelines are always changing Waves are slowly and inexorably altering the shoreline, breaking down material in some places and carrying it to other places. Each wave has a small effect, but waves keep coming minute after minute, day after day, year after year. Significant changes in the shoreline (tens of feet) can occur within a human lifetime. For example, old maps of Encinitas (located along the coastal cliffs by Interstate 5 on the way down to San Diego) show that it has lost about a city block of land to the sea in the last century. In some places along the coast of Alaska, the shoreline has eroded 900 meters in 50 years, an average of about 18 meters (60 feet) per year! Beach Sediments Beach sediments are composed of whatever sediments are available locally: sand, cobbles, gravel, coral fragments, shell fragments, and so on. (In fact, tiny plastic sediments are making up a larger and larger component of our beaches.) Beach sediments are characterized by (1) the kind of material that they are made out of, (2) their size, (3) their shape, and (4) their sorting. (Well sorted sediments all have about the same size and shape, while poorly sorted sediments are a jumbled mix of sediments with many different sizes and shapes. Lithogenous sediments (“rock sediments”) are produced from the weathering of the rock of the land. Rocks are broken down into pieces (sediments) by the physical impact of water, wind, and other rocks; by chemicals dissolved in water; and repeated heating and cooling. -
Adventure Sea Cave Kayak Tours on Santa Cruz Island at Scorpion Anchorage
ADVENTURE SEA CAVE KAYAK TOURS ON SANTA CRUZ ISLAND AT SCORPION ANCHORAGE THIS IS NOT A BOOKING CONFIRMATION. The information below is only for reference. Please make sure to reference your booking confirmation sent via email for exact times and locations. If you have any questions please contact the Channel Islands Adventure Company - we will be happy to help you. Paddling Time and Distance 2.5-3 miles, 2.5-3 hours of island kayaking Tour Level of Difficulty Beginner through advanced experience levels welcome. Children under 12 must ride in double kayak with a parent. Adventure Sea Cave Kayak Tour Itinerary Your morning will begin at the Island Packers ferry dock for check-in at either 7am or 8am, depending on which ferry departure time you select (8am departure or 9am departure). You’ll want to look for Channel Islands Adventure Company guides just outside of the Island Packers building. Your guide will have your tickets. Detailed driving directions will be sent upon booking in your confirmation email. The ferry ride is generally 1-1.5 hour(s) depending on wildlife sightings. You’ll then meet your guide(s) on the island at 10:30am.We provide a basic paddling instruction/safety talk and distribute all necessary gear before hitting the water around 11:15am. Afterward we begin the guided paddle along the coast in one direction, exploring the sea caves as you go. At some point you turn around and come back past the landing area and explore in the other direction. You’ll return to the beach around 2:00-2:30pm, and have until about 3:30–4:30pm (your ferry captain or guide will tell you your pick-up time) before leaving the island. -
NPWS Inishmore Island SAC (Site Code: 213) Conservation Objectives
NPWS Inishmore Island SAC (site code: 213) Conservation objectives supporting document - Marine Habitats Version 1 January 2015 Introduction Inishmore Island SAC is designated for the marine Annex I qualifying interests of Reefs and Submerged or partially submerged sea caves (Figures 1 and 2). A BioMar survey of this site was carried out in 1993 (Picton and Costello, 1997), a seacave survey and intertidal and subtidal reef surveys were undertaken in 2012 (MERC, 2012 and MERC, 2013); these data were used to determine the physical and biological nature of this SAC. The distribution and ecology of intertidal or subtidal seacaves has not previously been the subject of scientific investigation in Ireland and the extents of very few individual caves have been mapped in detail. Whilst surveys undertaken in the UK indicate the structure and functions of seacaves are largely influenced by hydrodynamic forces and water quality, no such information is yet available for Ireland. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objectives will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the SAC cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2. -
Oce1001, Introduction to Oceanography, Fall, 2005
OCE1001, INTRODUCTION TO OCEANOGRAPHY, Fall, 2018 THIRD MID-TERM EXAMINATION Test No. 0001 Name: __________________________ READ THIS!!!! Put your name in the blank above. Read all questions carefully, and answer only the question which is asked. You may find the following equations useful: C = (gL/2) = 1.25 L (m/s) Where: C = speed of a wave and: g = gravity = 9.8 m/s2 C = (gD) = 3.1 D (m/s) L = wavelength of a wave C = 1.56 T (m/s) D = water depth C = L/T T = period of a wave PLEASE WRITE NEATLY. Matching: The Beaches Are Moving (8 pts) Do not put these on the scantron sheet. ____ neap ____ hook A. worldwide change in sea level. B. structure intended to widen a beach. ____ jetty ____ groin C. wall intended to keep a channel open. D. two high and two low tides per day. ____ eustatic E. current parallel to the shore caused by waves. ____ semidiurnal F. twice monthly tide that with a smaller than average range. ____ marine terrace G. bend in end of a spit caused by wave refraction. ____ longshore current H. region eroded flat by waves, elevated above sea level. ____ longitudinal I. disturbance of wave is parallel to wave movement Multiple Choice: (2 pts each) Put the answers to these questions on the scantron sheet. 1. In Figure 1, the features labeled 1, 2, 3, 4, and 5 are, respectively: a. spit, barrier island, baymouth bar, hook, tombolo. b. hook, spit, baymouth bar, barrier island, tombolo. c. tombolo, spit, baymouth bar, barrier island, hook. -
Cave and Karst Inventory and Analysis
Preliminary Report on the Caves and Karst of ROTA (LUTA), CNMI Thomas M. Keel1,2, John E. Mylroie1 & John W. Jenson2 i Technical Report No. 105 September 2004 Preliminary Report on the Caves and Karst of ROTA (LUTA), CNMI Thomas M. Keel1,2, John E. Mylroie1 & John W. Jenson2 1Department of Geosciences Mississippi State University Mississippi State, MS 39762 2Water and Environmental Research Institute of the Western Pacific University of Guam Mangilao, Guam 96923 Technical Report No. 105 Water & Environmental Research Institute of the Western Pacific University of Guam September, 2004 THE WATER RESOURCES RESEARCH INSTITUTE PROGRAM OF THE US GEOLOGICAL SURVEY, AWARD NO. 01HQGR0134, SUPPORTED THE WORK REPORTED HERE. THE CONTENT OF THIS REPORT DOES NOT NECESSARILY REFLECT THE VIEWS AND POLICIES OF THE DEPARTMENT OF THE INTERIOR, NOR DOES THE MENTION OF TRADE NAMES OR COMMERCIAL PRODUCTS CONSTITUTE THEIR ENDORSEMENT BY THE UNITED STATES GOVERNMENT. i ABSTRACT The island of Rota, Commonwealth of the Northern Mariana Islands, contains caves developed by most of the mechanisms previously documented for similar islands. Rota has a large number of flank margin caves, developed by mixing dissolution, under diffuse flow conditions, at the edge of the fresh water lens. Rota has a few caves developed along the contact with the underlying volcanic rock. Rota also has a few caves formed primarily by the physical erosion of ocean waves. Unlike the other islands in the Mariana Arc, Rota has a large number of mixing zone fracture caves. These mixing zone fracture caves apparently developed as fresh water discharging from the fractures mixesd with sea water to create zones of enhanced dissolution in each fracture. -
Apostle Islands National Lakeshore Geologic Resources Inventory Report
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Apostle Islands National Lakeshore Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2015/972 ON THIS PAGE An opening in an ice-fringed sea cave reveals ice flows on Lake Superior. Photograph by Neil Howk (National Park Service) taken in winter 2008. ON THE COVER Wind and associated wave activity created a window in Devils Island Sandstone at Devils Island. Photograph by Trista L. Thornberry-Ehrlich (Colorado State University) taken in summer 2010. Apostle Islands National Lakeshore Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2015/972 Trista L. Thornberry-Ehrlich Colorado State University Research Associate National Park Service Geologic Resources Division Geologic Resources Inventory PO Box 25287 Denver, CO 80225 May 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. -
5. Phys Landscapes Student Booklet PDF File
GCSE GEOGRAPHY Y9 2017-2020 PAPER 1 – LIVING WITH THE PHYSICAL ENVIRONMENT SECTION C PHYSICAL LANDSCAPES IN THE UK Student Name: _____________________________________________________ Class: ___________ Specification Key Ideas: Key Idea Oxford text book UK Physical landscapes P90-91 The UK has a range of diverse landscapes Coastal landscapes in the UK P92-113 The coast is shape by a number of physical processes P92-99 Distinctive coastal landforms are the result of rock type, structure and physical P100-105 processes Different management strategies can be used to protect coastlines from the effects of P106-113 physical processes River landscapes in the UK P114-131 The shape of river valleys changes as rivers flow downstream P114-115 Distinctive fluvial (river) landforms result from different physical processes P116-123 Different management strategies can be used to protect river landscapes from the P124-131 effects of flooding Scheme of Work: Lesson Learning intention: Student booklet 1 UK landscapes & weathering P10-12 2 Weathering P12-13 3 Coastal landscapes – waves & coastal erosion P14-16 4 Coastal transport & deposition P16-17 5 Landforms of coastal erosion P17-21 6 Landforms of coastal deposition P22-24 7 INTERVENTION P24 8 Case Study: Swanage (Dorset) P24-25 9 Managing coasts – hard engineering P26-28 10 Managing coasts – soft engineering P28-30 11 Managed retreat P30-32 12 Case Study: Lyme Regis (Dorset) P32-33 13 INTERVENTION P33 14 River landscapes P34-35 15 River processes P35-36 16 River landforms P36-41 17 Case Study: -
Geology of Saipan Mariana Islands Part 4
Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology By PRESTON E. CLOUD, Jr. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Description and interpretation of the submarine topography and of the sediments^ biotas^ and morphology of the reef complex adjacent to a geologically diverse tropical island UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. S EATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280 Geology of Saipan, Mariana Islands Part 1. General Geology A. General Geology By PRESTON E. CLOUD, Jr., ROBERT GEORGE SCHMIDT, and HAROLD W. BURKE Part 2. Petrology and Soils B. Petrology of the Volcanic Rocks By ROBERT GEORGE SCHMIDT C. Petrography of the Limestones By J. HARLAN JOHNSON D. Soils By RALPH J. McCRACKEN Part 3. Paleontology E. Calcareous Algae By J. HARLAN JOHNSON F. Difcoaster and Some Related Microfossils By M. N. BRAMLETTE G. Eocene Radiolaria By WILLIAM RIEDEL H. Smaller Foraminifera By RUTH TODD I. Larger Foraminifera By W. STORRS COLE J. Echinoids By C. WYTHE COOKE Part 4. Submarine Topography and Shoal-Water Ecology K. Submarine Topography and Shoal-Water Ecology By PRESTON E. CLOUD, Jr. CONTENTS Page Page Abstract_________________________________________ 361 Shoal-water and shoreline ecology and sediments—Con. Introduction. ______________________________________ 362 Habitat descriptions—Con. Purpose and scope of the work_____________________ 362 Organic reefs and reef benches______________ 383 Field methods and acknowledgments-_______________ 362 Minor reef structures______________________ 384 Systematic identifications and other research aid____ 363 Biotope X. -
Coastal Caves in Bahamian Eolian Calcarenites: Differentiating Between Sea Caves and Flank Margin Caves Using Quantitative Morphology
W.J. Waterstrat, J.E. Mylroie, A.M. Owen, and J.R. Mylroie – Coastal caves in Bahamian eolian calcarenites: differentiating between sea caves and flank margin caves using quantitative morphology. Journal of Cave and Karst Studies, v. 72, no. 2, p. 61–74. DOI: 10.4311/ jcks2009es0086 COASTAL CAVES IN BAHAMIAN EOLIAN CALCARENITES: DIFFERENTIATING BETWEEN SEA CAVES AND FLANK MARGIN CAVES USING QUANTITATIVE MORPHOLOGY WILLAPA J. WATERSTRAT,JOHN E. MYLROIE,ATHENA M. OWEN, AND JOAN R. MYLROIE Department of Geosciences, Mississippi State University, Mississippi State, MS 39762 USA, [email protected], [email protected], [email protected], [email protected] Abstract: Coastal areas on carbonate islands commonly contain two types of caves: sea caves developed by wave erosion processes, and flank margin caves developed by dissolution at the edge of the fresh-water lens. Differentiating sea caves and flank margin caves in coastal settings is important, but can it be done reliably and quantitatively? Current methods use the degree of intricate wall-rock dissolution and the presence or absence of dense calcite speleothems to separate the two cave types. This study reports how analysis of cave maps creates three separate tools to differentiate coastal caves: area to perimeter ratio, entrance width to maximum width ratio, and rectangle short axis to long axis ratio. The study also presents some of the first sea cave data from eogenetic carbonate islands, specifically eolian calcarenites. The morphological and geometrical comparisons between Bahamian flank margin cave and sea cave maps using the three tools allows the two cave types to be statistically differentiated. -
Landscapes and Processes
Relief of the UK Highland Processes How a river’s cross profile changes downstream. (upland) areas, The relief (height of often over 600 Transportation - The movement of sediment along the coast Erosion - The breakdown of sediment into smaller fragments Deposition - When waves loose energy they leave behind the The long profile of a river shows the change in height of the river’s the land) of the UK metres above smaller pieces. bed from its source to its mouth. It is typically concave, decreasing in gradient downstream. can be divided into sea level; e.g. • Managing Distinctive Landscapes: The cross profile shows the shape of the river valley. uplands and the Scottish Traction - large material is rolled along the sea floor. Hydraulic Action – The force of water into cracks helps to break Highlands it up. lowlands; each have Brecon Beacons: (glaciated Middle course their own • Saltation - beach material is bounced along the sea Abrasion – Waves fling sand and pebbles against the rock. • Establish fixed point photography of key viewpoints mountains). characteristics. floor. These wear away like sandpaper. and animals Upper course • Improve sinage by renewing or replacing finger posts Lower course • Suspension - beach material is suspended and carried Attrition - Chunks of rock get knocked together and worn into to encourage people to stick to the routes. Key Lowland areas, by the waves. smaller bits • Designated footpaths and Monitoring of footpath under 200 erosion metres above • Solution - material is dissolved and carried by the Solution – Water dissolves the soluble material from the rock. • Work with local planning and housing authorities to Lowlands sea level, water.