Sidney Altman
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
The Protein That Wasn't There: the Discovery of Ribozymes
The Protein that Wasn't There: The Discovery of Ribozymes Introduction If we were challenged to describe, in layman's terms, what makes living matter different from non-living matter, I suspect that many of us would focus on nucleic acids. Their ability to encode information, to replicate, and their passage from one generation to the next is part and parcel of what makes life special. Ironically, if one examines an organism carefully and observes what makes it "alive," nucleic acids turn out to have very little direct effect on living matter. Whether an animal moves, breathes, digests, turns its head to look, or just blinks an eye, its actions depend far more on enzymes than they do on DNA. Enzymes in muscle produce movement, in nerve cells they open membrane channels that produce message-carrying impulses, throughout the body enzymes produce, store, and convert chemical energy from one form to another. Enzymes are biological catalysts. Enzymes, which lower the activation energies of chemical reaction, are responsible for just about every activity that we associate with living things. Indeed, enzymes even control the synthesis, replication, folding, and activation of DNA itself. What kinds of molecules are there marvelous enzymes? They are proteins, of course. Look at any biology text, high school or college (including pp. 74-76 of Biology by Miller and Levine), and you will find that they devote a generous amount of space (and lots of pictures) to the structure of proteins. They are loaded with terms like a- helix, b- sheet, prosthetic group, secondary structure, and so forth. -
1993 Human Genome Program Report
Please address queries on this publication to: Human Genome Program U.S. Department of Energy Office of Health and Environmental Research ER-72 GTN Washington, DC 20585 301/903-6488, Fax: 301/903-8521 Internet: [email protected] Human Genome Management Information System Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6050 615/576-6669, Fax: 615/574-9888 BITNET: bkq@ornlstc Internet: [email protected] This report has been reproduced directly frorn the best obtainable copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information; P.O. Box 62; Oak Ridge, TN 37831. Price information: 615/576-8401 . Available to the public from the National Technical Information Service; U.S. Department of Commerce; 5285 Port Royal Road; Springfield, VA 22161. DOE/ER-0611 P uman nome 1993 Program Report Date Published: March 1994 U.S. Department of Energy Office of Energy Research Office of Health and Environmental Research Washington, D.C. 20585 Preface he purpose of this report is to update the Human Genome 1991-92 Program Report T (DOE/ER-0544P, published June 1992) and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward the 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes. -
Open Letter to the American People
FOR IMMEDIATE RELEASE: October 18, 2016 AN OPEN LETTER TO THE AMERICAN PEOPLE The coming Presidential election will have profound consequences for the future of our country and the world. To preserve our freedoms, protect our constitutional government, safeguard our national security, and ensure that all members of our nation will be able to work together for a better future, it is imperative that Hillary Clinton be elected as the next President of the United States. Some of the most pressing problems that the new President will face — the devastating effects of debilitating diseases such as Alzheimer’s disease and cancer, the need for alternative sources of energy, and climate change and its consequences — require vigorous support for science and technology and the assurance that scientific knowledge will inform public policy. Such support is essential to this country’s economic future, its health, its security, and its prestige. Strong advocacy for science agencies, initiatives to promote innovation, and sensible immigration and education policies are crucial to the continued preeminence of the U.S. scientific work force. We need a President who will support and advance policies that will enable science and technology to flourish in our country and to provide the basis of important policy decisions. For these reasons and others, we, as U.S. Nobel Laureates concerned about the future of our nation, strongly and fully support Hillary Clinton to be the President of the United States. Peter Agre, Chemistry 2003 Carol W. Greider, Medicine 2009 Sidney Altman, Chemistry 1989 David J. Gross, Physics 2004 Philip W. Anderson, Physics 1977 Roger Guillemin, Medicine 1977 Kenneth J. -
Federation of American Scientists
FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1717 K Street NW #209 Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] Board of Sponsors (Partial List) November 12, 2001 *Sidney Altman *Philip W. Anderson Hon Tom Daschle Hon J. Dennis Hastert *Kenneth J. Arrow *Julius Axelrod Senate Majority Leader Speaker of the House *David Baltimore *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop Hon Trent Lott Hon Richard Gephardt *Nicolaas Bloembergen *Norman Borlaug Senate Minority Leader House Minority Leader *Paul Boyer Ann Pitts Carter *Owen Chamberlain In the interest of national security we urge you to deny funding for any program, project, or Morris Cohen *Stanley Cohen activity that is inconsistent with the Anti-Ballistic Missile (ABM) Treaty. The tragic events Mildred Cohn *Leon N. Cooper of September 11 eliminated any doubt that America faces security needs far more substantial *E. J. Corey *James Cronin than a technically improbable defense against a strategically improbable Third World *Johann Deisenhofer ballistic missile attack. Ann Druyan *Renato Dulbecco John T. Edsall Paul R. Ehrlich Regarding the probable threat, the September 11 attacks have dramatized what has been George Field obvious for years: A primitive ICBM, with its dubious accuracy and reliability and bearing *Val L. Fitch *Jerome I. Friedman a clear return address, is unattractive to a terrorist and a most improbable delivery system for John Kenneth Galbraith *Walter Gilbert a terrorist weapon. Devoting massive effort and expense to countering the least probable *Donald Glaser and least effective threat would be unwise. *Sheldon L. Glashow Marvin L. Goldberger *Joseph L. -
Celebrating 40 Years of Rita Allen Foundation Scholars 1 PEOPLE Rita Allen Foundation Scholars: 1976–2016
TABLE OF CONTENTS ORIGINS From the President . 4 Exploration and Discovery: 40 Years of the Rita Allen Foundation Scholars Program . .5 Unexpected Connections: A Conversation with Arnold Levine . .6 SCIENTIFIC ADVISORY COMMITTEE Pioneering Pain Researcher Invests in Next Generation of Scholars: A Conversation with Kathleen Foley (1978) . .10 Douglas Fearon: Attacking Disease with Insights . .12 Jeffrey Macklis (1991): Making and Mending the Brain’s Machinery . .15 Gregory Hannon (2000): Tools for Tough Questions . .18 Joan Steitz, Carl Nathan (1984) and Charles Gilbert (1986) . 21 KEYNOTE SPEAKERS Robert Weinberg (1976): The Genesis of Cancer Genetics . .26 Thomas Jessell (1984): Linking Molecules to Perception and Motion . 29 Titia de Lange (1995): The Complex Puzzle of Chromosome Ends . .32 Andrew Fire (1989): The Resonance of Gene Silencing . 35 Yigong Shi (1999): Illuminating the Cell’s Critical Systems . .37 SCHOLAR PROFILES Tom Maniatis (1978): Mastering Methods and Exploring Molecular Mechanisms . 40 Bruce Stillman (1983): The Foundations of DNA Replication . .43 Luis Villarreal (1983): A Life in Viruses . .46 Gilbert Chu (1988): DNA Dreamer . .49 Jon Levine (1988): A Passion for Deciphering Pain . 52 Susan Dymecki (1999): Serotonin Circuit Master . 55 Hao Wu (2002): The Cellular Dimensions of Immunity . .58 Ajay Chawla (2003): Beyond Immunity . 61 Christopher Lima (2003): Structure Meets Function . 64 Laura Johnston (2004): How Life Shapes Up . .67 Senthil Muthuswamy (2004): Tackling Cancer in Three Dimensions . .70 David Sabatini (2004): Fueling Cell Growth . .73 David Tuveson (2004): Decoding a Cryptic Cancer . 76 Hilary Coller (2005): When Cells Sleep . .79 Diana Bautista (2010): An Itch for Knowledge . .82 David Prober (2010): Sleeping Like the Fishes . -
A Guide to the Archival Collection of the Robert Cook-Deegan Human
Bioethics Research Library The Joseph and Rose Kennedy Institute of Ethics bioethics.georgetown.edu A Guide to the Archival Collection of The Robert Cook-Deegan Human Genome Archive Set 2 April, 2013 Bioethics Research Library Joseph and Rose Kennedy Institute of Ethics Georgetown University Washington, D.C. Overview The Robert Cook-Deegan Human Genome Archive is founded on the bibliography of The Gene Wars: Science, Politics, and the Human Genome. The archive encompasses both physical and digital materials related to The Human Genome Project (HGP) and includes correspondence, government reports, background information, and oral histories from prominent participants in the project. Hosted by the Bioethics Research Library at Georgetown University the archive is comprised of 20.85 linear feet of materials currently and is expected to grow as new materials are processed and added to the collection. Most of the materials comprising the archive were obtained between the years 1986 and 1994. However, several of the documents are dated earlier. Introduction This box listing was created in order to assist the Bioethics Research Library in its digitization effort for the archive and is being shared as a resource to our patrons to assist in their use of the collection. The archive consists of 44 separate archive boxes broken down into three separate sets. Set one is comprised of nine boxes, set two is comprised of seven boxes, and set three is comprised of 28 boxes. Each set corresponds to a distinct addition to the collection in the order in which they were given to the library. No value should be placed on the importance of any given set, or the order the boxes are in, as each was accessed, processed, and kept in the order in which they were received. -
The 1989 Nobel Prize in Chemistry Goes to Sidney Altman and Thomas
current eammsnts’ EUGENE GARFIELD IFJSI(TUTE FOR SC16NT(F(L lNf C) HMATl ON~ 3501 MA FIK6T ST PHILADELPHIA PA 19104 The 1989 Nobel Prize in Chemistry Goes to Sidney Alhmm and Thomas R. Cech for the Discovery of Enzymatic RNA Numt3er zy JUIY lb, IYYU The 1989 Nobel Prize in chemistry has been awarded to Sidney Altrnan and Thomas R. Cech for their discovery that RNA in living cells can function not onfy as a molecule of heredity, but also as a biocatalyst. A brief historical overview of the laureates’ work is presented, and citation data for their most-cited publications are examined. Research-front analysis highlights both scientists’ cen- trafit y to the field of RNA enzymology studies. The effect of the finding of RNA catafysis on origin- of-iife theories is also covered. In the late 1970s and early 1980s, two and cell timction have had to be rethought. researchers, working independently, made In the words of the Swedish Academy, a discovery that reversed a 50-year-old “Many chapters in our textbooks have to be dogma in biochemistry-that the triggering revised. ” 1 and acceleration (catalysis) of chemicrd reac- Future applications of catalytic RNA tions within living cells were the exclusive could include its use as gene shears to domain of protein molecules called en- destroy RNA molecules involved in viral zymes. Biophysicist Sidney Altman, Yale infections such as the common cold or University, New Haven, Connecticut, and AIDS, in producing genetically engineered, chemist Thomas R. Cech, University of disease-resistant agricultural plants, and, at Colorado, Boulder, found that ribonucleic some date, correcting certain hereditag dis- acid (RNA), traditionally considered to be eases in both animals and humans. -
Gene Pioneers: Donald Brown and Thomas Maniatis Win the 2012 Lasker~Koshland Special Achievement Award in Medical Science
Gene pioneers: Donald Brown and Thomas Maniatis win the 2012 Lasker~Koshland Special Achievement Award in Medical Science Kathryn Claiborn J Clin Invest. 2012;122(10):3383-3386. https://doi.org/10.1172/JCI66476. News The 2012 Lasker~Koshland Special Achievement Award in Medical Science recognizes Donald Brown (Carnegie Institute of Washington) and Thomas Maniatis (Columbia University) (Figure 1), two scientists whose career-long contributions were seminal to our understanding of what genes are and our ability to study and manipulate them, and whose commitment to mentorship have had tremendous impact on a generation of scientists. What is a gene? In the nineteenth century, an Austrian monk began a set of experiments in a small garden plot. Gregor Mendel’s detailed study of garden peas led him to understand that visible traits, such as the height or color of a plant, were determined by the combined inheritance of two physical particles from the two parent plants. Decades later, Theodor Boveri and Walter Sutton, analyzing meiotic cell divisions in grasshopper testes with the help of a microscope, hypothesized that Mendel’s hereditary factors — genes — could be carried on chromosomes. The groundwork was thus laid for a basic understanding of inheritance, but the question remained: what is a gene, exactly? Further understanding these entities — both their molecular makeup and their regulation — would require the dedication of innumerable scientific careers, as well as technical innovations that allowed the isolation and manipulation their sequences.Development -
From MRC-Cambridge to Madison, Wisconsin
C HA P TER 5 From MRC-Cambridge to Madison, Wisconsin William Dove and Alexandra Shedlovsky McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI Figure 5.1. Bill Dove. Figure 5.2. Alexandra Shedlovsky. PROLOGue – a STYLE OF DOING SCIENCE Our experience in the early 1960s as postdoctoral fellows in the MRC Unit for Molecular Biology led to our understanding the following principle: science is effectively driven by an idea when the seed is nourished by dialogue between con- trasting outlooks. We shall share our experiences that illustrate this ‘core principle’ 57 M ERIESM O AND C ONSEQUEN C E S by which the MRC unit thrived in that era. Since science does not function in a vacuum we include our perceptions of the cultural context that stimulated the growth of ideas through dialogue. This dialogue led to the remarkable edifice of molecular biology that emerged from the unit and its progeny around the world. Our comments are strictly matters of personal perception; however, Horace Judson’s Eighth Day of Creation gives a more global view of this and surrounding eras,1 while Sidney Altman wrote from a personal perspective of his experiences in the unit a decade later [‘RNA processing: a postdoc in a great laboratory’2]. Finally, the core principle is revealed in the essay written by the physical chemist John Platt [‘Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others’3]. The messenger RNA experiments, the demonstration of the ‘triplet code’, and Marshall Nirenberg’s polyU encoding polyPhe experiment were all published by the middle of 1961. -
From MRC-Cambridge to Madison, Wisconsin
C HA P TER 5 From MRC-Cambridge to Madison, Wisconsin William Dove and Alexandra Shedlovsky McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI Figure 5.1. Bill Dove. Figure 5.2. Alexandra Shedlovsky. PROLOGue – a STYLE OF DOING SCIENCE Our experience in the early 1960s as postdoctoral fellows in the MRC Unit for Molecular Biology led to our understanding the following principle: science is effectively driven by an idea when the seed is nourished by dialogue between con- trasting outlooks. We shall share our experiences that illustrate this ‘core principle’ 57 MC.indd 57 07/05/2013 16:36:27 M E M ORIES AND C ONSEQUEN C ES by which the MRC unit thrived in that era. Since science does not function in a vacuum we include our perceptions of the cultural context that stimulated the growth of ideas through dialogue. This dialogue led to the remarkable edifice of molecular biology that emerged from the unit and its progeny around the world. Our comments are strictly matters of personal perception; however, Horace Judson’s Eighth Day of Creation gives a more global view of this and surrounding eras,1 while Sidney Altman wrote from a personal perspective of his experiences in the unit a decade later [‘RNA processing: a postdoc in a great laboratory’2]. Finally, the core principle is revealed in the essay written by the physical chemist John Platt [‘Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others’3]. The messenger RNA experiments, the demonstration of the ‘triplet code’, and Marshall Nirenberg’s polyU encoding polyPhe experiment were all published by the middle of 1961.