Nature Medicine Essay

Total Page:16

File Type:pdf, Size:1020Kb

Nature Medicine Essay COMMENTARY LASKER BASIC MEDICAL RESEARCH AWARD Of maize and men, or peas and people: case histories to justify plants and other model systems David Baulcombe One of the byproducts of molecular biology cork is altogether filled with air, and that air is has been support for the ‘model system’ con- perfectly enclosed in little boxes or cells distinct cept. All living organisms are based on the same from one another.”)2 (Fig. 1). Two hundred fifty genetic code, they have similar subcellular years later, Beijerinck discovered a contagium structures and they use homologous metabolic vivum fluidum in extracts of diseased tobacco pathways. So, mechanisms can be investigated plants that he later referred to as a virus3. using organisms other than those in which In contemporary science, a green alga— the knowledge will be exploited for practical Chlamydomonas reinhardtii—is a useful model benefit. Model systems are particularly use- in the analysis of kidney disease4. However, ful in the early discovery phase of a scientific in this article, I refer to the contribution of endeavor, and recent progress in biomedical plant biology to a family of mechanisms that I science has fully vindicated their use. Jacques refer to as RNA silencing. This topic has been Monod, for example, famously justified his reviewed comprehensively elsewhere5,6, so here work on a bacterial model system by stating I focus on personal experience and my view of that “what is true for Escherichia coli is also future potential from this work. true for elephants.” My fellow laureates, Victor Ambros and Gary Ruvkun, can defend the use The early history of RNA silencing in of the worm Caenorhabditis elegans as a good plants model system and so I will focus on plants. The most important development in plant Probably the best example I could use is biology in the 1980s was the introduction of that of Barbara McClintock, who used corn methods for transfer of DNA into the nuclear in her Nobel Prize–winning work1. Her iden- genome7. Transgenic techniques were devel- tification of mobile genetic elements has been oped as a routine research tool, and the new enormously influential in microbiology and technology prompted the introduction of Figure 1 Robert Hooke’s micrograph of cells immunology, and continues to bear on the genetic manipulation for crop improvement. in a sample of cork. Downloaded from http:// field of epigenetics that I refer to again below. The first generation of genetically modified www.nlm.nih.gov/exhibition/historicalanatomies/ She could have adapted Monod’s aphorism to plants used bacterial genes for herbicide tol- Images/1200_pixels/hooke_t11.jpg. refer to maize and men. Gregor Mendel would, erance or insect resistance8,9. There were also of course, have referred to peas and people. attempts from several laboratories, including structure would be formed between the mRNA There are many other historical examples, in my own, to develop virus resistance by trans- of the target gene and a transgenic antisense addition to McClintock’s and Mendel’s work, genic expression of virus-derived genes in the RNA. This duplex structure would then either that could justify the use of plants as models. host organism10–12. We were testing a concept block translation of the mRNA or initiate its Robert Hooke used his newly developed micro- known as parasite-derived resistance in which degradation by a nuclease specific for double- scope in 1664 to show that cork comprises the replication or spread of a disease agent stranded RNA. structures that he referred to as cells (“Our could be reduced by transgenic expression of Many of the early transgenic plants had the microscope informs us that the substance of its genes in a host. A third category of these desired traits, and they were the progenitors of early transgenic crops exploited an antisense transgenic crops that are now grown in large David Baulcombe is Royal Society Research approach to block expression of an endoge- areas of different countries. However, there Professor and Professor of Botany, Department of nous plant gene13. Crops were to be improved were anomalous phenotypes in some of the Plant Sciences, University of Cambridge, Downing in this approach by specific suppression of an transgenic lines. For example, the bacterial and Street, Cambridge CB2 3EA, UK. endogenous gene that limited agronomic per- viral transgenes were not always expressed8,9. e-mail: [email protected] formance. The idea was simple: a duplex RNA In the ‘antisense plants’, the suppression effect xx VOLUME 14 | NUMBER 10 | OCTOBER 2008 NATURE MEDICINE COMMENTARY that operates in a nucleotide sequence–specific ous now. My failure to make the connection manner. The silencing in cis would explain why was probably because the mechanism in worms the transgenes in certain lines were not abun- involved suppression of translation, whereas, dantly expressed. Correspondingly, the silenc- in plants, we were dealing with a process that ing in trans would account for the ability of decreased stability of the targeted RNA. these transgenes to silence endogenous genes Andrew Hamilton’s experiments further or viruses20,21. demonstrated that the production of small The hypothesis further proposed that the antisense RNA required transcription of the silencing mechanism operates at the RNA corresponding sense strand. This involvement level because the targeted viruses had an RNA of both RNA strands provided an obvious genome and did not have a DNA phase in their connection between RNA silencing in plants replication cycle. Originally, many of the silenc- and RNA interference in worms as revealed ing-related phenomena in transgenic plants by the famous Andrew Fire and Craig Mello 29 Richard Jorgensen Richard were referred to as ‘gene silencing’. However, 1998 paper in Nature . Once this connection Figure 2 Variegation of silencing in flowers at a seminar in Switzerland, I was interrupted was recognized, there was an opportunity for of petunia. The target of silencing by a sense by Ingo Potrykus—the inventor of ‘golden discoveries in plants to catalyze our under- transgene is chalcone synthase. The silencing rice’22—who pointed out that I was not talk- standing of animal systems and vice versa. It effect manifested as the absence of pigment ing about ‘gene silencing’; it was ‘RNA silenc- has been enormously satisfying to witness this is present in only part of the flower. Reprinted with permission of the American Society of ing’. I agreed and have since promoted ‘RNA exchange of information and the elucidation Plant Biologists. silencing’ as a generic term to cover a family of of variations on a molecular theme associated mechanisms involving silencing and RNA. with different types of silencing mechanism in was sometimes variegated—it was present on Support for the model came from a series diverse organisms5,6. some branches of the plant and not in others, of tests carried out by Jim English with geneti- Much current RNA silencing research inter- or it was absent in localized parts of a flower14. cally modified viruses20, and the remaining est is focused on endogenous small RNAs. In There was also a problem with some of the challenges were to find out about the details of plants, there are thousands of loci that produce sense RNA controls in these antisense experi- the mechanism and its biological role. We were these small RNAs30–32. A small proportion of ments. There was a silencing effect even when also interested in finding out whether the var- the endogenous small RNAs are similar to the transgene was designed to generate sense iegated silencing of transgenes and transcrip- the microRNAs of worms that were first dis- RNA that would not form a duplex with the tional silencing of promoter sequences could covered as short temporal RNAs by Ruvkun target mRNA15–17. In some examples, there was be accommodated in the model. and Ambros27,28. Most microRNAs are nega- variegation of this sense suppression as with the A central mystery in RNA silencing was its tive regulators, although a positive regulatory antisense plants (Fig. 2). Another strange pro- ability to act in a nucleotide sequence–specific microRNA has been recently described33. cess occurred when two transgenes carried the manner. The simplest explanation required The other small RNAs in plants are siRNAs, same promoter sequence: one of these trans- an antisense RNA that would guide a silenc- the double-stranded RNA precursors, which genes could silence the other through a process ing machinery to its target. In the transgenic are produced in various ways, including the operating at the transcriptional level18. experiments described above, this antisense annealing of complementary RNA, foldback In retrospect, I can see that these anomalies RNA would be present irrespective of whether of long inverted repeats and the action of challenged the existing paradigm of genetic the transgene was in a sense or an antisense RNA-dependent RNA polymerases on a single- regulation, but initially, I made the mistake of orientation. Andrew Hamilton, who had been stranded RNA30,31. thinking that they were due to multiple dis- interested in antisense RNA ever since his PhD It could be said that, now that we have the tinct mechanisms and that they were artifacts work on transgenic tomatoes23, joined the lab understanding of multiple variations on silenc- of transgenes. However, I became more inter- to carry out the search for this elusive molecu- ing mechanisms, RNA silencing research with ested when we characterized transgenic plants lar species. It is testimony to his persistence and a biomedical target should focus exclusively on manifesting parasite-derived resistance. The talent as a scientist that he eventually found people or at least on vertebrate experimental plants with the strongest viral resistance were them24. He tried several different methods, and systems.
Recommended publications
  • USA Education Ph.D., Biology, Massachusetts Institute of Tech
    Victor R. Ambros, Ph.D. Silverman Professor of Natural Sciences Program in Molecular Medicine University of Massachusetts Medical School373 Plantation Street, Suite 306 Worcester, MA 01605 (508) 856-6380 [email protected] Personal Born: Hanover, NH, USA on December 1, 1953 Citizenship: USA Education Ph.D., Biology, Massachusetts Institute of Technology, Cambridge, MA 1976-1979 Thesis Title: The protein covalently linked to the 5' end of poliovirus RNA Advisor: Dr. David Baltimore B.S., Biology, Massachusetts Institute of Technology, Cambridge, MA 1971-1975 Professional Appointments Silverman Professor of Natural Sciences 2009-present Co-Director, RNA Therapeutics Institute 2009-2016 Professor, Program in Molecular Medicine 2008-present University of Massachusetts Medical School, Worcester, MA Professor of Genetics, Dartmouth Medical School 2001-2007 Professor, Biological Sciences, Dartmouth Medical School 1996-2001 Associate Professor, Biological Sciences, Dartmouth Medical School 1992-1996 Associate Professor, Department of Cellular and Development Biology, 1988-1992 Harvard University, Cambridge, MA Assistant Professor, Department of Cellular and Development Biology, 1985-1988 Harvard University, Cambridge, MA Postdoctoral Research 1979-1985 Supervisor: Dr. H. Robert Horvitz Massachusetts Institute of Technology, Cambridge, MA Graduate Research 1976-1979 Supervisor: Dr. David Baltimore Massachusetts Institute of Technology, Cambridge, MA Research Assistant 1975-1976 Supervisor: Dr. David Baltimore Center for Cancer Research,
    [Show full text]
  • ERC Advanced Grant 2008 Project Acronym Title Principal Investigator Host Institution Host Country 226037 NSYS Nonlinear System
    ERC Advanced Grant 2008 Project Acronym Title Principal Investigator Host Institution Host Country Nonlinear System Identification and Analysis in the Time, Prof. Stephen Alec 226037 NSYS THE UNIVERSITY OF SHEFFIELD UK Frequency, and Spatio-Temporal Domains Billings HOWTOCONT Search for mechanisms to control massless electrons in 226043 ROLGRAPHE Prof. Carlo Beenakker UNIVERSITEIT LEIDEN. NL graphene NE THE HEBREW UNIVERSITY OF 226135 EXPANDERS Expander Graphs in Pure and Applied Mathematics Prof. Alexander Lubotzky IL JERUSALEM. 226136 VISCHEM Visualizing Molecular Change Prof. Villy Sundström LUNDS UNIVERSITET SE Consistent computation of the chemistry-cloud THE CYPRUS RESEARCH AND 226144 C8 Prof. Johannes Lelieveld CY continuum and climate change in Cyprus EDUCATIONAL FOUNDATION Modern Approaches to Temperature Reconstructions in 226172 MATRICS Dr. Hubertus Fischer UNIVERSITAET BERN CH polar Ice Cores FUndamental studies and innovative appROaches of Prof. Roland Martin 226180 FURORE UNIVERSITAET HAMBURG DE REsearch on magnetism Wiesendanger EBERHARD KARLS 226187 SOCATHES Solid State/Cold Atom Hybrid Quantum Devices Prof. Reinhold Kleiner DE UNIVERSITAET TUEBINGEN KUNGLIGA TEKNISKA 226203 APPROXNP Approximation of NP-hard optimization problems Prof. Johan Håstad SE HOEGSKOLAN Patchy colloidal particles: a powerful arsenal for the PATCHYCOLL fabrication of tomorrow new super-molecules . A UNIVERSITA DEGLI STUDI DI 226207 Prof. Francesco Sciortino IT OIDS theoretical and numerical study of their assembly ROMA LA SAPIENZA processes. ERC Advanced Grant 2008 Analytic Techniques for Geometric and Functional UNIVERSITA DEGLI STUDI DI 226234 ANTEGEFI Prof. Nicola Fusco IT Inequalities NAPOLI FEDERICO II. Multiscale Models for Catalytic-Reaction-Coupled 226238 MMFCS Prof. Bengt Sundén LUNDS UNIVERSITET SE Transport Phenomena in Fuel Cells WEIZMANN INSTITUTE OF 226246 NANOSQUID Scanning Nano-SQUID on a Tip Prof.
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • Ethical Principles in Ethical Principles in Scientific Research Scientific Research and Publications
    Hacettepe University Institute of Oncology Library ETHICAL PRINCIPLES IN SCIENTIFIC LectureRESEARCH author AND PUBLICATIONSOnlineby © Emin Kansu,M.D.,FACP ESCMID ekansu@ada. net. tr Library Lecture author Onlineby © ESCMID HACETTEPE UNIVERSITY MEDICAL CENTER Library Lecture author Onlineby © ESCMID INSTITUTE OF ONCOLOGY - HACETTEPE UNIVERSITY Ankara PRESENTATION • UNIVERSITY and RESEARCHLibrary • ETHICS – DEFINITION • RESEARCH ETHICS • PUBLICATIONLecture ETHICS • SCIENTIFIC MISCONDUCTauthor • SCIENTIFIC FRAUD AND TYPES Onlineby • HOW TO PREVENT© UNETHICAL ISSUES • WHAT TO DO FOR SCIENTIFIC ESCMIDMISCONDUCTS Library Lecture author Onlineby © ESCMID IMPACT OF TURKISH SCIENTISTS 85 % University – Based 1.78% 0.2 % 19. 300 18th ‘ACADEMIA’ UNIVERSITY Library AN INSTITUTION PRODUCING and DISSEMINATING SCIENCE Lecture BASIC FUNCTIONS author Online-- EDUCATIONby © -- RESEARCH ESCMID - SERVICESERVICE UNIVERSITY Library • HAS TO BE OBJECTIVE • HAS TO BE HONESTLecture AND ETHICAL • HAS TO PERFORM THEauthor “STATE-OF-THE ART” • HAS TO PLAYOnline THEby “ROLE MODEL” , TO BE GENUINE AND ©DISCOVER THE “NEW” • HAS TO COMMUNICATE FREELY AND HONESTLY WITH ALL THE PARTIES INVOLVED IN ESCMIDPUBLIC WHY WE DO RESEARCH ? Library PRIMARY AIM - ORIGINAL CONTRIBUTIONS TO SCIENCE Lecture SECONDARY AIM author - TOOnline PRODUCEby A PAPER - ACADEMIC© PROMOTION - TO OBTAIN AN OUTSIDE SUPPORT ESCMID SCIENTIFIC RESEARCH Library A Practice aimed to contribute to knowledge or theoryLecture , performed in disciplined methodologyauthor and Onlineby systematic approach©
    [Show full text]
  • A Short History of DNA Technology 1865 - Gregor Mendel the Father of Genetics
    A Short History of DNA Technology 1865 - Gregor Mendel The Father of Genetics The Augustinian monastery in old Brno, Moravia 1865 - Gregor Mendel • Law of Segregation • Law of Independent Assortment • Law of Dominance 1865 1915 - T.H. Morgan Genetics of Drosophila • Short generation time • Easy to maintain • Only 4 pairs of chromosomes 1865 1915 - T.H. Morgan •Genes located on chromosomes •Sex-linked inheritance wild type mutant •Gene linkage 0 •Recombination long aristae short aristae •Genetic mapping gray black body 48.5 body (cross-over maps) 57.5 red eyes cinnabar eyes 67.0 normal wings vestigial wings 104.5 red eyes brown eyes 1865 1928 - Frederick Griffith “Rough” colonies “Smooth” colonies Transformation of Streptococcus pneumoniae Living Living Heat killed Heat killed S cells mixed S cells R cells S cells with living R cells capsule Living S cells in blood Bacterial sample from dead mouse Strain Injection Results 1865 Beadle & Tatum - 1941 One Gene - One Enzyme Hypothesis Neurospora crassa Ascus Ascospores placed X-rays Fruiting on complete body medium All grow Minimal + amino acids No growth Minimal Minimal + vitamins in mutants Fragments placed on minimal medium Minimal plus: Mutant deficient in enzyme that synthesizes arginine Cys Glu Arg Lys His 1865 Beadle & Tatum - 1941 Gene A Gene B Gene C Minimal Medium + Citruline + Arginine + Ornithine Wild type PrecursorEnz A OrnithineEnz B CitrulineEnz C Arginine Metabolic block Class I Precursor OrnithineEnz B CitrulineEnz C Arginine Mutants Class II Mutants PrecursorEnz A Ornithine
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • PIE-1 Sumoylation Promotes Germline Fates and Pirna-Dependent Silencing in C
    RESEARCH ARTICLE PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans Heesun Kim1†, Yue-He Ding1†, Shan Lu2, Mei-Qing Zuo2, Wendy Tan1, Darryl Conte Jr1, Meng-Qiu Dong2, Craig C Mello1,3* 1RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States; 2National Institute of Biological Sciences, Beijing, China; 3Howard Hughes Medical Institute, Chevy Chase, United States Abstract Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline. *For correspondence: Introduction [email protected] During every life cycle, the eukaryotic germline orchestrates a remarkable set of informational tasks †These authors contributed that shape heredity and create variation necessary for the evolution of new species. One approach equally to this work for understanding the mechanisms that promote germline specification and function has been the identification of genes whose protein products localize exclusively to the germline and for which Competing interests: The loss-of-function mutations result in absent or non-functional germ cells and gametes (Seydoux and authors declare that no Braun, 2006).
    [Show full text]
  • 3718 Issue63july2010 1.Pdf
    Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 1 JULYJULLYY 2010 | ISSUEISSUE 63 GENETICSGENNETICSS SOCIETYSOCIEETY NENEWSEWS In this issue The Genetics Society NewsNewws is edited by U Genetics Society PresidentPresident Honoured Honoured ProfProf David Hosken and items ittems for future future issues can be sent to thee editor,editor, preferably preferably U Mouse Genetics Meeting by email to [email protected],D.J.Hosken@@exeter.ac.uk, or U SponsoredSponsored Meetings Meetings hardhard copy to Chair in Evolutionary Evoolutionary Biology, Biology, UniversityUniversity of Exeter,Exeter, Cornwall Cornnwall Campus, U The JBS Haldane LectureLecture Tremough,Tremough, Penryn, TR10 0 9EZ UK.UK. The U Schools Evolutionn ConferenceConference Newsletter is published twicet a year,year, with copy dates of 1st June andand 26th November.November. U TaxiTaxi Drivers The British YeastYeaste Group Group descend on Oxford Oxford for their 2010 meeting: m see the reportreport on page 35. 3 Image © Georgina McLoughlin Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 2 A WORD FROM THE EDITOR A word from the editor Welcome to issue 63. In this issue we announce a UK is recognised with the award of a CBE in the new Genetics Society Prize to Queen’s Birthday Honours, tells us about one of Welcome to my last issue as join the medals and lectures we her favourite papers by Susan Lindquist, the 2010 editor of the Genetics Society award. The JBS Haldane Mendel Lecturer. Somewhat unusually we have a News, after 3 years in the hot Lecture will be awarded couple of Taxi Drivers in this issue – Brian and seat and a total of 8 years on annually to recognise Deborah Charlesworth are not so happy about the committee it is time to excellence in communicating the way that the print media deals with some move on before I really outstay aspects of genetics research to scientific issues and Chris Ponting bemoans the my welcome! It has been a the public.
    [Show full text]
  • Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
    GENE SILENCING BY DOUBLE STRANDED RNA Nobel Lecture, December 8, 2006 by Andrew Z. Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA. I would like to thank the Nobel Assembly of the Karolinska Institutet for the opportunity to describe some recent work on RNA-triggered gene silencing. First a few disclaimers, however. Telling the full story of gene silencing would be a mammoth enterprise that would take me many years to write and would take you well into the night to read. So we’ll need to abbreviate the story more than a little. Second (and as you will see) we are only in the dawn of our knowledge; so consider the following to be primer... the best we could do as of December 8th, 2006. And third, please understand that the story that I am telling represents the work of several generations of biologists, chemists, and many shades in between. I’m pleased and proud that work from my labo- ratory has contributed to the field, and that this has led to my being chosen as one of the messengers to relay the story in this forum. At the same time, I hope that there will be no confusion of equating our modest contributions with those of the much grander RNAi enterprise. DOUBLE STRANDED RNA AS A BIOLOGICAL ALARM SIGNAL These disclaimers in hand, the story can now start with a biography of the first main character. Double stranded RNA is probably as old (or almost as old) as life on earth.
    [Show full text]
  • Unfolding Plant Disease Resistance : the Involvement of HSP90 and Its Co- Chaperone PP5 in I-2-Mediated Signalling De La Fuente Van Bentem, S
    UvA-DARE (Digital Academic Repository) Unfolding plant disease resistance : the involvement of HSP90 and its co- chaperone PP5 in I-2-mediated signalling de la Fuente van Bentem, S. Publication date 2005 Document Version Final published version Link to publication Citation for published version (APA): de la Fuente van Bentem, S. (2005). Unfolding plant disease resistance : the involvement of HSP90 and its co-chaperone PP5 in I-2-mediated signalling. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:05 Oct 2021 Unfolding plant disease resistance the involvement of HSP90 and its co-chaperone PP5 in I-2-mediated signalling ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam, op gezag van de Rector Magnificus prof.
    [Show full text]
  • Summary Publication and Bibliometric Information: Total Number of Peer-Reviewed Publications: 15
    CV Andreas Sebastian Marquardt Education: 16/7/2010 Ph. D. in Biological Sciences, University of East Anglia, Norwich, UK. 2005 Diplom (M. Sc.) in Biochemistry, Free University Berlin, Berlin, Germany. 2002-2005 Undergraduate studies in Biochemistry at Free University Berlin, Berlin, Germany. 1999-2002 Undergraduate studies in Biochemistry at University of Tübingen, Tübingen, Germany. Employment: Jan. 2018 – Tenured Associate Professor, University of Copenhagen, Copenhagen Plant Science Centre (CPSC), Denmark. Leader of non-coding transcription group. 2015 - 2017 Assistant Professor, University of Copenhagen, Copenhagen Plant Science Centre (CPSC), Denmark. Leader of non-coding transcription group. 2012 - 2014 Visiting Scientist at Whitehead Institute for Biomedical Research, MIT, Cambridge, USA. Topic: Arabidopsis epigenetics & Pol II kinetics, with Prof. Mary Gehring. 2010 - 2014 Postdoc at the Harvard Medical School (HMS), Boston, USA. Topic: chromatin-based lncRNA repression in budding yeast with Prof. Steve Buratowski. 2006 - 2009 Ph. D. thesis research with Prof. Caroline Dean at John Innes Centre (JIC), Norwich, UK. Topic: lncRNA-mediated chromatin regulation of Arabidopsis flowering. 2005-2006 Ph. D. rotation projects with: Prof. David Baulcombe, Dr. Sean Walsh and Prof. Caroline Dean. 2004-2005 Diplom thesis research with Prof. Arp Schnittger at Max-Planck Institute (MPI) for Plant Breeding Research, Cologne, Germany. Summary publication and bibliometric information: Total number of peer-reviewed publications: 15. First author publications: 6 (e.g. Science, Cell, Mol. Cell). Corresponding author publications: 5 (e.g. Nat. Commun, eLife, PLoS Gen). Last author publications: 5 (e.g. Nat. Commun, eLife, PLoS Gen). Citations: 1309 source, H-index: 21: https://scholar.google.com/citations?user=_miZw7oAAAAJ&hl=en ).
    [Show full text]
  • Goings on in Mendel's Garden
    40 Evolutionary Anthropology CROTCHETS & QUIDDITIES Goings on in Mendel’s Garden KENNETH WEISS The honorable monk probably didn’t cheat. But he led us astray in other ways. Gregor Mendel gave us the tools by discussed. But this may have inadver- which to do modern genetics, and we tently led us astray, in ways for which have a century of progress to show for we are paying a price today. The arti- it. We properly credit Mendel and his ficial nature of his experiments lured peas for showing us the particulate us into confusing the inheritance of nature of inheritance, but his work traits with the inheritance of genes. both enabled and disabled evolution- And this in turn has led to an unwar- ary thinking for several decades after ranted phenogenetic (see Note 1) de- its rediscovery. Since the factors he terminism that impairs our under- studied didn’t change over genera- standing of biology. tions, Mendel’s discoveries solved the problem that perplexed Darwin, that BLENDING IN blending inheritance would swamp variation and prevent evolution from Mendel wasn’t trying to explain evo- happening. Yet, for the same reason, lution. He knew of traits that varied Mendel’s work impeded evolutionary continuously in his experimental pea thought because evolution requires species, Pisum sativum, and appeared Figure 1. Mendel. change, and discrete variation was to blend in darwinian fashion from also incompatible with darwinian one generation to the next. But he gradualism. Eventually things were wanted to breed agriculturally valu- worked out, we got our unified theory able strains, so he avoided such traits used pea strains that differed only by (the neodarwinian Synthesis), and it and instead selected strains of pea the single traits he reported for each rested on Mendel’s discoveries.
    [Show full text]