A New Addition to the Alien Flora of Tunisia, Amaranthus Spinosus L. (Amaranthaceae S.L.), with Notes on A

Total Page:16

File Type:pdf, Size:1020Kb

A New Addition to the Alien Flora of Tunisia, Amaranthus Spinosus L. (Amaranthaceae S.L.), with Notes on A Acta Bot. Croat. 78 (1), 91–94, 2019 CODEN: ABCRA 25 DOI: 10.2478/botcro-2018-0009 ISSN 0365-0588 eISSN 1847-8476 Short communication A new addition to the alien flora of Tunisia, Amaranthus spinosus L. (Amaranthaceae s.l.), with notes on A. diacanthus Raf. Duilio Iamonico1*, Ridha El Mokni2,3 1 University of Rome Sapienza, Department PDTA, Section Environment and Landscape, via Flaminia 72, 00196 Rome, Italy 2 Laboratory of Botany and Plant Ecology, Faculty of Sciences of Bizerta, University of Carthage, Jarzouna-7021, Bizerta, Tunisia 3 Faculty of Pharmacy of Monastir, University of Monastir, BP. N° 207, Avenue Avicenna, Monastir-5000, Tunisia Abstract – Amaranthus spinosus L. (Amaranthaceae s.l.), a species native to the Neotropics, has been found in four localities (Bizerta, Bir Bouregba, Hammamet, and Nabeul) of N. Tunisia. Our discovery represents the first record at national level, and the second one for N. Africa. Morphological characters and ecological data are given. Nomencla- tural notes are provided for the name A. diacanthus, which was regarded by some authors as heterotypic synonym of A. spinosus. A neotype is designated in the present paper based on a specimen preserved at LSU. Keywords: alien species, Amaranthus, neophyte, typification Introduction The genus Amaranthus L. (Amaranthaceae Juss.) com- Amaranthus spinosus, which is recorded in many countries prises about 70 mostly annual, monoecious and dioecious of central and southern parts of the continent, while in the species, of which approximately 40 are native in America north it occurs only in Egypt. As part of an ongoing no- (see e.g., Costea et al. 2001, Iamonico 2015a). Some species menclatural and taxonomic study on the genus Amaranthus of Amaranthus are used as ornamentals and are able to es- (see e.g., Iamonico 2014a, 2014b, 2015a, 2015c, 2016a, 2016b, cape from cultivation, having an economic impact mainly 2016c, Iamonico and Das 2014) and the Tunisian Amaran- on agricultural systems (reduction of productivity and crop thaceae s. lat. (see e.g., Iamonico and El Mokni 2017, Suk- quality), while other taxa have an ecological impact on native horukov et al. 2016), some populations have been found that flora and vegetation [e.g. A. tuberculatus (Moq.) J.D.Sauer in certainly refer to A. spinosus. The number of TunisianAma - a riparian habitat] (see e.g., Iamonico 2015b). The infrage- ranthus species has thereby been increased, since this find- neric classification of Amaranthus still remains unresolved, ing represents the first record for the Flora of Tunisia and the lacking a comprehensive molecular study (see e.g., Hernán- second for the Flora of N. Africa. Moreover, the name Ama- dez-Ledesma et al. 2015). On the basis of morphology and ranthus diacanthus, which some authors suggest be regard- chorology, Mosyakin and Robertson (1996) recognized three ed as a synonym of A. spinosus (e.g., Rojas-Sandoval 2015, subgenera: subg. Acnida (L.) Aellen ex K.R. Robertson with Wunderlin et al. 2017), is here investigated from the nomen- three sections, subg. Albersia (Kunth) Gren. et Godr. with clatural point of view, as it is still untypified. four sections, and subg. Amaranthus, with three sections and two subsections. According to Mosyakin and Robert- son (1996: 278), Amaranthus spinosus L. is the only species Materials and methods belonging to Amaranthus subg. Amaranthus sect. Centrusa The work is based on an extensive analysis of literature, Griseb. and examination of the specimens kept in the Herbaria FI, The Flora of Africa (see SANBI 2012 and literature there- HFLA, LINN, LSU, and RO (acronyms according to Thiers in, Iamonico 2015c and literature therein) currently includes 2019+), and in the Herbarium of the Faculty of Pharmacy of * Corresponding author, e-mail: [email protected] ACTA BOT. CROAT. 78 (1), 2019 91 IAMONICO D., EL MOKNI R. Monastir and of the Faculty of Sciences of Bizerta (not listed 0.3 km NW of Richardson Cemetery, 14 July 2003, L. Blay, T. in Index Herbariorum), where the personal collections of R. Pazzaglia et N. Hastings 906 (LSU-83081!). Image of the neo- El Mokni are kept. type available at http://data.cyberfloralouisiana.com/lsu/). The articles cited through the text agree with the Shenzen Description – Herbs 6–15 dm tall, monoecious, annual Code, ICN (Turland et al. 2018). (therophyte). Stems erect, glabrous brownish, branched. Le- aves green to reddish (on the upper surface), ovate to lanceo- late, rhomboidal [(2.0–)2.5–6.5(–7.5) × (1.0–)2.5–4.0(–3.5) Results and discussion cm], with entire margins, apex obtuse or acute, mucronate, Nomenclatural notes on Amaranthus diacanthus base cuneate, glabrous, petioled (petiole 1.5–8.5 cm long), Rafinesque (1817: 31–32) described A. diacanthus and associated to 2 spine-like structures (modified bracts), 7.0– provided a short diagnosis. Rafinesque (l.c.) also cited the 8.0 mm long. Synflorescences terminal, panicle-like, the main florescence up to 15 cm long, usually green and axillary Flore Louisinaise by Robin (1807). The latter author (Robin glomerules. Floral bracts lanceolate (3.0–4.0 × 0.5−1.0 mm) 1807: 372) listed an Atriplex taxon, but he did not report any as long as or shorter than the perianth, acute, awned, mar- epithet. As a consequence, Rafinesque (l.c.), probably on the gin entire, glabrous. Staminate flowers with 5 tepals, ovate- basis of the detailed description made by Robin (l.c.), pro- lanceolate; stamens 5. Pistillate flowers with 5 tepals, lanceo- posed the plants occurring in Louisiana (S-USA) as a new late–spathulate (3.5–4.0 × 0.9–1.0 mm), with usually obtuse species. We have not been able to trace Rafinesque’s materi- and mucronate apex; stigmas 3–4. Fruit brown or yellow- al, which could be useful for typification purposes. We loo- ish, ellipsoidal (2.0–2.1 × 1.4–1.5 mm) as long as or slightly ked at material collected by C. C. Robin in Louisiana, which shorter than the perianth, smooth below, rugose on top, de- could be observed and used by C. S. Rafinesque, to describe hiscent. Seed lenticular (about 0.9 mm in diameter), brown. A. diacanthus. Unfortunately, no Robin specimen was traced Phenology – Flowering and fruiting time October-De- [moreover, Stafleu and Cowan (1985: 812) reported “Herba- cember. rium and Types: Unknown”]. Since no original material se- ems to be extant, no lectotype can be designed, and neotypi- Habitat – Roadsides, public gardens, and cultivated areas fication is required (see Arts. 9.2, 9.3, and 9.7). Accordingly, with trees (e.g. Citrus sp.), at 6–41 m a.s.l. we selected a specimen preserved at LSU (catalog number 83081) and collected in Louisiana, in Webster County. The LSU-83081 is here designated as the neotype of the name Amaranthus diacanthus. Concerning the identity of A. diacanthus, note that the diagnosis by Rafinesque (1817) and the description of Atriplex sp. made by Robin (1807) include an important morphological character [“...glomerulis bispinosis...” by Ra- finesque (1807), and “...les paques de fleurs des sisselles -ac compagnés de deux épines divergentes...” by Robin (1807)]: the occurrence of a spine-like feature at the bases of the flo- ral glomerules [according to Costea and Tardif (2003) the- se structures are actually the bracts of the first flower in the first cyme of the glomerule which metamorphoses in the ear- ly phase of the onthogeny]. This structure was the basis for the selection of the neotype, representing a unique feature in the genus Amaranthus, characterizing the species currently known as A. spinosus (see e.g., Bojian et al. 2003, Mosyakin and Robertson 2003, Iamonico 2015a). As a consequence, these two names can be treated as heterotypic synonyms, the Linnaean having nomenclatural priority (1753 vs. 1817). Taxonomic treatment Amaranthus spinosus L., Sp. Pl., 2: 991. 1753. Lectotype (designated by Fawcett and Redle 1914: 103): Herb. Linnaeus, no. 1117.27 (LINN!). Image of the lectotype available at http://linnean-online.org/11653/). = Amaranthus diacanthus Raf., Fl. Ludov.: 31-32. 1817. Fig. 1. Habit of Amaranthus spinosus L. (bar = 1 cm) at Nabeul Neotype (here designated): U.S.A., Louisiana, Webster region in Tunisia with detail of spine-like structures (left corner; County, Camp Minden, 1.2 km E of Jim Davis Cemetery, bar = 4 mm) (photos by R. El Mokni). 92 ACTA BOT. CROAT. 78 (1), 2019 AMARANTHUS SPINOSUS IN TUNISIA Distribution in Tunisia – Four populations (16-18 in- Chromosome number – A. spinosus is a diploid species dividuals in total) were found in the following localities: with 2n = 34 (see e.g., Greizerstein and Poggio 1992, Song et Bizerta [three individuals (each about 150 cm tall) cover- al. 2002, Sheidai and Mohammadzdeh 2008). ing an area of 9 m2], Bir Bouregba [two individuals (each Specimina visa – Tunisia: Bizerta (North-Bizerta, Cor- about 70 cm tall) covering 2 m2], Hammamet [three-four niche), 37°19'31" N, 09°51'52" E, uncultivated land, 06 m individuals (each about 90 cm tall covering 4 m2], and Na- a.s.l., 27 October 2013, R. El Mokni (HFLA, Herb. Univ. beul [eight-nine individuals (each about 60 cm tall) cov- Bizerta); Nabeul (North-Nabeul, Cap-Bon), 36°26'26" N, ering 25 m2]. 10°42'25" E, roadsides, 08 m a.s.l., 09 December 2015, R. Native range and status of naturalization in Tunisia – A. El Mokni (Herb. Univ. Monastir); Nabeul (North-Hamma- spinosus is a neophyte species native to the Neotropics, while met, Cap-Bon), 36°24'35" N, 10°36'06" E, cultivated land, it is an alien in many countries of Europe (Iamonico 2015c), 22 m a.s.l., 10 December 2016, R. El Mokni (Herb. Univ.
Recommended publications
  • Amaranthus Spinosus
    Weed Risk Assessment: Amaranthus spinosus 1. Plant Details Taxonomy: Amaranthus spinosus L. Family Amaranthaceae (also placed in Chenopodiaceae) Common names: needle burr, spiny amaranth, spiny pigweed. Origins: Native to tropical America (Randall, 2002). Distribution: Cosmopolitan in warm temperate and tropical regions but increasingly found in temperate areas, especially between latitudes 30 0N and 30 0S (Waterhouse, 1994). Naturalised in Turkey, Australia. Description: An annual herb reproducing by seed only. Distinguished by flowers and pairs of spiny bracts that occur in the leaf axils. Mature plants are erect, branched and may grow to 1.2 m tall (see Figure 1). Stems are angled in cross section, reddish, fleshy and bear many spines. Leaves are alternate, ovate-rhombic to lanceolate sometimes with sparse hairs on the lower surface and most with a pair of long, straight spines at the base. Flower heads are either a long terminal spike or clumped at the leaf axils in the lower part of the plant. Male and female flowers are small, greenish and occur on the same plant. Fruit is ovoid and contains compressed, shiny, tiny, dark red to black seeds. (HEAR website). Biology and ecology: Habitat. A. spinosus appears in a range of climatic conditions but shows frost intolerance at some sites. It is not associated with particular soil types but grows best in well drained but moist situations. It is found on acid, basic and neutral soils. It prefers sunny sites and will not grow well in shaded situations. A. spinosus occurs on disturbed ground, along roadsides, railway lines, neglected land, tip sites and poorly maintained grazing land.(see Figure 3).
    [Show full text]
  • World Journal of Pharmaceutical Research Mitra Et Al
    World Journal of Pharmaceutical Research Mitra et al. World Journal of Pharmaceutical SJIF ImpactResearch Factor 8.074 Volume 8, Issue 6, 352-365. Review Article ISSN 2277– 7105 AMARANTHUS SPINOSUS LINN. – PAST, PRESENT AND FUTURE Samayita Basu1, Tanaya Ghosh1, Prasenjit Mitra2 and Prasanta Kumar Mitra1* 1Department of Medical Biotechnology, Sikkim Manipal University, SMIMS, Sikkim, India. 2Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India. ABSTRACT Article Received on 25 Feb. 2019, Amaranthus spinosus Linn. (Family Amaranthaceae) commonly Revised on 16 March 2019, known as ‘spiny amaranth’ or ‘pig weed’, is a plant known for its Accepted on 06 April 2019 DOI: 10.20959/wjpr20196-14810 medicinal properties since long. In past in the traditional system of medicine (Ayurveda, Unani, Siddha, Homeopathy, Naturopathy, Folk medicine etc.) various parts of the plant were used for treatment of *Corresponding Author Dr. Prasanta Kumar different diseases. The tradition, however, is still continuing. In present Mitra day research phytochemical investigations were carried out which Department of Medical confirmed presence of bioactive molecules like linoleic acid, rutin, Biotechnology, Sikkim catechuic acid, tannins, alkaloids, flavonoids, glycosides, saponin, Manipal University, betalain, b-sitosterol, carotenoids, stigmasterol, phenolic acids, SMIMS, Sikkim, India. steroids, amino acids, terpenoids etc. in different parts of the plant. Pharmacological studies were also conducted. Different parts of the plants showed analgesic, antimicrobial, antioxidant, antidiabetic, antitumor, spermatogenic, antifertility, anti- inflammatory, hepato-protective, spasmolytic, bronchodilator, antimalarial properties. In spite of all these studied there are many more work to be done in near future. Other phytochemicals present in the plant are to be isolated.
    [Show full text]
  • The Probable Use of Genus Amaranthus As Feed Material for Monogastric Animals
    animals Review The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals Tlou Grace Manyelo 1,2 , Nthabiseng Amenda Sebola 1 , Elsabe Janse van Rensburg 1 and Monnye Mabelebele 1,* 1 Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; [email protected] (T.G.M.); [email protected] (N.A.S.); [email protected] (E.J.v.R.) 2 Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa * Correspondence: [email protected]; Tel.: +27-11-471-3983 Received: 13 July 2020; Accepted: 5 August 2020; Published: 26 August 2020 Simple Summary: In monogastric production, feeds account for about 50–70% of the total costs. Protein ingredients are one of the most expensive inputs even though they are not included in large quantities as compared to cereals. Monogastric animal industries are faced with a major problem of limited protein sources, moreover, the competition for plant materials is expected to further increase feed prices. Therefore, to tackle this problem, interventions are required to find alternative and cost-effective protein sources. One identified crop that meets these requirements is amaranth. Studies have shown the potential and contribution that amaranth has as an alternative ingredient in diets for monogastric animals. Therefore, the main purpose of this review is to provide a detailed understanding of the potential use of amaranth as feed for monogastric animals, and further indicate processing techniques are suitable to improve the utilization of grain amaranth and leaves.
    [Show full text]
  • Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: a Mini-Review
    applied sciences Review Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: A Mini-Review Olusanya N. Ruth 1,*, Kolanisi Unathi 1,2, Ngobese Nomali 3 and Mayashree Chinsamy 4 1 Disipline of Food Security, School of Agricultural, Earth and Environmental Science University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; [email protected] 2 Department of Consumer Science, University of Zululand, 24 Main Road, KwaDlangezwa, Uthungulu 3886, South Africa 3 Department of Botany and Plant Biotectechnology, University of Johannesburg, Auckland Park, Johannesburg 2092, South Africa; [email protected] 4 DST-NRF-Center, Indiginous Knowledge System, University of KwaZulu-Natal, Westville 3629, South Africa; [email protected] * Correspondence: [email protected] Abstract: Amaranthus is a C4 plant tolerant to drought, and plant diseases and a suitable option for climate change. This plant could form part of every region’s cultural heritage and can be transferred to the next generation. Moreover, Amaranthus is a multipurpose plant that has been identified as a traditional edible vegetable endowed with nutritional value, besides its fodder, medicinal, nutraceutical, industrial, and ornamental potentials. In recent decade Amaranthus has received increased research interest. Despite its endowment, there is a dearth of awareness of its numerous potential benefits hence, it is being underutilized. Suitable cultivation systems, innovative Citation: Ruth, O.N.; Unathi, K.; processing, and value-adding techniques to promote its utilization are scarce. However, a food-based Nomali, N.; Chinsamy, M. approach has been suggested as a sustainable measure that tackles food-related problem, especially Underutilization Versus in harsh weather. Thus, in this review, a literature search for updated progress and potential Nutritional-Nutraceutical Potential of uses of Amaranthus from online databases of peer-reviewed articles and books was conducted.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Amaranthus Palmeri) in 2,4-D , Glufosinate-, and Glyphosate-Resistant Soybean
    Weed Technology Management of glyphosate-resistant Palmer – www.cambridge.org/wet amaranth (Amaranthus palmeri) in 2,4-D , glufosinate-, and glyphosate-resistant soybean 1 2 3 4 Research Article Chandrima Shyam , Parminder S. Chahal , Amit J. Jhala and Mithila Jugulam 1 2 Cite this article: Shyam C, Chahal PS, Jhala AJ, Graduate Student, Department of Agronomy, Kansas State University, Manhattan, KS, USA; Postdoctoral Research 3 Jugulam M (2021) Management of glyphosate- Associate, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Associate resistant Palmer amaranth (Amaranthus Professor, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA and palmeri) in 2,4-D–, glufosinate-, and 4Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA glyphosate-resistant soybean. Weed Technol. 35:136–143. doi: 10.1017/wet.2020.91 Abstract Received: 7 May 2020 Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in Revised: 7 July 2020 soybean production fields in Nebraska and many other states in the United States. Soybean Accepted: 29 July 2020 TM First published online: 18 August 2020 resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3 ) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide Associate Editor: programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb Kevin Bradley, University of Missouri LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and ’ Nomenclature: yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower sfield 2,4-D chlorimuron-ethyl; cloransulam-methyl; infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • Amaranthus Spinosus
    Amaranthus spinosus Spiny amaranth, pigweed Amaranthus spinosus L. Family: Amaranthaceae Description: Shrubby annual herb with striated stems to 5 ft long. Stems succulent, often reddish; pair of spines in leaf axils. Leaves alternate, ovate, somewhat triangu- lar, to 5 inches long by 2 inches wide, veins raised be- neath. Sometimes leaves have a white chevron pointing toward the apex. Flower heads green in leaf axils and on tail-like terminal spikes which are sometimes branched. One plant can produce 235,000 seeds. A com- mon weed in row crops, field crops, pastures in the trop- ics and subtropics. [There are several other species of amaranths in Hawai‘i which resemble spiny amaranth but without the spines. The most common amaranth in Hawai‘i is A. viridis L., slender amaranth, which lacks the spines and has leaves that are notched at the apex.] Amarantos is Greek for unfading, in reference to the color of the inflorescence of some species of this genus; Environmental impact: Spines hinder workers in spinosus, spiny; viridis, green(5, 26, 70). cropland and pastures and foresters and hikers in natu- ral areas. Amaranth responds to nitrogen. In 1973, 39 Distribution: From Asia, now widely distributed dairy cows fed green chop contaminated with amaranth throughout the tropics and warm temperate regions. fertilized with high-nitrate manure died(26). Occurs in Asia from Japan to Indonesia to India, the Pacific islands and Australia, Africa, the Americas, and Management: Sensitive to hormone type herbicides, Hawai‘i. Dry to mesic areas. Infests many crops and especially when young. Sensitive to glyphosate.
    [Show full text]
  • Species Identification, Phylogenetic Analysis and Detection of Herbicide
    www.nature.com/scientificreports OPEN Species identifcation, phylogenetic analysis and detection of herbicide‑resistant biotypes of Amaranthus based on ALS and ITS Han Xu1*, Xubin Pan1, Cong Wang1, Yan Chen1, Ke Chen1, Shuifang Zhu1 & Rieks D. van Klinken2 The taxonomically challenging genus Amaranthus (Family Amaranthaceae) includes important agricultural weed species that are being spread globally as grain contaminants. We hypothesized that the ALS gene will help resolve these taxonomic challenges and identify potentially harmful resistant biotypes. We obtained 153 samples representing 26 species from three Amaranthus subgenera and included in that incorporated ITS, ALS (domains C, A and D) and ALS (domains B and E) sequences. Subgen. Albersia was well supported, but subgen. Amaranthus and subgen. Acnida were not. Amaranthus tuberculatus, A. palmeri and A. spinosus all showed diferent genetic structuring. Unique SNPs in ALS ofered reliable diagnostics for most of the sampled Amaranthus species. Resistant ALS alleles were detected in sixteen A. tuberculatus samples (55.2%), eight A. palmeri (27.6%) and one A. arenicola (100%). These involved Ala122Asn, Pro197Ser/Thr/Ile, Trp574Leu, and Ser653Thr/Asn/Lys substitutions, with Ala122Asn, Pro197Thr/Ile and Ser653Lys being reported in Amaranthus for the frst time. Moreover, diferent resistant mutations were present in diferent A. tuberculatus populations. In conclusion, the ALS gene is important for species identifcation, investigating population genetic diversity and understanding resistant evolution within the genus Amaranthus. Amaranthus (Family Amaranthaceae) is a cosmopolitan genus with at least 70 species, including ancient culti- vated plants such as the grains Amaranthus cruentus, A. caudatus and A. hypochondriacus, the leafy vegetable and ornamental A.
    [Show full text]
  • Comparative Anatomical Studies on Some Species of the Genus Amaranthus (Family: Amaranthaceae) for the Development of an Identification Guide Q ⇑ Abbas A
    Annals of Agricultural Science xxx (2017) xxx–xxx Contents lists available at ScienceDirect Annals of Agricultural Science journal homepage: Comparative anatomical studies on some species of the genus Amaranthus (Family: Amaranthaceae) for the development of an identification guide q ⇑ Abbas A. El-Ghamery a, Ahmed M. Sadek a, , Ola H. Abd El Bar b a Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt b Agriculturale Botany Department, Faculty of Agriculture, Ain-Shams University, Cairo, Egypt article info abstract Article history: A study of anatomical features of mature leaves and stems (at fruiting stage) of 12 Amaranthus taxa Received 20 September 2016 (Family: Amaranthaceae) shows high variation between them and supplied new characters. The internal Received in revised form 2 November 2016 structures were evaluated to clarify their effectiveness in solving taxonomic complexity and identifica- Accepted 16 November 2016 tion difficulty in this genus. Observation of the transections of blades showed that the epidermis is unis- Available online xxxx eriate, ground tissue consists of angular collenchyma and thin parenchyma. The vascular bundles shape has three patterns crescent, ring, ovate. Also they may be united or separated while the midrib shape in Keywords: cross section has two patterns in which U-shaped, cordate or crescent bundle occurs. All leaves are peti- Amaranthus olate. The examination of the petioles exhibits new and varied characters such as petiole shape (cross sec- Leaf and stem anatomy DELTA key tion), vascular bundles (shape, number, arrangement). While the resulted characters from the Identification observation of the stem structure showed less variation. Nineteen qualitative characters with 38 charac- ter states resulted from leaf anatomy.
    [Show full text]
  • Palmer Amaranth Amaranthus Palmeri Reviewer Affiliation/Organization Date (Mm/Dd/Yyyy) Roger Becker University of Minnesota 8/08/2014
    MN NWAC Risk Common Name Latin Name Assessment Worksheet (04-2011) Palmer Amaranth Amaranthus palmeri Reviewer Affiliation/Organization Date (mm/dd/yyyy) Roger Becker University of Minnesota 8/08/2014 Box Question Answer Outcome 1 Is the plant species or genotype non-native to Yes, non-native in Minnesota. Is native to the southern Yes. Go to box 3. Minnesota? U.S. and Mexico; native to North America. 2 Does the plant species pose significant human or livestock concerns or has the potential to significantly harm agricultural production? A. Does the plant have toxic qualities that pose a significant risk to livestock, wildlife, or people? B. Does the plant cause significant financial losses associated with decreased yields, reduced quality, or increased production costs? 3 Is the plant species, or a related species, Yes. Palmer amaranth is a severe problem in summer Yes. Go to Box 6. documented as being a problem elsewhere? climates similar to Minnesota. (see Hager 2013; Hartzler 2014a; and Legleiter and Johnson 2013). It has not been documented as a problem in states with winter climates similar to Minnesota, but it is anticipated it will do very well since it is an annual with a seedbank and seedlings that have performed well in states with freezing winter temperatures, and portions of the growing season in Minnesota are similar to locations further south where Palmer amaranth is a severe problem. 4 Is the plant species’ life history & Growth Yes, documented in disparate articles, but oddly no Blue text is provided as requirements understood? classic biology of Palmer amaranth review article additional information could be found.
    [Show full text]
  • Grain Amaranths Amaranthus Spp. (Amaranthaceae)
    Grain Amaranths Amaranthus spp. (Amaranthaceae) Klaus Ammann and Jonathan Gressel Manuscript 17. October 2007 Introduction Amaranthus could be a valuable alternative crop due to its high nutritional content, the many desirable traits expressed by the grain amaranths – and the unexplored potential of the wild relatives. Unlike the traditional monocot grains, the grain amaranths possess lysine in nutritionally significant levels. In addition, specific varieties of grain amaranths tolerate drought and heat, and, as a result, lessen the demand for costly irrigation. Peruvian varieties of Amaranthus caudatus have are known for their resistance to damping off and to root rot. Based upon phylogenecic studies (Lanoue et al., 1996) a number of wild species closely related to cultivated Amaranths should be explored for breeding purposes: Amaranthus floridanus and A. pumilus for salt tolerance, A. powellii and A. fimbriatus for drought resistance, and A. hybridus , A. quitensis, and A. retroflexus for pest, viral and bacterial resistance. Not only would these wild species be valuable for breeding with the cultivated Amaranths, but they would also be favourable target species to explore useful genes for other crop traits. Origin and use Amaranths have a long tradition in the New World, where they have been grown as pseudo- cereals by pre-Columbian civilizations on thousands of hectares. In Mesoamerica, amaranth developed as an important ritual and cash crop. They were grown as the principal grain crop by the Aztecs 5,000 to 7,000 years ago, until to the disruption of their culture(s) by the Spanish Conquistadors. The reasons of this decline is still unclear, since the Aztecs relied on the amaranths as an important staple.
    [Show full text]