Oce1001, Introduction to Oceanography, Fall, 2005

Total Page:16

File Type:pdf, Size:1020Kb

Oce1001, Introduction to Oceanography, Fall, 2005 OCE1001, INTRODUCTION TO OCEANOGRAPHY, Fall, 2018 THIRD MID-TERM EXAMINATION Test No. 0001 Name: __________________________ READ THIS!!!! Put your name in the blank above. Read all questions carefully, and answer only the question which is asked. You may find the following equations useful: C = (gL/2) = 1.25 L (m/s) Where: C = speed of a wave and: g = gravity = 9.8 m/s2 C = (gD) = 3.1 D (m/s) L = wavelength of a wave C = 1.56 T (m/s) D = water depth C = L/T T = period of a wave PLEASE WRITE NEATLY. Matching: The Beaches Are Moving (8 pts) Do not put these on the scantron sheet. ____ neap ____ hook A. worldwide change in sea level. B. structure intended to widen a beach. ____ jetty ____ groin C. wall intended to keep a channel open. D. two high and two low tides per day. ____ eustatic E. current parallel to the shore caused by waves. ____ semidiurnal F. twice monthly tide that with a smaller than average range. ____ marine terrace G. bend in end of a spit caused by wave refraction. ____ longshore current H. region eroded flat by waves, elevated above sea level. ____ longitudinal I. disturbance of wave is parallel to wave movement Multiple Choice: (2 pts each) Put the answers to these questions on the scantron sheet. 1. In Figure 1, the features labeled 1, 2, 3, 4, and 5 are, respectively: a. spit, barrier island, baymouth bar, hook, tombolo. b. hook, spit, baymouth bar, barrier island, tombolo. c. tombolo, spit, baymouth bar, barrier island, hook. d. spit, barrier island, baymouth bar, hook, tombolo. e. hook, barrier island, baymouth bar, tombolo, spit. 2. Your best strategy if you are caught in a RIP CURRENT is to: a. accept inevitable death. b. swim back to shore directly against the current. c. swim parallel with the shore until out of the current, then swim back to shore. d. swim with the current until it reverses and takes you back to shore. e. float with the rip current until it stops, and catch another rip current back to shore. 3. You are scuba diving 20 m deep below the surface of the ocean, while waves with a 2 m height and a 10 m wavelength are moving by on the surface. You feel yourself being: a. moved in a circular motion. b. unaffected by the waves above. c. moved in an elliptical motion, with a vertical long axis. d. moved horizontally only, back and forth. e. moved in an elliptical motion, with a horizontal long axis. 4. The PERIOD of a wave is: a. the number of waves that pass a given point in a given time. b. the distance from the top of a wave to the still water level. c. the time it takes for an identical point on two successive waves to pass a given point. d. the name for the motion of a particle of water in a water wave. e. the depth to which waves can "feel" the ocean bottom. 5. If we follow the motion of water in a shallow water wave, it will move: a. with the wave, as a mound of water moving over the ocean. b. vertically only, up and down as the wave passes by. c. elliptically, with the shape of the ellipses getting taller as the bottom is approached. d. elliptically, with the shape of the ellipses getting flatter as the bottom is approached. e. in circles, with the size of the circles increasing as the bottom is approached. 1 6. Given the conditions that usually lead to large waves, the largest wind waves would most likely be found: a. in the Antarctic Ocean. b. in the Red Sea. c. on the Great Lakes. d. in the equatorial Atlantic Ocean. e. in the North Atlantic Ocean. 7. The most important cause worldwide of waves, in terms of total energy yearly, is: a. none of these. b. meteorites. c. earthquakes. d. tides. e. winds. 8. You jump into the surf, play for a while, and notice when you get out that you have been swept down the beach a considerable distance. You have been affected by: a. a tidal current. b. a rip current. c. a seiche. d. a longshore current. e. constructive wave interference. 9. If waves are approaching a groin from the northeast (Figure 2), then the beach on the west side of the groin will become ___ while the beach on the east side of the groin will become ___. a. narrower, wider b. wider, narrower c. narrower, narrower d. wider, wider e. the waves will have no effect on the width of the beach. 10. Which of these correctly describes an ocean wave? a. longitudinal wave. b. orbital wave. c. transverse wave. d. polarized wave. e. seismic wave. 11. The type of surf that occurs on the very steepest shorelines is a: a. spilling surf. b. whitecap. c. plunging surf. d. curling surf. e. surging surf. 12. Dispersion of waves causes them to: a. break more rapidly as they approach a steep beach. b. bend so that they approach a coastline more parallel than when they were farther out at sea. c. get larger in height as they approach shallow water. d. separate into groups of the same wavelength wave, with the longest waves moving the fastest. e. move more rapidly as they approach shallow water. 13. In order for a surfer to move down the face of a wave as the board moves forward, what must the surfer do? a. cause all forces to add up to zero. b. increase the gravitational force. c. decrease the board’s buoyancy. d. increase friction on the board. e. decrease friction on the board. 14. Surf waves can be predicted through the use of: a. periodic comparisons from one storm to another. b. reports from coastlines to the north and south of the beaches of interest. c. reports from oceangoing ships on the size and speed of waves. d. satellite photos that show the direction and wavelength of waves. e. offshore buoys that measure the period and height of waves. 15. The reason that extremely large waves (50 ft + high) occur on the coast of Hawaii at the location known as "Jaws" is that: a. refraction of waves over a submerged reef increases their size. b. they are funneled up a river mouth. c. the water is very deep in that location. d. the beach is extremely steep at that location. e. they form due to extreme tidal effects. 16. If you are at the beach, which of the following observations is likely to result in a low tide at your location, at the time you make your observation? a. The moon is directly overhead. b. The moon is rising from the eastern horizon. c. The Sun is directly overhead. d. The moon is full. e. The moon is half-full. 17. Which of these tidal types would you expect to see if you were in the Arctic? a. diurnal tide. b. neap tide. c. micro-tide. d. semidiurnal tide. e. spring tide. 2 18. The celestial body with the strongest influence on ocean tides is: a. the Moon. b. Jupiter. c. Mars. d. the Sun. e. In fact, the Sun and Moon have about equal influences. 19. From a practical point of view, the best way to predict tidal amplitudes and timing at a particular point on a coastline is: a. by analyzing a detailed map of depth and configuration of nearby shorelines, coupled with knowledge of the shape of the ocean basin. b. by determining the latitude of the coast compared to the moon. c. by looking at past records of tides. d. by using the predictive qualities of the amphidromic point. e. by determining where the moon and sun are in relation to the coast. 20. We would expect that, through geologic time, tidal friction on the Earth results in all of the below except: a. slowing down of the Earth's rotation. b. an increase in the length of the Earth's day through time. c. a decrease in the number of days in the Earth's year through time. d. increase in length of the Earth’s year. e. none of these are true. 21. In Figure 4, the features labeled 1, 2, 3, and 4 are, respectively: a. sea arch, headland, sea stack, sea cave. b. berm, beach scarp, foreshore, sand bar. c. sea stack, headland, sea cave, sea arch. d. sea stack, sea arch, sea cave, headland. e. baymouth bar, spit, barrier island, tombolo. 22. Which of these factors has the potential to affect global sea level rapidly (thousands of years) by up to 100-200 meters? a. tectonic uplift or subsidence of coastlines. b. changes in global erosion rates. c. changes in oceanic temperatures. d. changes in glaciation. e. changes in the rate of seafloor spreading. 23. The coastline shown in Figure 5 (a series of marine terraces) would be classified as: a. depositional. b. emergent. c. erosional. d. artificial. e. submergent. 24. Most sediment arrives at coastlines through what means? a. rivers. b. wind. c. landslides from cliff faces. d. glaciers. e. waves. 25. Fjords are: a. smaller than normal low tides. b. submerged river valleys due to sea level rise. c. uplifted wave cut terraces in an emergent coastline. d. deep glacially carved valleys cutting into the continental shelf. e. evidence of a depositional coastline. 26. Chesapeake Bay (Figure 3) is: a. a former river valley that was flooded by a rise in sea level.
Recommended publications
  • Evolution of Glacial & Coastal Landforms
    1 GEOMORPHOLOGY 201 READER PART IV : EVOLUTION OF GLACIAL & COASTAL LANDFORMS A landform is a small to medium tract or parcel of the earth’s surface. After weathering processes have had their actions on the earth materials making up the surface of the earth, the geomorphic agents like running water, ground water, wind, glaciers, waves perform erosion. The previous sections covered the erosion and deposition and hence landforms caused by running water (fluvial geomorphology) and by wind (aeolian geomorphology). Erosion causes changes on the surface of the earth and is followed by deposition, which likewise causes changes to occur on the surface of the earth. Several related landforms together make up landscapes, thereby forming large tracts of the surface of the earth. Each landform has its own physical shape, size, materials and is a result of the action of certain geomorphic processes and agents. Actions of most of the geomorphic processes and agents are slow, and hence the results take a long time to take shape. Every landform has a beginning. Landforms once formed may change their shape, size and nature slowly or fast due to continued action of geomorphic processes and agents. Due to changes in climatic conditions and vertical or horizontal movements of landmasses, either the intensity of processes or the processes themselves might change leading to new modifications in the landforms. Evolution here implies stages of transformation of either a part of the earth’s surface from one landform into another or transformation of individual landforms after they are once formed. That means, each and every landform has a history of development and changes through time.
    [Show full text]
  • California's Coastal Sea Caves, NSS News, October 1998
    California’s Coastal Sea Caves by Dave Bunnell Large chamber in Cave-in-Rock Cave, San Luis Obispo County elmets, lights, wetsuits, fins, face California, with its more accessible caves, are undoubtedly caves in Humboldt and Del masks and snorkels, vertical gear, has yielded as many again to the surveyor’s Norte counties, no survey work has been H and sea kayaks were not what I was tape and doubtless many more remain, undertaken there. I’ll begin with the southern used to packing for a cave trip until I especially in the remote northern counties. counties, for that was the original focus of moved to California. But after a couple of Much has been published over the years in sea cave survey. years of caving here, I realized that there were grotto and regional publications, but this is large numbers of caves here that had been the first time I’ve written an overall summary SAN DIEGO COUNTY largely ignored. After all, what caver wants of the Survey’s work on coastal caves. Perhaps the most famous of the sea caves to spend his weekends at the beach? on the California coast are the “seven caves” Systematic exploration and survey of GENERALITIES at La Jolla, formed in a 200’ high cliff of California’s many sea caves really began While not as large on average as the Cretaceous-age sandstone. A perennial when Carol Vesely and I chartered the island caves, the coastal caves are found in tourist favorite, La Jolla Cove and its cavey Southern California Sea Cave Survey in numerous host rocks that lend diverse cliffs are featured on dozens of old postcards.
    [Show full text]
  • Beaches Unit (4.5 Pts) Section
    T. James Noyes, El Camino College Beaches Unit (Topic 6A) – page 1 Name: Beaches Unit (4.5 pts) Section: Beaches and Shorelines are always changing Waves are slowly and inexorably altering the shoreline, breaking down material in some places and carrying it to other places. Each wave has a small effect, but waves keep coming minute after minute, day after day, year after year. Significant changes in the shoreline (tens of feet) can occur within a human lifetime. For example, old maps of Encinitas (located along the coastal cliffs by Interstate 5 on the way down to San Diego) show that it has lost about a city block of land to the sea in the last century. In some places along the coast of Alaska, the shoreline has eroded 900 meters in 50 years, an average of about 18 meters (60 feet) per year! Beach Sediments Beach sediments are composed of whatever sediments are available locally: sand, cobbles, gravel, coral fragments, shell fragments, and so on. (In fact, tiny plastic sediments are making up a larger and larger component of our beaches.) Beach sediments are characterized by (1) the kind of material that they are made out of, (2) their size, (3) their shape, and (4) their sorting. (Well sorted sediments all have about the same size and shape, while poorly sorted sediments are a jumbled mix of sediments with many different sizes and shapes. Lithogenous sediments (“rock sediments”) are produced from the weathering of the rock of the land. Rocks are broken down into pieces (sediments) by the physical impact of water, wind, and other rocks; by chemicals dissolved in water; and repeated heating and cooling.
    [Show full text]
  • An International Journal Published by the Marine Environmental Alabama Sciences Consortium Of
    An International Journal Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN Published by the Marine Environmental Sciences Consortium of Alabama Gulf of Mexico Science, 2010(1–2), pp. 149–163 Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN SIXTY YEARS OF HISTORY and the toponym Turkey Point Laboratory or, more often, the FSU Marine Laboratory n 1949, just 2 yr after the Florida State College (FSUML) stuck for more than 4 decades. I for Women was transformed into a coeduca- In 2006, Felicia Coleman became the 13th tional institution—The Florida State University director of the Laboratory. She is the first (FSU)—marine science gained a permanent director whose primary workplace is at the foothold on the Tallahassee campus with the laboratory, and the first with an on-site faculty formation of The Oceanographic Institute (OI). to manage. And the laboratory became the FSU This institute—within the College of Arts and Coastal and Marine Laboratory (FSUCML). Sciences—was meant to train graduate students The history of these two laboratories, which in marine science, to provide marine research follows, is narrated primarily by three of the 13 facilities for faculty and students and visiting directors. We have divided the narrative into four investigators, to conduct interdisciplinary basic distinct periods: The Genesis, 15 yr at Alligator research in the northeastern Gulf of Mexico, and Harbor; The Great Move from Alligator Harbor also to conduct applied research directed toward to Turkey Point, 7 yr of change; The Long improving Florida’s fishing industry and devel- Struggle at Turkey Point, 34 yr of intermittent, oping other marine resources.
    [Show full text]
  • Adventure Sea Cave Kayak Tours on Santa Cruz Island at Scorpion Anchorage
    ADVENTURE SEA CAVE KAYAK TOURS ON SANTA CRUZ ISLAND AT SCORPION ANCHORAGE THIS IS NOT A BOOKING CONFIRMATION. The information below is only for reference. Please make sure to reference your booking confirmation sent via email for exact times and locations. If you have any questions please contact the Channel Islands Adventure Company - we will be happy to help you. Paddling Time and Distance 2.5-3 miles, 2.5-3 hours of island kayaking Tour Level of Difficulty Beginner through advanced experience levels welcome. Children under 12 must ride in double kayak with a parent. Adventure Sea Cave Kayak Tour Itinerary Your morning will begin at the Island Packers ferry dock for check-in at either 7am or 8am, depending on which ferry departure time you select (8am departure or 9am departure). You’ll want to look for Channel Islands Adventure Company guides just outside of the Island Packers building. Your guide will have your tickets. Detailed driving directions will be sent upon booking in your confirmation email. The ferry ride is generally 1-1.5 hour(s) depending on wildlife sightings. You’ll then meet your guide(s) on the island at 10:30am.We provide a basic paddling instruction/safety talk and distribute all necessary gear before hitting the water around 11:15am. Afterward we begin the guided paddle along the coast in one direction, exploring the sea caves as you go. At some point you turn around and come back past the landing area and explore in the other direction. You’ll return to the beach around 2:00-2:30pm, and have until about 3:30–4:30pm (your ferry captain or guide will tell you your pick-up time) before leaving the island.
    [Show full text]
  • NPWS Inishmore Island SAC (Site Code: 213) Conservation Objectives
    NPWS Inishmore Island SAC (site code: 213) Conservation objectives supporting document - Marine Habitats Version 1 January 2015 Introduction Inishmore Island SAC is designated for the marine Annex I qualifying interests of Reefs and Submerged or partially submerged sea caves (Figures 1 and 2). A BioMar survey of this site was carried out in 1993 (Picton and Costello, 1997), a seacave survey and intertidal and subtidal reef surveys were undertaken in 2012 (MERC, 2012 and MERC, 2013); these data were used to determine the physical and biological nature of this SAC. The distribution and ecology of intertidal or subtidal seacaves has not previously been the subject of scientific investigation in Ireland and the extents of very few individual caves have been mapped in detail. Whilst surveys undertaken in the UK indicate the structure and functions of seacaves are largely influenced by hydrodynamic forces and water quality, no such information is yet available for Ireland. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objectives will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the SAC cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2.
    [Show full text]
  • Cave and Karst Inventory and Analysis
    Preliminary Report on the Caves and Karst of ROTA (LUTA), CNMI Thomas M. Keel1,2, John E. Mylroie1 & John W. Jenson2 i Technical Report No. 105 September 2004 Preliminary Report on the Caves and Karst of ROTA (LUTA), CNMI Thomas M. Keel1,2, John E. Mylroie1 & John W. Jenson2 1Department of Geosciences Mississippi State University Mississippi State, MS 39762 2Water and Environmental Research Institute of the Western Pacific University of Guam Mangilao, Guam 96923 Technical Report No. 105 Water & Environmental Research Institute of the Western Pacific University of Guam September, 2004 THE WATER RESOURCES RESEARCH INSTITUTE PROGRAM OF THE US GEOLOGICAL SURVEY, AWARD NO. 01HQGR0134, SUPPORTED THE WORK REPORTED HERE. THE CONTENT OF THIS REPORT DOES NOT NECESSARILY REFLECT THE VIEWS AND POLICIES OF THE DEPARTMENT OF THE INTERIOR, NOR DOES THE MENTION OF TRADE NAMES OR COMMERCIAL PRODUCTS CONSTITUTE THEIR ENDORSEMENT BY THE UNITED STATES GOVERNMENT. i ABSTRACT The island of Rota, Commonwealth of the Northern Mariana Islands, contains caves developed by most of the mechanisms previously documented for similar islands. Rota has a large number of flank margin caves, developed by mixing dissolution, under diffuse flow conditions, at the edge of the fresh water lens. Rota has a few caves developed along the contact with the underlying volcanic rock. Rota also has a few caves formed primarily by the physical erosion of ocean waves. Unlike the other islands in the Mariana Arc, Rota has a large number of mixing zone fracture caves. These mixing zone fracture caves apparently developed as fresh water discharging from the fractures mixesd with sea water to create zones of enhanced dissolution in each fracture.
    [Show full text]
  • Apostle Islands National Lakeshore Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Apostle Islands National Lakeshore Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2015/972 ON THIS PAGE An opening in an ice-fringed sea cave reveals ice flows on Lake Superior. Photograph by Neil Howk (National Park Service) taken in winter 2008. ON THE COVER Wind and associated wave activity created a window in Devils Island Sandstone at Devils Island. Photograph by Trista L. Thornberry-Ehrlich (Colorado State University) taken in summer 2010. Apostle Islands National Lakeshore Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2015/972 Trista L. Thornberry-Ehrlich Colorado State University Research Associate National Park Service Geologic Resources Division Geologic Resources Inventory PO Box 25287 Denver, CO 80225 May 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations.
    [Show full text]
  • Geology of Saipan Mariana Islands Part 4
    Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology By PRESTON E. CLOUD, Jr. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Description and interpretation of the submarine topography and of the sediments^ biotas^ and morphology of the reef complex adjacent to a geologically diverse tropical island UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. S EATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280 Geology of Saipan, Mariana Islands Part 1. General Geology A. General Geology By PRESTON E. CLOUD, Jr., ROBERT GEORGE SCHMIDT, and HAROLD W. BURKE Part 2. Petrology and Soils B. Petrology of the Volcanic Rocks By ROBERT GEORGE SCHMIDT C. Petrography of the Limestones By J. HARLAN JOHNSON D. Soils By RALPH J. McCRACKEN Part 3. Paleontology E. Calcareous Algae By J. HARLAN JOHNSON F. Difcoaster and Some Related Microfossils By M. N. BRAMLETTE G. Eocene Radiolaria By WILLIAM RIEDEL H. Smaller Foraminifera By RUTH TODD I. Larger Foraminifera By W. STORRS COLE J. Echinoids By C. WYTHE COOKE Part 4. Submarine Topography and Shoal-Water Ecology K. Submarine Topography and Shoal-Water Ecology By PRESTON E. CLOUD, Jr. CONTENTS Page Page Abstract_________________________________________ 361 Shoal-water and shoreline ecology and sediments—Con. Introduction. ______________________________________ 362 Habitat descriptions—Con. Purpose and scope of the work_____________________ 362 Organic reefs and reef benches______________ 383 Field methods and acknowledgments-_______________ 362 Minor reef structures______________________ 384 Systematic identifications and other research aid____ 363 Biotope X.
    [Show full text]
  • General Coastal Notes + Landforms! 1
    General Coastal Notes + Landforms! 1 Types of Coastlines: Type Description Primary Coast which is essentially in the same condition when sea level stabilized Coastline after the last ice age, “younger”. They are created by erosion (the wearing away of soil or rock), deposition (the buildup of sediment or sand) or tectonic activity (changes in the structure of the rock and soil because of earthquakes). River deltas are an example of a primary coast. They form where a river deposits soil and other material as it enters the sea. Secondary Coastline shaped primarily by marine forces or marine organisms, and wave Coastline energy is the main agent shaping the coastline. Emergent Emergent coastlines are stretches along the coast that have been exposed by Coastline the sea due to a relative fall in sea levels. Submergent Submergent coastlines are stretches along the coast that have been Coastline inundated by the sea due to a relative rise in sea levels. Concordant A coastline consisting of bands of rock, which run parallel to the coast. Coastline Discordant A discordant coastline occurs where bands of differing rock type run Coastline perpendicular to the coast. Factors affecting Wave Energy: Factor: Description Wind Speed Wind speed will in turn affect wind energy, which determines the size of the waves. Higher wind speed = Higher wind energy = Larger waves Fetch Fetch is the distance of the ocean which the wind blows over, Longer distance = Larger waves Wind How long the wind has blown in the same direction (steady winds at slower Duration
    [Show full text]
  • Coastal Caves in Bahamian Eolian Calcarenites: Differentiating Between Sea Caves and Flank Margin Caves Using Quantitative Morphology
    W.J. Waterstrat, J.E. Mylroie, A.M. Owen, and J.R. Mylroie – Coastal caves in Bahamian eolian calcarenites: differentiating between sea caves and flank margin caves using quantitative morphology. Journal of Cave and Karst Studies, v. 72, no. 2, p. 61–74. DOI: 10.4311/ jcks2009es0086 COASTAL CAVES IN BAHAMIAN EOLIAN CALCARENITES: DIFFERENTIATING BETWEEN SEA CAVES AND FLANK MARGIN CAVES USING QUANTITATIVE MORPHOLOGY WILLAPA J. WATERSTRAT,JOHN E. MYLROIE,ATHENA M. OWEN, AND JOAN R. MYLROIE Department of Geosciences, Mississippi State University, Mississippi State, MS 39762 USA, [email protected], [email protected], [email protected], [email protected] Abstract: Coastal areas on carbonate islands commonly contain two types of caves: sea caves developed by wave erosion processes, and flank margin caves developed by dissolution at the edge of the fresh-water lens. Differentiating sea caves and flank margin caves in coastal settings is important, but can it be done reliably and quantitatively? Current methods use the degree of intricate wall-rock dissolution and the presence or absence of dense calcite speleothems to separate the two cave types. This study reports how analysis of cave maps creates three separate tools to differentiate coastal caves: area to perimeter ratio, entrance width to maximum width ratio, and rectangle short axis to long axis ratio. The study also presents some of the first sea cave data from eogenetic carbonate islands, specifically eolian calcarenites. The morphological and geometrical comparisons between Bahamian flank margin cave and sea cave maps using the three tools allows the two cave types to be statistically differentiated.
    [Show full text]
  • Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Center Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr.
    [Show full text]