Leaving Certificate Physical Geography

Total Page:16

File Type:pdf, Size:1020Kb

Leaving Certificate Physical Geography Leaving Certificate Physical Geography 2006 Q 2 (b) Q: With the aid of a labelled diagram examine the processes that have lead to the formation of any one Irish landform of your choice. A sea stump is formed after being eroded by the sea over time by the four processes of marine erosion, hydraulic action, compression, attrition and abrasion. At the beginning of the formation, a notch is cut by the waves in the headland in an area of active erosion. The process of compression traps the air in the notch and upon the water's retreating, the rock expands under the pressure and explodes. This forces the rock to shatter into the sea as tiny fragments or larger chippings. After a lot of erosion by hydraulic action or the sheer power of the waves, the notch develops into a sea cave in the headland. The process of abrasion helps to erode the sea cave as many of the rock particles, pebbles and rocks made from the process of compression are hurled up against the sea cave. Gradually the sea cave gets eroded and lengthened and some may erode back to back in the sea cliff. When the cave is eroded until it cuts through the promontory of the headland, it forms a sea arch. The sea continues to erode it with the processes combined. Eventually the arch gets too wide as the processes all eroding at the same time increase it's width and height in the cliff. Soon, the land above the arch gets unsteady and becomes weak as it cannot support itself any longer above the sea. It collapses into the water below and leaves a piece of vertical-standing cliff jutting out of the sea from the headland. This piece of land is called a sea stack. When the sea stack stands upright by itself in the sea, it is more vulnerable to the processes of erosion. It is exposed to the weather elements such as frost, rain, wind and snow. The process of attrition smoothens the products of the wave's load and these too are hurled up against the sea stack. After this constant erosion, the sea stack gets eroded into a small lump of land sitting just above the sea level. In conclusion, this is the formation of a sea stump. There are processes such as hydraulic action, compression, abrasion and attrition that make the various sea features such as a sea notch, a sea cave, a sea arch, a sea stack and finally, a sea stump of the coast. An Irish example of a sea stump is off the coast of Mullaghmore in North Sligo. Labelled diagram: .
Recommended publications
  • California's Coastal Sea Caves, NSS News, October 1998
    California’s Coastal Sea Caves by Dave Bunnell Large chamber in Cave-in-Rock Cave, San Luis Obispo County elmets, lights, wetsuits, fins, face California, with its more accessible caves, are undoubtedly caves in Humboldt and Del masks and snorkels, vertical gear, has yielded as many again to the surveyor’s Norte counties, no survey work has been H and sea kayaks were not what I was tape and doubtless many more remain, undertaken there. I’ll begin with the southern used to packing for a cave trip until I especially in the remote northern counties. counties, for that was the original focus of moved to California. But after a couple of Much has been published over the years in sea cave survey. years of caving here, I realized that there were grotto and regional publications, but this is large numbers of caves here that had been the first time I’ve written an overall summary SAN DIEGO COUNTY largely ignored. After all, what caver wants of the Survey’s work on coastal caves. Perhaps the most famous of the sea caves to spend his weekends at the beach? on the California coast are the “seven caves” Systematic exploration and survey of GENERALITIES at La Jolla, formed in a 200’ high cliff of California’s many sea caves really began While not as large on average as the Cretaceous-age sandstone. A perennial when Carol Vesely and I chartered the island caves, the coastal caves are found in tourist favorite, La Jolla Cove and its cavey Southern California Sea Cave Survey in numerous host rocks that lend diverse cliffs are featured on dozens of old postcards.
    [Show full text]
  • The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas
    OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas Editors Larry McKinney, Mark Besonen, Kim Withers Prepared under BOEM Contract M16AC00026 by Harte Research Institute for Gulf of Mexico Studies Texas A&M University–Corpus Christi 6300 Ocean Drive Corpus Christi, TX 78412 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management July 2019 Gulf of Mexico OCS Region DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M16AC00026. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management website at https://www.boem.gov/Environmental-Studies-EnvData/, click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-045. CITATION McKinney LD, Besonen M, Withers K (editors) (Harte Research Institute for Gulf of Mexico Studies, Corpus Christi, Texas).
    [Show full text]
  • The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate—Siliciclastic Sedimentary Systems of the Mut Basin, Turkey
    The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey P. Bassanta,*, F.S.P. Van Buchema, A. Strasserb,N.Gfru¨rc aInstitut Franc¸ais du Pe´trole, Rueil-Malmaison, France bUniversity of Fribourg, Switzerland cIstanbul Technical University, Istanbul, Turkey Received 17 February 2003; received in revised form 18 November 2003; accepted 21 January 2004 Abstract This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high- amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow- marine carbonate and mixed environments elsewhere in the world. The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large- scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999.
    [Show full text]
  • EMISSION FACTOR DOCUMENTATION for AP-42 SECTION 11.19.1 Sand and Gravel Processing
    Emission Factor Documentation for AP-42 Section 11.19.1 Sand and Gravel Processing Final Report For U. S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Factor and Inventory Group EPA Contract 68-D2-0159 Work Assignment No. II-01 MRI Project No. 4602-01 April 1995 Emission Factor Documentation for AP-42 Section 11.19.1 Sand and Gravel Processing Final Report For U. S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Factor and Inventory Group EPA Contract 68-D2-0159 Work Assignment No. II-01 MRI Project No. 4602-01 April 1995 NOTICE The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Contract No. 68-D2-0159 to Midwest Research Institute. It has been subjected to the Agency’s peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii PREFACE This report was prepared by Midwest Research Institute (MRI) for the Office of Air Quality Planning and Standards (OAQPS), U. S. Environmental Protection Agency (EPA), under Contract No. 68-D2-0159, Work Assignment No. II-01. Mr. Ron Myers was the requester of the work. iii iv TABLE OF CONTENTS Page List of Figures ....................................................... vi List of Tables ....................................................... vi 1. INTRODUCTION ................................................. 1-1 2. INDUSTRY DESCRIPTION .......................................... 2-1 2.1 CHARACTERIZATION OF THE INDUSTRY ......................... 2-1 2.2 PROCESS DESCRIPTION ....................................... 2-7 2.2.1 Construction Sand and Gravel ...............................
    [Show full text]
  • Sand Dunes Computer Animations and Paper Models by Tau Rho Alpha*, John P
    Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Sand Dunes Computer animations and paper models By Tau Rho Alpha*, John P. Galloway*, and Scott W. Starratt* Open-file Report 98-131-A - This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. * U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ omega? .wr.usgs .gov [email protected] [email protected] (gobackward) <j (goforward) Description of Report This report illustrates, through computer animations and paper models, why sand dunes can develop different forms. By studying the animations and the paper models, students will better understand the evolution of sand dunes, Included in the paper and diskette versions of this report are templates for making a paper models, instructions for there assembly, and a discussion of development of different forms of sand dunes. In addition, the diskette version includes animations of how different sand dunes develop. Many people provided help and encouragement in the development of this HyperCard stack, particularly David M. Rubin, Maura Hogan and Sue Priest.
    [Show full text]
  • A Scientific Forum on the Gulf of Mexico: the Islands in the Stream Concept
    Proceedings: Gulf of Mexico Science Forum A Scientific Forum on the Gulf of Mexico: The Islands in the Stream Concept Proceedings of the Forum: 23 January 2008 Keating Education Center Mote Marine Laboratory Sarasota, Florida Proceedings: Gulf of Mexico Science Forum Table of Contents Forward (Ernest Estevez) .............................................................................................................4 Executive Summary.....................................................................................................................6 Acknowledgements ......................................................................................................................9 Organizing Committee ................................................................................................................9 Welcome and Introduction (Kumar Mahadevan and Daniel J. Basta) .....................................10 Introduction to the Forum (Billy D. Causey)...........................................................................12 Summary of Scientific Forum (John Ogden) ...........................................................................14 Panel 1: The Geological Setting...............................................................................................17 Geologic Underpinnings of the “Islands in the Stream”; West Florida Margin (Albert Hine and Stanley Locker)...............................................17 Shelf Edge of the Northwest Gulf of Mexico (Niall Slowey).............................................22
    [Show full text]
  • Beaches Unit (4.5 Pts) Section
    T. James Noyes, El Camino College Beaches Unit (Topic 6A) – page 1 Name: Beaches Unit (4.5 pts) Section: Beaches and Shorelines are always changing Waves are slowly and inexorably altering the shoreline, breaking down material in some places and carrying it to other places. Each wave has a small effect, but waves keep coming minute after minute, day after day, year after year. Significant changes in the shoreline (tens of feet) can occur within a human lifetime. For example, old maps of Encinitas (located along the coastal cliffs by Interstate 5 on the way down to San Diego) show that it has lost about a city block of land to the sea in the last century. In some places along the coast of Alaska, the shoreline has eroded 900 meters in 50 years, an average of about 18 meters (60 feet) per year! Beach Sediments Beach sediments are composed of whatever sediments are available locally: sand, cobbles, gravel, coral fragments, shell fragments, and so on. (In fact, tiny plastic sediments are making up a larger and larger component of our beaches.) Beach sediments are characterized by (1) the kind of material that they are made out of, (2) their size, (3) their shape, and (4) their sorting. (Well sorted sediments all have about the same size and shape, while poorly sorted sediments are a jumbled mix of sediments with many different sizes and shapes. Lithogenous sediments (“rock sediments”) are produced from the weathering of the rock of the land. Rocks are broken down into pieces (sediments) by the physical impact of water, wind, and other rocks; by chemicals dissolved in water; and repeated heating and cooling.
    [Show full text]
  • Adventure Sea Cave Kayak Tours on Santa Cruz Island at Scorpion Anchorage
    ADVENTURE SEA CAVE KAYAK TOURS ON SANTA CRUZ ISLAND AT SCORPION ANCHORAGE THIS IS NOT A BOOKING CONFIRMATION. The information below is only for reference. Please make sure to reference your booking confirmation sent via email for exact times and locations. If you have any questions please contact the Channel Islands Adventure Company - we will be happy to help you. Paddling Time and Distance 2.5-3 miles, 2.5-3 hours of island kayaking Tour Level of Difficulty Beginner through advanced experience levels welcome. Children under 12 must ride in double kayak with a parent. Adventure Sea Cave Kayak Tour Itinerary Your morning will begin at the Island Packers ferry dock for check-in at either 7am or 8am, depending on which ferry departure time you select (8am departure or 9am departure). You’ll want to look for Channel Islands Adventure Company guides just outside of the Island Packers building. Your guide will have your tickets. Detailed driving directions will be sent upon booking in your confirmation email. The ferry ride is generally 1-1.5 hour(s) depending on wildlife sightings. You’ll then meet your guide(s) on the island at 10:30am.We provide a basic paddling instruction/safety talk and distribute all necessary gear before hitting the water around 11:15am. Afterward we begin the guided paddle along the coast in one direction, exploring the sea caves as you go. At some point you turn around and come back past the landing area and explore in the other direction. You’ll return to the beach around 2:00-2:30pm, and have until about 3:30–4:30pm (your ferry captain or guide will tell you your pick-up time) before leaving the island.
    [Show full text]
  • NPWS Inishmore Island SAC (Site Code: 213) Conservation Objectives
    NPWS Inishmore Island SAC (site code: 213) Conservation objectives supporting document - Marine Habitats Version 1 January 2015 Introduction Inishmore Island SAC is designated for the marine Annex I qualifying interests of Reefs and Submerged or partially submerged sea caves (Figures 1 and 2). A BioMar survey of this site was carried out in 1993 (Picton and Costello, 1997), a seacave survey and intertidal and subtidal reef surveys were undertaken in 2012 (MERC, 2012 and MERC, 2013); these data were used to determine the physical and biological nature of this SAC. The distribution and ecology of intertidal or subtidal seacaves has not previously been the subject of scientific investigation in Ireland and the extents of very few individual caves have been mapped in detail. Whilst surveys undertaken in the UK indicate the structure and functions of seacaves are largely influenced by hydrodynamic forces and water quality, no such information is yet available for Ireland. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objectives will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the SAC cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2.
    [Show full text]
  • Bothanvarra by Iain Miller
    Climbing Bothanvarra Sea Stack by Iain Miller Living on the north west tip of the Inishowen Peninsula is the 230 meter high Dunaff Hill. This hill is hemmed in by Dunaff Bay to the south and by Rocktown Bay to the north, which in turn creates the huge Dunaff Headland. This headland has a 4 kilometre stretch of very exposed and very high sea cliffs running along its western circumference to a high point of 220 meters at which it overlooks the sea stack Bothanvarra. Bothanvarra is a 70 meter high chubby Matterhorn shaped sea stack which sits in the most remote, inescapable and atmospheric location on the Inishowen coastline. It sits equidistant from the bays north and south and is effectively guarded by 4 kilometres of loose, decaying and unclimbable sea cliffs. https://www.youtube.com/watch?v=gNw6wNKpqQQ It was until the 24th August 2014 one of only two remaining unclimbed monster sea stacks on the Donegal coast. Dunaff Head from the sea It was in 2010 when I first paid a visit to the summit of Dunaff Hill and caught a first glimpse of Bothanvarra. Alas this was on a day of lashing rain and with a pounding ocean and so it was buried in a todo list of epic proportions. Approaching Bothanvarra Fast forward to 2013 and we were at Fanad Head to do a shoot Failte Ireland film and abseil off the lighthouse. It was then that I saw the true nature of the beast from a totally different perspective from across the bay and so it was game on.
    [Show full text]
  • Montana De Oro & Morro Bay State Parks
    GEOLOGICAL GEMS OF CALIFORNIA STATE PARKS | GEOGEM NOTE 20 Montaña de Oro and Morro Bay State Parks National and State Estuary | State Historical Landmark No. 821 Strata, Terraces, and Necks The shoreline of Montaña de Oro State Park is an ideal place to examine and explore geologic features such as tilted and folded Process/Features: rock outcrops. These rocks show different strata that were Coastal geomorphology deposited in horizontal layers sequentially through time. About and volcanism six million years ago, these beds were deposited as flat layers, one on top of another. The layers of rock record past conditions. Tectonic forces over the past three million years have tilted the beds. Where these rocks are exposed along the coast, the sloping surface reflects just the top of a thick stack of sloping strata with the oldest beds at the bottom and the youngest beds at the top. Capping the marine strata are gravels that partly covered a marine terrace. These gravels are much younger than the underlying strata and are relatively undeformed. The contact between these two deposits is called an unconformity, and represents an extended gap of time for which the geologic record is incomplete, either due to no deposition or to erasure by erosion. Differential erosion has preferentially etched away the softer rocks, leaving ridges of harder rock as ledges extending into the surf. Montaña de Oro and Morro Bay State Parks GeoGem Note 20 Why it’s important: Morro Bay and Montaña de Oro State Parks are renowned for their spectacular scenery produced over millions of years by volcanic activity, plate tectonic interactions (subduction and collision), and erosion that have shaped this unique landscape.
    [Show full text]
  • Depositional Controls and Sequence Stratigraphy of Lacustrine to Marine
    DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS ANDREW ANDERSON Master’s Program in Geology APPROVED: Katherine Giles, Ph.D., Chair Richard Langford, Ph.D. Vanessa Lougheed, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Andrew Anderson 2017 DEDICATION To my parents for teaching me to be better than I was the day before. DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS by ANDREW ANDERSON, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2017 ProQuest Number:10689125 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10689125 Published by ProQuest LLC ( 2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ACKNOWLEDGEMENTS In the Fall of 2014, Dr.
    [Show full text]