Download PDF (633K)

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF (633K) n ★ En tio v c ir u o d n o m r e p n o i t Please cite this article as B ★ ★ L i e Hayami and Sri Kantha, Reviews in Agricultural Science, 5:83-99, 2017 f c e n S e i http://dx.doi.org/10.7831/ras.5.83 c REVIEWS OPEN ACCESS Nobel Prizes for Research in Plant Science: Past, Present and Future Natsuki Hayami and Sachi Sri Kantha1 1 The Graduate School of Agricultural Sciences, Gifu University, Yanagido 1-1, Gifu City 501-1193, Japan. ABSTRACT The Nobel Prizes awarded in two appropriate science categories (chemistry as well as physiology or medicine) and the peace category since 1901 were studied to evaluate the plant science related research that had received recognition. We also checked the Nobel prize nomination database for the two appropriate science categories to verify the number of scientists (with research reputation on plant-based studies) who were nominated, but were unlucky in the eventual selection process. The focus of this review is research on plant materials in a wider sense (including that of photosynthetic bacteria), that received Nobel prize recognition. Until 2017, Nobel Prizes for research in plant sciences have been awarded 17 times to 20 scientists. Pioneering work on five major research themes, namely, (1) chlorophyll and photosynthesis, (2) elucidation of the structure of vitamins (carotene, thiamin, ascorbic acid and vitamin K), (3) use of radioisotopes for metabolism studies, (4) plant natural product chemistry and (5) plant genetics had received Nobel award recognition so far. For future recognition, Nobel laureates such as Melvin Calvin and Barbara McClintock had opined the worth of interdisciplinary teams with expertise in botany for trend-setting new discoveries in plant science research. We predict that pioneering studies along the line of plants that can grow in a dessert or sea, plants which can be an enriched source of fuel and hydrocarbon-like materials may have potential to be considered for a Nobel Prize for plant science research. Keywords: cytogenetics, photosynthesis, plant breeding, plant natural products, vitamins Introduction three were awarded for plant-related research).” We presume that Alfred Nobel (1833-1896) was a Swedish chemist, engineer, Gresshof’s (2002) count, derives from information scientist Garfield inventor, businessman, and philanthropist. His creative (1987) who had identified three Nobelists (Richard Willstatter, productivity includes over three hundred worldwide patents Robert Robinson and Melvin Calvin) as those who had been including that of dynamite. According to his famous will of 1895, recognized for research in plant-related sciences. Garfield (1987) Nobel’s fortune was to be used to establish the Nobel Prizes for did identify a major reason why research on plants receive less sciences (Chemistry, Physics and Medicine or Physiology), apart recognition and have less visibility; it may be because “they are not from that of Literature and Peace (Sohlman and Schuck, 1929; perceived as having a direct bearing on human health”. Is this so? Sri Kantha, 1999). These prizes were first bestowed in 1901 and How can humans, livestocks and other herbivorous animals survive announcement of these prizes in October still continue to be a and lead healthy lives without feeding on plant-based foods? news-worthy annual event for their merit and glamor (Sohlman, 1983; Garfield and Welljams-Dorof, 1992; Feldman, 2000; Stimulated by these thoughts, we studied the Nobel Prizes Levinovitz and Ringertz, 2001). awarded in two appropriate science categories (chemistry as well as physiology or medicine) and the peace category since 1901 for Between 1901 and 2017, the Nobel Prizes for chemistry as an alternate count. We also checked the Nobel prize nomination well as medicine or physiology categories have been awarded to database for the two appropriate science categories to verify the 178 and 214 individuals respectively. Previously, Gresshoff (2002) number of scientists (with research reputation on plant-based had expressed an editorial opinion related to research on plant studies) who were nominated, but were unlucky in the eventual biotechnology that, “There is no Nobel Prize for plant science, selection process. This derives from the concept of belonging to preventing the popular press from featuring achievements in this the ‘Nobel class’ introduced by Garfield (1980) that there are far area (NB, since the inception of Nobel Prizes one century ago, only more scientists whose work is worthy of the Nobel prize than the Received October 10, 2017, Revised October 20, 2017, Accepted October 24, 2017. 83 Published on line: December 12, 2017. Correspondence to S.S.: [email protected] ©2017 Reviews in Agricultural Science n ★ En tio v c ir u o d n o m r e p n o i t B Please cite this article as ★ ★ L i e f Hayami and Sri Kantha, Reviews in Agricultural Science, 5:83-99, 2017 c e n S e i c http://dx.doi.org/10.7831/ras.5.83 highest number (only 3) of prizes awarded each year for a specific Richard Willstatter (1872-1942) category. Thus, to be duly nominated for the Nobel prize deserves Hans Fischer (1881-1945) recognition because the findings of these scientists were ‘major Paul Karrer (1889-1971) breakthroughs’ in shaping the advances in science. Richard Kuhn (1900-1967) George de Hevesy (1885-1966) Past Record Arturi Virtanen (1895-1973) As presented in Table 1, since 1901, Nobel Prizes for research Robert Robinson (1886-1975) in plant sciences have been awarded 17 times to 20 scientists. The Melvin Calvin (1911-1997) focus of this review is research on plant materials in a wider sense Peter Mitchell (1920-1992) (including that of photosynthetic bacteria), that received Nobel prize Johann Deisenhofer (b.1943) recognition. We disregard specific disciplinary categories such as Robert Huber (b.1937) botany and microbiology. Why? A simple explanation is that scientists Hartmut Michel (b. 1948) frequently switch their research interests depending on factors such as availability of research funding, resources in proximity, collaborators Richard Willstatter was awarded the Nobel Chemistry Prize as well as personal preferences. The identifying criterion used for this for his research on plant pigments in 1915 (Trauner, 2015). It survey is whether research on plants and plant-derived materials had was the first time that Nobel Prize recognition was bestowed for been mentioned in the laureate’s Nobel award lectures. 18 among research in plant sciences. Willstatter was an organic chemist who the 20 scientists do satisfy this criterion. The sole exceptions were studied chemistry under Adolf von Baeyer. While in his twenties, Richard Kuhn and Edward A. Doisy, because they did not deliver Willstatter clarified the chemical structure of tropine, atropine their Nobel award lectures. and cocaine. (Adams, 1943). Subsequently, he began to focus on chlorophyll and anthocyanin pigments. Willstatter and his team Nobel Prizes for Chemistry discovered that the chlorophyll of different plant species is the Between 1915 and 1988, twelve scientists had received same, but it is a mixture of two different types; chlorophyll a and recognition for plant science research in the category of Nobel chlorophyll b. He showed that magnesium is an essential part of Chemistry award. (Fig. 1) They were, chlorophyll’s structure and pointed out chlorophyll’s relationship Fig.1 Titles of Nobel Lectures delivered by 11 Chemistry Laureates, excluding Richard Kuhn 84 ©2017 Reviews in Agricultural Science n ★ En tio v c ir u o d n o m r e p n o i t Please cite this article as B ★ ★ L i e Hayami and Sri Kantha, Reviews in Agricultural Science, 5:83-99, 2017 f c e n S e i http://dx.doi.org/10.7831/ras.5.83 c Table 1: Nobel Prizes for Research on Plant Sciences Year Scientist (country) Field Research Recognition CHEMISTRY 1915 Richard Willstatter (Germany) natural products chemistry ‘for his researches on plant pigments, especially chlorophyll’ 1930 Hans Fischer (Germany) natural products chemistry ‘for his researches into the constitution of haemin and Chlorophyll and especially for his synthesis of haemin’ ‘ ’ 1937 Paul Karrer (Switzerland) natural products chemistry for his investigations on carotenoids, flavins and vitamins A B2 1938 Richard Kuhn (Austria) natural products chemistry ‘for his work on carotenoids and vitamins’ 1943 George de Hevesy (Sweden) nuclear chemistry ‘for his work on the use of isotopes as tracers in the study of chemical processes 1945 Artturi Virtanen (Finland) agricultural chemistry ‘for his research and inventions in agricultural and nutrition chemistry, especially for his fodder preservation method’ 1947 Robert Robinson (UK) natural products chemistry ‘for his investigations on plant products of biological importance, especially the alkaloids’ 1961 Melvin Calvin (USA) biochemistry ‘for his research on the carbon dioxide assimilation in plants’ 1978 Peter Mitchell (UK) biochemistry ‘for his contribution to the understanding of biological energy transfer through the formulation of the chemiosmotic theory’ 1988 Johann Deisenhofer (Germany) biochemistry ‘for the determination of the three-dimensional structure of a photosynthetic reaction centre’ Robert Huber (Germany) Hartmut Michel (Germany) MEDICINE or PHYSIOLOGY 1929 Christiaan Eijkman nutrition, metabolism ‘for his discovery of the antineuritic vitamin’ (Netherlands) 1937 Albert Szent-Gyorgyi cell physiology, nutrition ‘for his discoveries in connection with the biological combustion (Hungary) process with special reference to vitamin C and the catalysis
Recommended publications
  • Download Issue
    Cell Circuitry || Science Teaches English || The Chicken Genome Is Hot || Magnets in Medicine SEPTEMBER 2002 www.hhmi.org/bulletin Leading Doublea Life It’s a stretch, but doctors who work bench to bedside say they wouldn’t do it any other way. FEATURES 14 On Human Terms 24 The Evolutionary War A small—some say too small—group of Efforts to undermine evolution education have physician-scientists believes the best science evolved into a 21st-century marketing cam- requires patient contact. paign that relies on legal acumen, manipulation By Marlene Cimons of scientific literature and grassroots tactics. 20 Engineering the Cell By Trisha Gura Adam Arkin sees the cell as a mechanical system. He hopes to transform molecular 28 Call of the Wild biology into a kind of cellular engineering Could quirky, new animal models help scien- and in the process, learn how to move cells tists learn how to regenerate human limbs or from sickness to health. avert the debilitating effects of a stroke? By M. Mitchell Waldrop By Kathryn Brown 24 In front of a crowd of 1,500, Ohio’s Board of Education heard testimony on whether students should learn about intelligent design in science class. DEPARTMENTS 2 NOTA BENE 33 PERSPECTIVE ulletin Intelligent Design Is a Cop-Out 4 LETTERS September 2002 || Volume 15 Number 3 NEWS AND NOTES HHMI TRUSTEES PRESIDENT’S LETTER 5 JAMES A. BAKER, III, ESQ. 34 Senior Partner, Baker & Botts A Creative Influence In from the Fields ALEXANDER G. BEARN, M.D. Executive Officer, American Philosophical Society 35 Lost on the Tip of the Tongue Adjunct Professor, The Rockefeller University UP FRONT Professor Emeritus of Medicine, Cornell University Medical College 36 Biology by Numbers FRANK WILLIAM GAY 6 Follow the Songbird Former President and Chief Executive Officer, SUMMA Corporation JAMES H.
    [Show full text]
  • USA Education Ph.D., Biology, Massachusetts Institute of Tech
    Victor R. Ambros, Ph.D. Silverman Professor of Natural Sciences Program in Molecular Medicine University of Massachusetts Medical School373 Plantation Street, Suite 306 Worcester, MA 01605 (508) 856-6380 [email protected] Personal Born: Hanover, NH, USA on December 1, 1953 Citizenship: USA Education Ph.D., Biology, Massachusetts Institute of Technology, Cambridge, MA 1976-1979 Thesis Title: The protein covalently linked to the 5' end of poliovirus RNA Advisor: Dr. David Baltimore B.S., Biology, Massachusetts Institute of Technology, Cambridge, MA 1971-1975 Professional Appointments Silverman Professor of Natural Sciences 2009-present Co-Director, RNA Therapeutics Institute 2009-2016 Professor, Program in Molecular Medicine 2008-present University of Massachusetts Medical School, Worcester, MA Professor of Genetics, Dartmouth Medical School 2001-2007 Professor, Biological Sciences, Dartmouth Medical School 1996-2001 Associate Professor, Biological Sciences, Dartmouth Medical School 1992-1996 Associate Professor, Department of Cellular and Development Biology, 1988-1992 Harvard University, Cambridge, MA Assistant Professor, Department of Cellular and Development Biology, 1985-1988 Harvard University, Cambridge, MA Postdoctoral Research 1979-1985 Supervisor: Dr. H. Robert Horvitz Massachusetts Institute of Technology, Cambridge, MA Graduate Research 1976-1979 Supervisor: Dr. David Baltimore Massachusetts Institute of Technology, Cambridge, MA Research Assistant 1975-1976 Supervisor: Dr. David Baltimore Center for Cancer Research,
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Biography: Sir Benjamin Thompson, Count Rumford
    Biography: Christiaan Eijkman As a debilitating and, sometimes, fatal disease spread across the West Indies in the late nineteenth century, one man was devoting all his efforts to finding a cure for it. This man was Christiaan Eijkman, and the disease was beriberi. Through careful experimentation, including a massive study of over two-hundred-and-eighty thou- sand prisoners in Javanese prisons, Eijkman managed to find the cure. Using the findings of Eijkman’s study, scientists were able to isolate a nutrient called thiamin, also known as vitamin B1. Eijkman had, through his research, formed the basis for understanding the role of vitamins in nutrition, for which he received the Nobel Prize, together with Sir Frederick Hopkins, late in his life. Christiaan Eijkman was born on August 11, 1858 muscle weakness. Patients suffering from beriberi in the small town of Nijkerk, in The Netherlands. He commonly lose their sense of feeling and control of was the seventh child of Christiaan Eijkman and their limbs, often leading to paralysis. In some cases, Johanna Alida Pool. Christiaan’s father worked as a fluid collects in the legs, taxing the circulatory system, headmaster at the local school. enlarging the heart, and causing heart failure. The When he was only a few years old, his family relo- disease can be fatal. cated to Zaandam, a larger city in the Netherlands. In Beriberi was increasingly becoming a national se- Zaandam, he began his education at his father’s curity issue for the Netherlands. The mounting inci- school. He progressed in his studies with ease and dence of the disease among the soldiers and sailors passed his university-entrance exams in 1875, at the had already resulted in the Dutch government having age of 17.
    [Show full text]
  • Nature Medicine Essay
    COMMENTARY LASKER BASIC MEDICAL RESEARCH AWARD Of maize and men, or peas and people: case histories to justify plants and other model systems David Baulcombe One of the byproducts of molecular biology cork is altogether filled with air, and that air is has been support for the ‘model system’ con- perfectly enclosed in little boxes or cells distinct cept. All living organisms are based on the same from one another.”)2 (Fig. 1). Two hundred fifty genetic code, they have similar subcellular years later, Beijerinck discovered a contagium structures and they use homologous metabolic vivum fluidum in extracts of diseased tobacco pathways. So, mechanisms can be investigated plants that he later referred to as a virus3. using organisms other than those in which In contemporary science, a green alga— the knowledge will be exploited for practical Chlamydomonas reinhardtii—is a useful model benefit. Model systems are particularly use- in the analysis of kidney disease4. However, ful in the early discovery phase of a scientific in this article, I refer to the contribution of endeavor, and recent progress in biomedical plant biology to a family of mechanisms that I science has fully vindicated their use. Jacques refer to as RNA silencing. This topic has been Monod, for example, famously justified his reviewed comprehensively elsewhere5,6, so here work on a bacterial model system by stating I focus on personal experience and my view of that “what is true for Escherichia coli is also future potential from this work. true for elephants.” My fellow laureates, Victor Ambros and Gary Ruvkun, can defend the use The early history of RNA silencing in of the worm Caenorhabditis elegans as a good plants model system and so I will focus on plants.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 64 Summer 2013 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield | Prof J Betteridge (Twickenham, 4, Harpole Close, Swanwick, Derbyshire, | Middlesex) DE55 1EW | Dr N G Coley (Open University) [e-mail [email protected]] | Dr C J Cooksey (Watford, Secretary: Prof. J. W. Nicholson | Hertfordshire) School of Sport, Health and Applied Science, | Prof E Homburg (University of St Mary's University College, Waldegrave | Maastricht) Road, Twickenham, Middlesex, TW1 4SX | Prof F James (Royal Institution) [e-mail: [email protected]] | Dr D Leaback (Biolink Technology) Membership Prof W P Griffith | Dr P J T Morris (Science Museum) Secretary: Department of Chemistry, Imperial College, | Mr P N Reed (Steensbridge, South Kensington, London, SW7 2AZ | Herefordshire) [e-mail [email protected]] | Dr V Quirke (Oxford Brookes Treasurer: Dr J A Hudson | University) Graythwaite, Loweswater, Cockermouth, | Prof. H. Rzepa (Imperial College) Cumbria, CA13 0SU | Dr. A Sella (University College) [e-mail [email protected]] Newsletter Dr A Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Dr G P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 64 Summer 2013 Contents From the Editor 2 Obituaries 3 Professor Colin Russell (1928-2013) Peter J.T.
    [Show full text]
  • The Nobel Laureate George De Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany
    Open Access SAJ Biotechnology LETTER ISSN: 2375-6713 The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany *Corresponding author: Niese S, Am Silberblick 9, 01723 Wilsdruff, Germany, Tel: +49 35209 22849, E-mail: [email protected] Citation: Niese S, The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine. SAJ Biotechnol 5: 102 Article history: Received: 20 March 2018, Accepted: 29 March 2018, Published: 03 April 2018 Abstract The scientific work of the universal genius the Nobel Laureate George de Hevesy who has discovered and developed news in physics, chemistry, geology, biology and medicine is described. Special attention is given to his work in life science which he had done in the second half of his scientific career and was the base of the development of nuclear medicine. Keywords: George de Hevesy; Radionuclides; Nuclear Medicine Introduction George de Hevesy has founded Radioanalytical Chemistry and Nuclear Medicine, discovered the element hafnium and first separated stable isotopes. He was an inventor in many disciplines and his interest was not only focused on the development and refinement of methods, but also on the structure of matter and its changes: atoms, molecules, cells, organs, plants, animals, men and cosmic objects. He was working under complicated political situation in Europe in the 20th century. During his stay in Germany, Austria, Hungary, Switzerland, Denmark, and Sweden he wrote a lot papers in German. In 1962 he edited a large part of his articles in a collection where German papers are translated in English [1].
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Tierversuche in Der Forschung Senatskommission Für Tierexperimentelle Forschung Der Deutschen Forschungsgemeinschaft Tierversuche in Der Forschung 2 3
    Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung 2 3 Inhalt Vorwort . 4 Tierversuche und Tierschutz: Ethische Abwägungen Einführung . 6 Die Entwicklung des Tierschutzgedankens in Deutschland . 39 Ethische Aspekte von Tierversuchen und das Solidaritätsprinzip. 40 Tierversuche: Definition und Zahlen Die Übertragbarkeit aus ethisch-rechtlicher Sicht. 45 Was ist ein Tierversuch? . 9 Das 3 R-Prinzip . 48 Wie viele Tiere werden verwendet? . 9 Alternativen zum Tierversuch. 51 Wofür werden Tiere in der Forschung benötigt? . 11 Grenzen von Alternativmethoden. 54 Welche Tierarten werden eingesetzt? . 11 Die Basler Deklaration . 56 Europaweite Entwicklung . 14 Tierversuche in Deutschland: Vom Antrag bis zur Durchführung Tierexperimentelle Praxis: Einsatzbereiche für Versuchstiere Europäische Regelungen für Tierversuche . 59 Grundlagenforschung. 17 Tierversuche unter Genehmigungsvorbehalt . 60 Medizinische Forschung. 18 Rechtliche Grundlagen . 60 Nobelpreiswürdig: Herausragende wissenschaftliche Erkenntnisse . 20 Genehmigungsverfahren . 63 Diagnostik . 22 Durchführung von Tierversuchen . 64 Transplantationsmedizin . 25 Qualifizierte Überwachung. 68 Zell- und Gewebeersatz beim Menschen. 26 Belastungen für die Tiere . 69 Stammzellforschung . 27 Die Tierschutz-Verbandsklage . 71 Genomforschung . 28 Neurowissenschaften . 31 Anhang Veterinärmedizinische Forschung . 33 Tierversuche
    [Show full text]
  • RSC Branding
    Royal Society of Chemistry National Chemical Landmarks Award Honouree Location Inscription Date The Institute of Cancer Research, Chester ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Institute of Cancer Beatty Laboratories, 237 the 1950s until the present day – including the discovery of chemotherapy drug December Research Fulham Road, Chelsea carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Road, London, SW3 ovarian and breast cancer. 6JB, UK The Institute of Cancer ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Research, Royal Institute of Cancer the 1950s until the present day – including the discovery of chemotherapy drug December Marsden Hospital, 15 Research carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Cotswold Road, Sutton, ovarian and breast cancer. London, SM2 5NG, UK Ape and Apple, 28-30 John Dalton Street was opened in 1846 by Manchester Corporation in honour of 26 October John Dalton Street, famous chemist, John Dalton, who in Manchester in 1803 developed the Atomic John Dalton 2016 Manchester, M2 6HQ, Theory which became the foundation of modern chemistry. President of Manchester UK Literary and Philosophical Society 1816-1844. Chemical structure of Near this site in 1903, James Colquhoun Irvine, Thomas Purdie and their team found 30 College Gate, North simple sugars, James a way to understand the chemical structure of simple sugars like glucose and lactose. September Street, St Andrews, Fife, Colquhoun Irvine and Over the next 18 years this allowed them to lay the foundations of modern 2016 KY16 9AJ, UK Thomas Purdie carbohydrate chemistry, with implications for medicine, nutrition and biochemistry.
    [Show full text]
  • Liberal Arts Science $600 Million in Support of Undergraduate Science Education
    Janelia Update |||| Roger Tsien |||| Ask a Scientist SUMMER 2004 www.hhmi.org/bulletin LIBERAL ARTS SCIENCE In science and teaching— and preparing future investigators—liberal arts colleges earn an A+. C O N T E N T S Summer 2004 || Volume 17 Number 2 FEATURES 22 10 10 A Wellspring of Scientists [COVER STORY] When it comes to producing science Ph.D.s, liberal arts colleges are at the head of the class. By Christopher Connell 22 Cells Aglow Combining aesthetics with shrewd science, Roger Tsien found a bet- ter way to look at cells—and helped to revolutionize several scientif-ic disciplines. By Diana Steele 28 Night Science Like to take risks and tackle intractable problems? As construction motors on at Janelia Farm, the call is out for venturesome scientists with big research ideas. By Mary Beth Gardiner DEPARTMENTS 02 I N S T I T U T E N E W S HHMI Announces New 34 Investigator Competition | Undergraduate Science: $50 Million in New Grants 03 PRESIDENT’S LETTER The Scientific Apprenticeship U P F R O N T 04 New Discoveries Propel Stem Cell Research 06 Sleeper’s Hold on Science 08 Ask a Scientist 27 I N T E R V I E W Toward Détente on Stem Cell Research 33 G R A N T S Extending hhmi’s Global Outreach | Institute Awards Two Grants for Science Education Programs 34 INSTITUTE NEWS Bye-Bye Bio 101 NEWS & NOTES 36 Saving the Children 37 Six Antigens at a Time 38 The Emergence of Resistance 40 39 Hidden Potential 39 Remembering Santiago 40 Models and Mentors 41 Tracking the Transgenic Fly 42 Conduct Beyond Reproach 43 The 1918 Flu: Case Solved 44 HHMI LAB BOOK 46 N O T A B E N E 49 INSIDE HHMI Dollars and Sense ON THE COVER: Nancy H.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]