NIST–JANAF Thermochemical Tables for the Iodine Oxides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iodine Oxoacids in Atmospheric Aerosol Formation – from Chamber Simulations to Field Observations
REPORT SERIES IN AEROSOL SCIENCE No. 239 (2021) IODINE OXOACIDS IN ATMOSPHERIC AEROSOL FORMATION – FROM CHAMBER SIMULATIONS TO FIELD OBSERVATIONS XU-CHENG HE (何旭成) Institute for Atmospheric and Earth System Research / Physics Faculty of Science, University of Helsinki, Helsinki, Finland Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Exactum auditorium CK112, Pietari Kalmin Katu 5, on August 23rd, 2021, at 14 o'clock. Helsinki 2021 Author’s Address Institute for Atmospheric and Earth System Research / Physics P.O. box 64 FI-00140 University of Helsinki [email protected] Supervisors Academician, Professor Markku Kulmala, Ph.D. Institute for Atmospheric and Earth System Research / Physics University of Helsinki Associate Professor Mikko Sipilä, Ph.D. Institute for Atmospheric and Earth System Research / Physics University of Helsinki Assistant Professor Matti Petteri Rissanen, Ph.D. Aerosol Physics Laboratory Tampere University Lecturer Theo Kurtén, Ph.D. Department of Chemistry University of Helsinki Reviewers Research Professor Hannele Hakola, Ph.D. Air Quality Group Finnish Meteorological Institute Assistant Professor Julia Schmale, Ph.D. Extreme Environments Research Laboratory École polytechnique fédérale de Lausanne Opponent Professor Gordon McFiggans, Ph.D. Department of Earth and Environmental Sciences University of Manchester ISBN 978-952-7276-59-4 (printed version) ISSN 0784-3496 Helsinki 2021 Unigrafia Oy ISBN 978-952-7276-60-0 (pdf version) http://www.atm.helsinki.fi FAAR Helsinki 2021 Acknowledgements The work for this thesis was carried out at the Division of Atmospheric Sciences at the Department of Physics and later at the Institute for Atmospheric and Earth System Research (INAR), University of Helsinki. -
Crown Chemical Resistance Chart
Crown Polymers, Corp. 11111 Kiley Drive Huntley, IL. 60142 USA www.crownpolymers.com 847-659-0300 phone 847-659-0310 facisimile 888-732-1270 toll free Chemical Resistance Chart Crown Polymers Floor and Secondary Containment Systems Products: CrownShield covers the following five (4) formulas: CrownShield 50, Product No. 320 CrownCote, Product No. 401 CrownShield 40-2, Product No. 323 CrownShield 28, Product No. 322 CrownPro AcidShield, Product No. 350 CrownCote AcidShield, Product No. 430 CrownPro SolventShield, Product No. 351 CrownCote SolventShield, Product No. 440 This chart shows chemical resistance of Crown Polymers foundational floor and secondary containment product line that would be exposed to chemical spill or immersion conditions. The chart was designed to provide general product information. For specific applications, contact your local Crown Polymers Floor and Secondary Containment Representative or call direct to the factory. ; Resistant to chemical immersion up to 7 days followed by wash down with water 6 Spillage environments that will be cleaned up within 72 hours after initial exposure. 9 Not Recommended Chemical CrownShield SolventShield AcidShield Chemical CrownShield SolventShield AcidShield 1, 4-Dichloro-2-butene 9 6 6 Aluminum Bromate ; ; ; 1, 4-Dioxane 9 6 6 Aluminum Bromide ; ; ; 1-1-1 Trichloroethane 9 ; ; Aluminum Chloride ; ; ; 2, 4-Pentanedione 6 ; 6 Aluminum Fluoride (25%) ; ; ; 3, 4-Dichloro-1-butene 6 6 6 Aluminum Hydroxide ; ; ; 4-Picoline (0-50%) 9 6 6 Aluminum Iodine ; ; ; Acetic Acid (0-15%) 9 6 6 -
Atmospheric Chemistry of Iodine ,† ,‡ § || § Alfonso Saiz-Lopez,* John† M
REVIEW pubs.acs.org/CR Atmospheric Chemistry of Iodine ,† ,‡ § || § Alfonso Saiz-Lopez,* John† M. C. Plane,* Alex^ R. Baker, Lucy J. Carpenter,‡ Roland von Glasow, Juan C. Gomez Martín, Gordon McFiggans, and Russell W. Saunders † Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain ‡ School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom §School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Department) of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom ^ School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom CONTENTS 5.2.2. Particle Formation in Macroalgal 1. Introduction A Incubation Experiments R 2. Sources of Iodine to the Atmosphere C 5.2.3. Iodine Oxide Particle Growth to 2.1. Atmospheric Mixing Ratios, Seasonality, and Potential Cloud Condensation Nuclei S Trends in Distributions C 5.3. Unresolved Aspects of Iodine-Mediated Particle 2.2. Emission Rates and Mechanisms E formation S 2.3. Molecular Iodine H 6. Accumulation of Iodine in Aerosol U 2.4. Summary H 6.1. Iodine Concentrations in Aerosol U 3. Measurements of Gas-Phase Reactive Iodine Species I 6.2. Iodine Speciation U 3.1. Coastal Marine Boundary Layer I 6.3. Key Uncertainties V 7. Impacts and Modeling of Reactive Iodine Species V 3.2. Remote, Open Ocean, and Tropical Marine 7.1. Impacts of Iodine Chemistry V Boundary Layer I 7.1.1. Ozone Depletion V 3.3. Polar Boundary Layer J 7.1.2. Influence on the NO and HO Balance W 3.4. Salt Lakes and Volcanoes K x x 7.1.3. -
Phenol Disgrace Via Periodate in Integrating by Using Supersonic Radiation
Journal of Medicine and Life Vol. 8, Special Issue 3, 2015, pp.233-237 Phenol disgrace via Periodate in integrating by using Supersonic Radiation Seid-Mohamadi A*, Asgari G**, Shokoohi R**, Adabi S** *Social Determinants of Health Research Center, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamedan, Iran, **Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran Correspondence to: Shervin Adabi, MSc, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran Mobile phone: +989374196112, E-mail: [email protected] Received: March 14th, 2015 – Accepted: June 18th, 2015 Abstract In this study, a successful degradation of phenol was achieved by a combination of processes, ultrasonic irradiation and periodate. The effect of pH, dosage of IO4-, dosage of initial phenol and ultrasonic irradiation time on the phenol degradation were examined. Furthermore, the impacts of ion intensity on phenol degradation were examined. The findings indicated that the disgrace ratio advanced in acidic conditions and an upper degradation was achieved in combination processes. The current new investigation examined the effect of ion intensity and the findings determined that the principal intensity of solution is an inactive variable on phenol disgrace with these systems. A comparison research among IO4-/ US system and IO4- and US separately determined the COD removal and indicated that an combined method of IO4-/ US system had the best execution. Introduction degrade phenol residuals before the discharge to water sources. Advanced Oxidation Processes (AOPs) have Industries generate a considerable amount of been studied as efficient methods in last decades [5,6]. -
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) . -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
IODINE Its Properties and Technical Applications
IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ... -
Naming Molecular Compounds General Instructions: Please Do the Activities for Each Day As Indicated
Teacher Name: Dwight Lillie Student Name: ________________________ Class: ELL Chemistry Period: Per 4 Assignment: Assignment week 2 Due: Friday, 5/8 Naming Molecular Compounds General Instructions: Please do the activities for each day as indicated. Any additional paper needed please attach. Submitted Work: 1) Completed packet. Questions: Please send email to your instructor and/or attend published virtual office hours. Schedule: Date Activity Monday (4/27) Read Sections 9.3, 9.5 in your textbook. Tuesday (4/28) Read and work through questions 1-9 Wednesday (4/29) Read and work through questions 10-14 Thursday (4/30) Read and work through questions 14-18 Friday (5/31) Read and work through questions 19-21 How are the chemical formula and name of a molecular compound related? Why? When you began chemistry class this year, you probably already knew that the chemical formula for carbon dioxide was CO2. Today you will find out why CO2 is named that way. Naming chemical compounds correctly is of paramount importance. The slight difference between the names carbon monoxide (CO, a poisonous, deadly gas) and carbon dioxide (CO2, a greenhouse gas that we exhale when we breathe out) can be the difference between life and death! In this activity you will learn the naming system for molecular compounds. Model 1 – Molecular Compounds Molecular Number of Atoms Number of Atoms in Name of Compound Formula of First Element Second Element ClF Chlorine monofluoride ClF5 1 5 Chlorine pentafluoride CO Carbon monoxide CO2 Carbon dioxide Cl2O Dichlorine monoxide PCl5 Phosphorus pentachloride N2O5 Dinitrogen pentoxide 1. Fill in the table to indicate the number of atoms of each type in the molecular formula. -
Used at Rocky Flats
. TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats. -
Passivated Iodine Pentoxide Oxidizer for Potential Biocidal Nanoenergetic Applications Jingyu Feng, Guoqiang Jian, Qing Liu, and Michael R
Research Article www.acsami.org Passivated Iodine Pentoxide Oxidizer for Potential Biocidal Nanoenergetic Applications Jingyu Feng, Guoqiang Jian, Qing Liu, and Michael R. Zachariah* Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States *S Supporting Information ABSTRACT: Iodine pentoxide (I2O5), also known as diiodine pentoxide, is a strong oxidizer which has been recently proposed as an iodine-rich oxidizer in nanoenergetic formulations, whose combustion products lead to molecular iodine as a biocidal agent. However, its highly hygroscopic nature hinders its performance as a strong oxidizer and an iodine releasing agent and prevents its implementation. In this work, we developed a gas phase assisted aerosol spray pyrolysis which enables creation of iron oxide passivated I2O5. Transmission electron microscopy elemental imaging as well as temperature-jump mass spectrometry confirmed the core shell fi nature of the material and the fact that I2O5 could be encapsulated in pure unhydrated form. Combustion performance nds an optimal coating thickness that enables combustion performance similar to a high performing CuO based thermite. KEYWORDS: passivated, aerosol spray pyrolysis, nanothermite, energetic materials, nanocomposite, biocide 1. INTRODUCTION spores, presumably because of the release of elemental iodine as a combustion product when reacted with aluminum:16 10Al + Nanoenergetic materials, including metal based fuels and metal → 3I2O5 5Al2O3 +3I2. However, I2O5 is sensitive to humid oxide oxidizers with typically nanosized dimensions, have been 20,21 shown to have reactive properties superior to traditional environments and reacts with water in the ambient air. This 1−4 not only increases the particle size which degrades combustion energetic materials. -
P – Block Elements SYJC
P – Block Elements Introduction The p-block elements are placed in groups 13 – 18 . The general electronic configuration is ns 2 np1 – 6. The groups included in the syllabus are 15, 16, 17 and 18. Group 15 Elements Nitrogen family: configuration is ns2np3. The elements of group 15 – nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) bismuth (Bi) All Group 15 Elements tend to follow the general periodic trends: Periodic properties Trends Electronegativity:(the atom's ability of Decreases down the group attracting electrons) Ionization Enthalpy (the amount of decreases energy required to remove an electron from the atom in it's gaseous phase) Atomic Radii (the radius of the atom) increases Electron Affinity (ability of the atom to decreases accept an electron) Melting Point (amount of energy increases going down the required to break bonds to change a group solid phase substance to a liquid phase) Boiling Point (amount of energy increases going down the required to break bonds to change a group liquid phase substance to a gas) Chemical properties Action of air;(high temp arc) N2 + O2 2NO Action oxidizing agents: P4 +20HNO3 4H3PO4 + 20 NO2+4 H20 As4 + 20 HNO3 4H3AsO4 + 20 NO2+4 H20 Action of hot conc H2SO4 P4 +10 H2SO4 4H3PO4 + 10 SO2+4 H20 As4 +10 H2SO4 4H3AsO4 + 4 Sb + 6 H2SO4 Sb2(SO4)3 + 3 Hydrides All form hydrides with formula EH3 ( E = N, P, As, Sb , Bi) oxidation state = – 3 Hydrogen bonding in NH3 The stability of hydrides decrease down the group due to decrease in bond Hydrides comparison Anomalous behaviour of