<<

CHAPTER -1 Introduction Ally lie Oxidation Review Article CHAPTER - I

INl'KODUCTION

This chapter surTeya the Vfork reported In the literature on the oxidation of cyclic olefins into ally lic aloobols and/oroC f^^unsaturated ketones, using various oxidising agents. Merits and demerits of the various oxidising agents have also been reviewed. Oxidation of an olefin at an allylio poeition leading

to «(,^-unaaturated ketone/allylio alcohol (or an allylic

eeter) la an important reaction in organic chemlatry. Various

oxidizing agents have been ueed for such oxidations* It

w ill not be out o f place to asBemble information pertaining

to the topic »ALLYLIC OXIDATIONS*, to fa c ilita te ccwaparison

between the Yarioue methods. The emphasis throughout is

only on synthetic aspects.

1. Chromium trioxide-pyridine complex

Dry chromium trioxide-pyridlne complex In dichloro- methane has been usefully employed fo r the b lly lic oxidation 33 of CQTclohexenes and olefins.I^Hlethylcyclobexene

is converted into 1<-methylcyclohexen<^6-one and l-methyl* cyclohexen-3*'One{ while 1<>phcnylpyclohexene gives 1-pheoyl- cyclohexen-3*one (17^)« (I) can be oxidised to oarrone (II; 3C¥) and isopiperitenone (llli *<^-Pinene

(lY ) gives verbenone (V| 48<), ¥*iile nootketone (V IIj 95?^) can be obtained from valencene (V I). Cholesteryl acetate

(V III) affords 7*lcetodiolesteryl acetate (IXJ 76*^).

^^--Cholesten (X) can be converted irito ^^-cholest-7-one

(XI| 52^)l and 5-androstene-3-|^ # 17-Prdiol-diacetate (XII) gives 5-»ndrosten-7-one-3-p* 17-^*diol-diacetate (XIII; 76^)?^ I n ffl IV VI VII

CgH,7 OAC OAC

ACO ACO

XI xn XIII r S “y ^ y XIV XV XVI xvn XVIII

H V Q- OH XIX a XIX b XXa, R=H, R'=( CMealjOH XX b, R = ( CMealj OH, R'^H 8

2. Tert-lmtyl chromate

ThlB l 8 a potentially ueeful reagent for the a lly lic oxidation of olefins to ,p»un8at\irated ketones and double bond is r& rely attacked. Cyclohexene oan be oonYerted into

2-cyclohexen-1-one wbile 1*methjrlc;yolohexeae gires

1-methyloiyclobexen->3*’0ne ( 239^).^^ Limonene ( I ) can be conYerted into caryone ( l i t 21f() and ieopiperitenone

oC-Pinene (iv ) giTes Terbenone (V| 38^).

Nootketone CVIIi 6 1 f) can be obtained from ralenoene (Y I)»^ vhile cboleeteryl acetate (VIXX) can be converted into

T-ketocholesteryl acetate ClXi 62?C).^^

Conyentional chromic acid oxidation of c&r>3-ene (XIV) affords a complex mixture* but t-butyl chromate oxidation gives 34?< of a product consisting of c&r-3-«n e -5-one (XV|

30^)t car-3-ene-2, 5-dione (xvii 11.5^)* 8-hydro3y-m-cymei» (XVII; 11.5?S) and car-3-ene-2-one (XYIIIj

3* Chronic acid

<< ,^-Unsaturated ketones oan be obtained in fairly good yields by the allylic oxidation of some cyclic olefins with chromic acid.Thus, cyclohexotie gives 2-cyclohexen-'1>one ( 30- 35^ ), 1-methyloyclohexaie gives 1-iaethylcyclohexen-3-one

( 20^) and 1»methylcyclohexen*>6-*one l-phenyl^jrclohexene A p gives 1-phenylcyclohexen-3“One (30^)« Hinesol (XlXa) and epihineaol (XlXb) can be converted into cyclohexenones

(XXa,b).^^ When the oxidation of car-3-ene (XIV) is carried out

with chromic acid, both eucarvone Cxxil) and it s isomer

1 * 1,4-trimethylcyclohepta-2,4-dienr6-one (XXIII) are obtained,

but the main product is 8-hydroxy-m-cymene (X V II), probably

fornied by the oxidation of the products of acid catalyzed

ring opening of car-3-ene (XIV). Minor amounts of car-5-

3-ene-2-one (XVIIl), car-3-ene-5-one (XV), car-2-ene-4-one

(XXI) are also formed.

Isolongifolene (XXIV) with sodium dichromate-acetic

acid gives 8~oxoisolongifolane (XXV; 20jS) and 9-ketoisolongi-

folene (XXVI; A carbonyl group can be introduced at

the Cy position of cholesteryl acetate (VIIl) to give

7-keto-cholesteryl acetate(lX| 50?^).^^

4• Selenium dioxide

1-Methyl and 1-ethylcyclohexenes^*^”^® on selenium dioxide treatment in acetic acid/acetic anhydride afford the corresponding 6-acetoxy derivatives in 43^ and 23^ respectively.

The oxidation of carvomenthene (XXVIl) with selenium dioxide/ ethanol gives carvotanacetone (XXVIIIJ 759^) and phellandral

(XXIX; while 4,4-dimethylcycloheptene (XXX) gives

5,5-dimethylcyclohept-2-ene-2-one (XXXI; The major product obtained from limonene ( l ) oxidation with selenium dioxide in hydroxylated solvents is mentha-1,

8-dien-4-ol (XXXII; 45?^0, along with trana-carveol ( XXXIII) and mentha-1,8-dien-lo-ol (XXXIV) as minor compounds, while 10

In ac«tic anhydride the major product obtained le mentha>1, a-dien-10-yl-acetate (XXXV).^^"^^

Oxidation of oC-pinene (IV) gireB uyrtenol ( XXXVI) and oyrtenal (XXXVII) in ethanol»^^ while in acetic anhydride

BQrrteriol acetate (XXXYIIIt 2'i‘fo) and pinol (XXXIX; 4*4^) are obtained.<<-Cedrene aldehyde (XLIIj 80^) hae been obtained froD (7<-cedrene (XLl) by the action of eelenlum dioxide/ ethanol or dlDethylsulfoxide*^^

57 ZaoheriwicE et report the preparation of

3-caren-1O-ol (XLIII), howeTer in practice intereating

0X0 by cyclic dlene (XLITt 42^)» together with oarvacrol

(XLV) in trace amounts 1b obtained with eelenlum dioxide/ ethanol on car-5-ene (XIV).^®’ ^^

5« N«»Bromosuocinimide

A lly lic broaideB can be prepared in excellent yields with this reagent* Cyolohexene gives one a lly lic bromo derivative. 1-Alkylpyclohexenes give the 6-bromoderi- vaiive» while t-chlorocyclohexene gives the 3-isomer.^^.

‘’^-Pinene CiV) and <<-cedrene (XLI) give the corresponding a lly lic bromides (XLVIi 60^)^^ and CXLVII; respecti­ vely. However, if the allylio alcohols are the desired products, the bromo derivatives are to be solvolyzed or hydrolysed with appropriate reagent, like aqueous lithium

(I) carbonate.

A lly lic methylene groups are oxidised to carbonyl groups in extremely high yields with N-bromosucoinimide on 11 r

XXI XXII xxin

CHO

XXVII XXVIII xxix xxx

CHjOH CHC

xxxvm xxxix XL

OH

XLI XLII XLIII XLIV XLV

CH<

H XLVI XLVII

XLVIII 12 irradiation with ultraviolet light in calcium carbonate.

Thus, ««<-ainyrin (X LVIIl) gives o<-ainyreriyl acetate (XLIX;

98^) and cholesteryl acetate (V III) gives T-ketocbolesteryl acetate (IX;

6. Lead (IV). mercury (II), palladium (II)t manganese (III)

and thallium (ill) acetates

Tendency toward a lly lic acetoxylation toward cy d o - hexene is greatest with mercury (II) and palladium (ll) acetates

(almost exclusively), while for lead (IV) and thallium (III) acetates, it is very poor (3^40^ for lead (IV) acetate and

for thallium ( i l l ) acetate).^^ Cyclohexene with lead (IV ) acetate in acetic acid gives a 30^ yield and in benzene

40-50 yield of 2-cycIohexen-1-yl-acetate.^^. With mercury

(II), manganese (ill), palladium (ll) and thallium (ill) acetates, 3~acetoxycyclohexene is obtained from cyclohexene in 22fof 68^, SOf< and yields respectively

1-Methylcyclohexene gives a complex mixture with manganese ( i l l ) acetate. Limonene ( I ) with mercury ( I I ) acetate gives the corresponding allylic acetate (L; 56^), 72 with the migration of the double bond. 1-Phenylcyclohexene and carvomenthene give the double bond migrated a lly lic 72 75 acetates in 70^ and 60^ yields respectively. * Aceto- xylation of 1,5,5-trimethylcyclohex-1-ene (Ll) with lead

(IV) acetate in acetic acid gives 2,4,4-trimethyl- 2 74 ^-cyclohexen-1-yl acetate (LII; 35^), while car-3-ene

(XIV) gives 4(7)-car-3-ol acetate (LIII; 30^^).^^ 13

Oxidation of c<-pinene (IV ) with lead (IV ) acetate in

benzene gives ciB-pin~3-en-2~yl-acetate (LIV; 35?^) and in 76 ac'itic acid trans-verbenyl acetate (LV; 359^) • The latter

reaiily interconverts via the allylic ion with cie-pin-

-3-en-2-yl-acetate (LIV). With mercury (II) acetate,

OAC

equal amounts of trane-pinocaryyl acetate (IVI), trans-

- diacetate (LVII), and myrtenylacetate (XXVIIl)

are obtained from

acetate gives niyrtenol (XXXVIj 39^)f n^rrtenal (XXXVII?

14^), trans-sobrerol (LVIII; 399^), and (i -pinene glycol

(LIX; trace )^"’ .

Isodehydrocholeeteryl -p-nitro benzoate (LX) gives

on oxidation with mercury ( l l ) acetate a mixture of two 77 stereoisomeric allylic acetates (LXI; 355^) • A combi­

nation of lead (IV ) acetate and N~bromosuccinimide

reacts with ^ -amyrene- A^^-oleanene (LX II) to give 1P 78 ^-ainyrene- a -1 1-*C-aceto35y oleanene (LX III; 50?4) •

7* Singlet oxygen

Photosensitized oxygenation of olefins is a power­

ful tool for the preparation of allylic alcohols. Allylic CH' 14

..A, f\co H -H OAC

XLIX ' L L! Lll LIII

OAC .OH OH

&sy. LIV ' LVIII LtX

LXII LXII I \ 15

hydroperoxides are formed, In which the double bond is

shifted to the allylic position with respect to the stating ' 79 material. These hydroperoxides can be reduced with the

retention of configuration to the corresponding allylic

alcohols.

The photosensitized oxidation of limonene ( l ) proceeds 80 to give a mixture of six alcohols (LXIV to LXIX).

HO HO, . 1 1 II I I

(LXIV) (LXV) (LXVI) (LXVII) (LXVIII) (LXIX)

The photosensitized oxidation of car-3-ene (XIV) gives the

expected unsaturated alcohols (LXX, LXXI and LXXII).^^*^^

I t is noticeable that the conformation of car-3-ene (XIV)

favors attack by the reagent away from gem-dimethyl group.

Same situation prevails with-pinene (IV), which gives

(- )- trans-pinocarveol (LXXIIIj 94-?^) and (-)~tra^-2-hydroxy

-pin-3-ene (LXXIV; ‘^-Thujene (LXXV) gives 1 8 HO V ■^1V HO V HO y V LXVIII LXIV LXV LXVI LXVIl .

Ho H

OH OH A '“’ y ^ H

A w V LXIX LXX LXXI LXXII LXXIII

HO H 3 C. OH JDH /K 'H

A A LXXIV LXXV LXXVI LXXVII

.OH CH3

H

LXXVIII LXXIX LXXX LXXXI

OR -H / iC T'-H // ^OH H

LXXXII LXXXIII LXXXIX XC 17

(-)-trans-4-hydroay-P-thujene (L::xVI; 80^) and ole-sabinol

(LXXVII; 20?S) .®^<<-Cedrene (XLI) can be converted into oedrenol (LXXVIIl),®^ and caryophylene (LXXIX) into

5-hydroxy-compounds, (LXXX) and (LXXXI).^^

8. Tert-butyl perester and tert-butyl hydroperoxide

The peroxyester reaction consiete of the copper (l) ion catalyzed reaction of an organic peroxyester with a substrate containing available hydrogen. Acyloxylation of cycloalkenes produces a lly lic esters.Thus, cydohexene gives 2-cyclohexen-1-y 1-acetate (95?^),^^*®^ and 2-oyclohexen

-1-yl-benzoate with te rt-butrv^l peracetate, and perbenzoate respectively; cycloheptene gives 2-cydohepten rt Q -1-yl-benzoate (35^) similarly. ^ 4-Vinylcydohexene leads 90 to a mixture of esters of little preparative value.

Reaction of 1-acetoxycydohexene with tert-butyl perbenzoate, QC results in a benzoate o f undetermined structure (29f^)).

The product (LXXXIII) obtained from optically active bicyclo

(3*2.1) octene-2- (LXXXIl) is optically inactive, the reaction is stereospecific in that the substituted group in (LXXXIII) 91 is exclusivdy exo (axial).

The ma^or product obtained from ^-^-menthene (XXVIl) corresponds to attack at C^(65^).1*088 of optical activity during this reaction indicates participation at some stage 92 of a symmetrical intermediate. 18

Benzoyloxylation of (X-pinene (IV ) results in a mixture of benzoates, followed by hydrolysis produces trans-verbenol

(LXXXIX; 50^) together with tranjB-pinocarvcol (XCj 359^) and inyrtenol (XXXVI; 3.5?^).

Acyloxylation of a number of containing an isolated double bond proceeds without rearrangement. Thus reaction o f cholesteiyl benzoate (XCIa) produces equal q.uantities of choleet-5-ene-3 |3 , T'K-diol and cholest-5-ene

-5 /i ,7 ^ -diol-benzoatee (XCIIb and c) respectively^^ and cholesteryl acetate (VII), produces exclusively 7'<-8ub8ti- tuted benzoates (50-60?S)^^. Similar acetoxylation of

3-^-acetoaor- ^-androsten-17-one (XCIIa) and 3 -^-acetoxy

- ^^-pregnen-20-one (xC IIIa) lead in each case mainly to 3-/i *7-*^ diacetoxy compound (XCIIbj XCIIIb) together with some of the 7 -epimer (XCIIc; XCIIIc). The reaction of progesterone (XCIVa) v.ith t-butylperoxybenzoate in the presence o f copper carbonate yield s, a fte r hydrolysis and isomerization, 3» 20-dioxo-6-«^hydroxy- ^-pregnene(XCIVb)^^*^^.

97 Kochi and Bemis have used acetonitrile-acetic acid as a reaction medium for t-butylperester reactions. The 19

yield of 5-acetoatycyclohexene obtained from cyclohexene

using tert-butyl peracetate in this solvent medium is 70^ and is lower than that obtained from Kharasch Sosnovsky 97 procedure. Photochemical peroxyester reaction is run at

room temperature and with irradiation with u ltravio let lig h t.

2-Cyclohexen-1-yl benzoate (765^) is obtained from this QQ QQ procedure using tert-butyl perbenzoate. ’

The decomposition of tert-butyl hydroperoxide in the

presence o f olefin s with metal ions produces many useful

derivatives and this area of allylic oxidation is showing

rapid growth. The reaction o f t-butyl hydroperoxide with

cyclohexene in the presence of cuprous chloride or cobalt naphthenate produces 2-cyclohexenyl -t-bu ty l peroxide (80?J), 100 plus some 2-cyclohexen-1~one , while decomposition of

t^'buVl hydroperoxide in acetic acid or benzoic acid produ-

ces 2-cyclohexen-1-yl-acetate (9Q?S) or the corresponding benzoate (909^^).^^*^^^ FeiTOua sulfate catalyzed decomposi­

tion of the reagent iii the presence oi‘ cupric acetate gives

2-cyclohexen-1-y1-acet&te (80^)

Optically active esters can be prepared with copper salts of optically active acids. Cyclopentene, cyclohexeney and cis-cyclooctene are converted to o6-ethylcamphorates with cupric oC-ethylcamphorate in 78,84 and 36?S yields respectively!^^

These esters can be converted quantitatively to corresponding optically active alcohols, viz., 2-cyclopenten-1-ol,

2-cyclohexen-1-ol and cis-2-cycloocten-1-ol. A similar 20 PC

XCII XCIII

□ ! R-= H (a) R^R^=H (o) R'>=^R2rH (b ) R' ^ CAC, fb) R^=OBZ,R^:H Cb) R^= OAC. R^-H

u. ■ - H, CAC (c) r’:;H,R^=OBZ (c) R^ - H, R^-OAC

occMej

OOCKgi

XCV. XCVI XCVII XCVIII

(q1 r^=r^:H

(b) r'‘. o h , r ^=h

t i l

XCIX Cl oil cm

COOH CH3 CH3 \

OH 'H

CVHI CIV CV CVI CVII 21 experiment with cyclohexene and cupric di-o-acetyltartarate results in a 61^ yield of the allylic ester, which on reduction results in a 72^ yield of 2-cyclohexen-1-ol,^

o<-Pinene (iV ) in the presence of cuprous chloride gives a mixture of products consisting of 85^ of peroxides

(XCVand XCVI) J Car-5-ene (XIV) with t-butyl hydro­ peroxide and cobalt naphthenate gives a product, that is a mixture of peroxides (XCVII and XCVIIl)

9. Molecular oxygen

Atmospheric oxygen is the most universally prevalent as well as economically important oxidizing agent. The reac­ tion with molecular oxygen normally inserts a molecule of oxygen into the carbon-hydrogen bond to give a hydroperoxide.

This reaction is a free radical reaction and may be initiated with heat, light, peroxides and azo compounds. Oxidations initiated with these are usually of little preparative interest.

Metal ions which are capaole of undergoing redox reactions are useful catalysts. Metal salts and complexes of 'naphthenic acids', stearic acid, acids, phthalocyanine and hexamethyl phosphoramide etc., have excellent catalytic properties for these reactions. Some insoluble oxides are also sometimes used. Recently some interest has developed in the triphenyl- phosphine complexes o f d^-transition metals.

Autoxidation o f cyclohexene catalyzed with cobalt stearate gives 2-cyclohexen-1-ol (35^)t and 2-cyclohexen-1-one

?t02i’(P h j)2 benzene^^ and iron phthalocyanine^ 22 produces 2-cyclohexen-1-one (2(^). Tri8triphei?ylphosphine rhodium chloride^ gives 2-cyclohexen-1- o l ( 10^ ), 2-cyclo- hexen-1-one C2O9C). Metal-ealt-CMegW)^ PO complexee catalyzed oxidation of cyclohexene, cyclohepteae, and pinene (iv) has iaeen claimed to give high yields of the a lly lic hydroperoxides, though exact details of these process claims are not knov/n.^^^ Oxidation of 1-methylcyclohexene with oxygen-iron phthalocyanine gives 1-methylcyclohexen-3-one

Light initiated oxidation of car-3-erje (xiv) produces a mixture of not less than thirty compounds.^The chemistry of carenones is dominated by their ring expansion to cycloheptane derivatives.Chromic anhydride catalyzed oxidation in an atmosphere o f oxygen produces eucarvone (XXII) and 1,1,4-trimethylcyclohepta-2,4-dien-6-one (XXIII), the la tte r in some of the ketonic fraction. Actual product heremay be car-3-ene-5-one (XV), which may be getting converted into 1 , 1 , 4-trimethylcyclohepta-2, 4--dien-6-onc

Car-3-ene (XIV) on oxidation, catalyzed with lead

( 1 1 ) acetate or manganese dioxide results in a complex mixture, consisting maiiily of 1 , 1 ,4-trimethylcyclohepta-2,4-dien-6ione

(XXIII), 1,1,4-trimethylcyclohepta-2,4-dien-6-ol(XCIIX), eucarvone(XXII), 4(7)-caren-3-ol(C), and 2,4(7)-cardiene CI).^^^

Light initiated autoxidation of «c-pinene (IV), gives oC-pinene epoxide (CII; 10?«), cis-pin-3-«i-2-ol (CIII), and tranB-pin-3~en-2-ol (LXV; total 1?^) and trans-verbenol (LXXXIX; 30^).^^^ Cis- and trans-pin-3~en-2-ol (CIII; and LXV) 23

on dilute acid treatment may be converted into trane-Yerbenol

(LXXXIX)^'^. Cobalt reeinate catalyzed oxidation of «><.-pinene 11R (IV ) with moist oxygen gives trans-verbaaol (LXXXIXi 10^)

Chromic anhydride catalyzed oxidation ofo<-pinene (IV) with

molecular oxygen gives several products In addition to

verbenone (V; 30^), which can be easily iso lated .lith iu m

acetate, propionate, lactate, and 2-ethylhexoate catalyzed 120 oxidation gives oC-pinene hydroperoxide . c<-Pinene (IV) on

oxidation with oxygen-iron phthalocyanine gives verbenone(Y)^^^.

Cobalt resinate catalyzed oxidation of

(XXIX) can be converted into 9-ketoisolongifolene(XXVI; 75^)^

10. Microbiological oxidations

Many microorganisms have been used for a lly lic oxida­

tions. Thus, using a strain o f Aspergillus niger, cyclohexene

can be oxidized to 2-cyclohexen-l-ol and 2-cyclohexen-1-one ,

(2^ each)^^^. 1-Methylcyclohexene gives 1-methylcyclohexen-6-ol 1 2A (3.5?5) and l-methylcyclohexen-6-one ( I 56) Using a strain of

Aspergillus niger the oxygenation o f o<-pinene (IV ) affords

d-verbenone (V; 2?^), cis-verbenol (CV| 6^), and d-trans-

sobrerol (LVIIl”'^^*”’^®; 4?5). Myrtenic acid (CVl) and nyrtenol

(XXXVI) are obtained from oC-pinene (iV ) with the so il peeudomond

in extremely poor y i e l d s ^ ^ C y p e r o t u n d o n e (C V Il) by a lly lic 6- o<-hydroxylation with carticum sasaki affords sugenol

(CVIII; CIX cx CXI

CXII CXIIl CXIV

CH3

’ -:

CXIX CXX (a) R= CH2 -CH z C H 2 (b ) R = CHj-CH = CHj-CH3 ib ) R = CH-1 -CH - CH2 -CHi

CH3 25

Kramli and Horrath used Proactinomiyces roseus to

conrert cholesterol (CIX) to 7-bydroacycholesterol

Steroids haring unsaturation at and positions wiz.,

17-methyltestosterone (CXi) with Gihberella suubinetti results

in the 6 -(^hydroablation (CXII)^^^. 9,11-Dehydroprogesterone

(C X IIl) is oxygenated by Colletotrichum phomoides to yield

6 - 12-<<-dihydroxy-9,11-dehydroprogesterone (CXIV;

Hydroxylation at the Cg position, rardiy observed in the

conventional steroids is observed with restro-pregnadiene

derivatives (CXV)^^^. Dehydronorcholene (CXVII) may be

oxygenated to the -unsaturated ketone (CXVIIl) with

Escherchia coli^^^. Cinerone (x ix a) and allethrolone (CXIXb) may be hydroxylated to cineralone (CXXa) and allethrolone

(CXXb) in 50^ yields with Aspergillus niger or Stereptomyces

aurcofaciens^^^*

11. Miscellaneous reagents

There are a number of other reagents available, which

have been casually tried for the allylic oxidations. 1 *^7 (a ) Sodium peroxide* Ourisson and coworkers ^ have prepared cydocolorenone (CXXIl) by the action of sodium peroxide on oC-gurjunene (CXXI) in extremely poor yields.

(b ) Potassium permanganate. When car-3-fflie (XIV) is oxidized with permanganate in neutral conditions oar-3-ene-2-one(XYIIl), is produced, but the main product is car-5-ene-5-one(XV;75^0» the major reaction occurring on the less hindered side of the double bond^^. 26

(o ) Pervanandic acid, -t’erranadic acid oxidation o f cyclohexene

giTes 2-cyclohexen-1-ol and 2-cyclohexen-1-one; while 1-methyl,

3-methyl and 4-methyl cyclohexenee give noneelective productej

a lly lic alcohols/K,P-unsaturated ketonee (mixture of direct

oxidations as well as a lly lic sh ifte) are obtained^

(d) Nitroeyl fluoride and chloride* Nitro^y'l fluoride reacts

with 5-c^-preg-9 (11 )-ehe-3,aO-dione (CXXIII) to give

5-,^-preg-9(11^-ene-3,12,20-trione (CXXIVj 30?^)^^°. Nitroeyl

chloride with 1-methylcyclopentene gives 2-methylcydopenten-1-

one

Comparison o f different oxidation mettiode

A critical assessmentof the different methods,

encountered auove, for the a lly lic oxidation would reveal

that chromic acid results in the formation of ring cleavage

products, besides the desired << -unsaturated ketones.

T ert-but.ylchromate and chromium trioxide-pyridine afford

the enones in better yields, though usually a mixture of

isomeric products is obtained. Working procedures Involved

are difficult.O xidation of olefins with selenium dioxide

gives products having oxygen, •< to the more highly substituted

end of the double bond. «<.-Pinene (IV ) gives u?yrtenol and

myrtenal (XXXVI and XXVII) and not verbenol (XL) or verbenone

(V ); while car-3-ene (XIV) even under the best experimental

conditions affords oxobicyclic diene (XLIV). N-Bromosuccinimide yields a lly lic bromides and i f the corresponding alcohols

or <<,f-unsaturated ketones are the desired compounds, these

* m > s b.o -D:>» XL 28 •sj o fo CJ^ C3 rs o c S C)» c *U3 a u o fNj x: o u IP a fs* r— u. ■D Cl) • n X X ■♦—"5 c o I X O O) tn E < i—. o u * O) m ■O a >. X X X E o ,tir m X * ^ 5 cn Q. X 1 1 c tfJ X o o o (/) < CM > X > // 1 5-/ X / O C^' H o t— w. TJ X3 1/) >s >. CV JC i7> IE d o Ci) o c Ci? -o N £ . o C JT O fo JD .c o C "5 ^r^i I O •<— cr> £ ^m <, \ o u c d D Oi* C7> ""I I od|' -C c>» 1 tj o ?< o ' c « o n O k_ 00 I CO D > E Cb m . c ■ "5 col O j ' o c : (N il ■c c-’il 1 C5 a o < b S ; 1 CP ►- 2! o c c : o r O I u . IT . 1 o if> o « j rvj ! m r»> U3 ■ !■ (SI I 0D| ^ ! q : p^Vi - rN i II IT>I cn. -Jl 1 j ' ^ ' i CT if) / CO S. « \ ro tn >x / / fO O >S Cl) > x: c o 03 / / T3 > s \ o ■c N rx C Cs» vN\; -■• ■ -O ■ C C X G o o o u CL E 3 C3- ' o . Ift T7 c o 3 rj E V' 0 £ 3 a. o i£ U ji 1 o . o (A *'

-| --J* I O j roj 29 haye to be solvolyzed for alcohols and oxidized for ketones,

■^ead (IV) and thallium (ill) acetates give allyllc acetates

In extremely poor yields. Use of lead (IV ) acetate, thallium

(ill) acetate smd tert-butyl peresters and tf rt-butyl hydroperoxides involve somewhat time consuming reaction processes and thus the use of these reagents ie unacceptable for the production of large quantities of allylic alcohols or X ,l?-unsaturated ketones. Mercury (II) and talladium (I I ) I acetates are very costly chemicals and they co.n't be u tilized for industrial processes. Photosensitized oxidation of olefins is very effective for the synthesis of allylic alcohols, nowever, the double bond migrates to the adjacent position yielding the isomeric compounds, and thus restricting the synthetic utility of this method. Microbiological oxidations are extremely slow processes involving high dilutions! moreover, the yields are usually poor.

Present work

Metal salt catalyzed liquid phase oxidation of an o lefin with molecular oxygen is quite rapid and simple to carry out. A systematic study of the metal salt catalyzed oxidation of olefins have been made for developing a convenient method fo r the synthesis of -unsaturated ketones and a lly lic alcohols. With this ’ Raison d 'etre' cyclohexene was selected as the substraxe to obtain optimum conditions for its oxidation. Effect of differ^t metal salts s u and additlTee as well as Bolvente was determined* Sutse- quently, effect of temperature variation and catalyst concentration on the oxidation behavior o f cyclohexene was evaluated. Suitable methods were developed to obtain 2-cyclo- hexen-1-ol and 2-cyclohexen-1-one in quantitative yields, by oxidizing or reducing the autoxidized product.

Next part o f the present study was devoted for examining the effect of ring size on the allylic oxidation of cyclic olefins. In addition, oxidation of different alkyl substituted cydohexenes was investigated, to determine the effect of the steric bulk of the all^l substituents on the nature of products formed.

Some naturally occurring and indigeneously available olefins, car-5-ene (XIV), «<-cedrene (XLI) and isolongifolen®

(XXIV) having unsaturation fixed in a rigid geometry were oxidized, under the optimum conditions obtained earlier to assess the scope of this reaction. BIBLIOGRAPHY

1. G. SosnovBky, D.J. Hawlineon, 'Organic Peroxides* ed. D. Swern, Vol. II, Wiley Interscienoei New York, 1971, 153.

2. L. Homer, E.H. Winkelman, ’ Newer Methods in Preparative Organic Chemistry', ed. V. Poerst, Vol.Ill, Academic Press, New York, 1961, 151.

3. T.A. Turney, 'Oxidation Mechanisms*, Butterworths, Loddon, 1965.

4. L. Heich, S.S. Stivala, 'Autoxidation of Hydrocarbons in Liquid Phase', Academic Press, New York, 1965*

5. N.M. Emanuel, 'Oxidation o f Hydrocarbons in Liquid Phase*, Academic Press, New York, 1965.

6. Yf.A. Waters, 'Mechanism of Oxidation of Organic Compounds', Metheun, London, 1964.

7. W.A. Waters, *The Chemistry of Free Radicals', 2nd ed| Oxford, 1946.

8. W.A. Waters, 'Progress inOrganic Chemistry', Vol.5, Butterworths, London, 1961.

9. C. Walling, "Free Radicals in Solution', Wiley Interscience, New York, 1957.

10. N.A. Noyes, G.S. Hammond, J.N. P itts (e d .), 'Advances in Photochemistry', Vol.6, Wiley Interscience, New York, 1964, 64.

11. K.B. Wiberg, 'Oxidation in Organic Chemistry', ed. K.B. Wiberg,Vol.A, Academic Press, New York, 1965, 65. 32

12. K. Criegee, 'Newer Methods in Preparative Organic Chemistryed. W. Poeret, V ol.Ill, Academic Frees, New Tork, 1963* 367; and 'Oxidation in Organic Chemistry', ed. K.B. Wiberg, Vol. A, Academic Press, New York, 1965, 335. 13. R.J. Ouetlettle,'Oxidation in Organic Chemistry*, ed. V.S. Trahnovsky, Vol.B, Academic Press, New York, 1973#1»

14. E.N. Trachtenberg, ’Oxidation In Organic Chemistry', ed. R.L. Augustine, V o I.I, Marcell Dekkar, Neiv York, 1969,119.’ 15* L.J. Chinn, 'Selection of Oxidants in Organic Synthesis', Marcell l>ekkar,New York, 1971.

16. M. Pieser, L. Pieser,'Reagents for Organic Synthesis', Vol.1, Vol.2, Vol.3, Wiley Interscience, New York, 1967, 1969 and 1972.

17. I.T. Harrison, S. Harrison, 'Compendium of Organic Synthetic Methods’ , Wiley Interscience, New York, 1971,400.

18. A.P. Thomas, 'S p ecialist Periodical Report — Terpenoids and Steroids', Academia, Prague, 1966.

19. I). V/hittaker, ’ Chemistry of and I’erpenoids*, Academic Press, New York, 1972,11.

20. G.S. Fonken, R.A. Johnson, 'Chemical Oxidations with Microorganisms', Marcell Dekkar, New York, 1972, 85.

21. W. Chamey and H.L. Herzog, ’Microbial Transformation o f Steroids’ , Academic Press, New York, 1967.

22. A Copeck,0. Hanc, M. Todva, ’Microbial Transformation o f Steroids', Academia, Prague, 1966. 23. H. Iizuka,A. Naito, ’Microbial Transformation of Steroids and Alkaloids', University of Tokyo Press, Tokyo, 1967. H3

24* T*]>* Waugh, 'H-iiromosuccinimidei Its Reactions and Uses*, Arophoe Chemicals, Boulder, 1951*

25* ’Oxidation of Organic Coiupounds', Vol.I, II and III, Proceedings of the International Oxidation ^aympeeium, San Francisco, 1967; Advances in Chemistry Series, 75, 76 and IJ,

26. C. DJerassi, Chem, Rev. 43, 271 (1948).

27. D. Bateman, Quart. Rev. 8, 154 (l954).

28. G. Sosnovsky, D.J. Hawlinson, Synthesis. 1972 (1 ), 1.

29* J.L. Bolland, Quart. Rev. 2» ** Cl949). 30. W. Kitching, Organometal.Chem. Rev. 2, 3561 (1968).

31. J. Chett, Chem. Rev. £8, 7 (1951).

32. K.B. Wioerg, S.D. Nielson. J.Org. Chem. 29. 3353 (1964)

33* W.6. Dauben, U. Lorber, J).S. Fullerton, J. Org. Chem.

3587 (1969). 34. R.V. Oppenauer, H. Oberrauch, Anales Asoc. Quim. Argentina. 246 (1949); Chem. Abst. 4£, 3871 (1950).

35. G.S. Krishna Rao, Sukh Dev, J. Ind.Chem. Soc. 33,

539 (1956).

36. K. B ijito , Hipon Kagaku Zasshi. 81_, 1676 (1960).

37. G. Dupont, R. Dulou, D, Mondou, Bull.Soc. Chim (France).

1952. 443.

38. W.G. Dauben, K.Takemura, J. Amer. Chem. Soc. 75t

6302 (1953).

39. K. Bloch, Helv. Chim. Acta. 1611 (1953). 34

40. P.H. Boyle, W. Cocker, J>.H. Grayson, P.V.R. Shannon,

J.Chem.Soc. (c ), 1971.1073*

41. fP.C. Whitemore, G.W. Pedlow, J. Amer. Cbem. See. 63*

758 (1941).

42. L. Pieser,J. Szmuskovicz, J. Amer. Chem. ^oc. 70.

5552 (1948).

45* J»A. Marshall, P.C. Johnson, J. Org. Cheni. 55. 192 (1970).

44* M.S. Carson, W. Cocker, D.H. Grayson, P.V.R. Shannon,

J. Chem. Soc. ( c ) . 1969, 2220.

45* H. Ranganathan, TI.R. Nayak, 'X.S. Santhakrishnan, Sukh

Dev, Tetrahedron.26. 621 (1970).

46. L. Pieser, M. Fleser, R.N. Chakravarti, J. Amer.Chem.Soc»

71, 1226 (1949).

47. E. Urion, Compt. Rend. 199. 165 (1954).

48. A. Guillemonat, Lieblfie Ann. Chlm. 11., 145 (1959).

49. H. Barbier, Helv.Chim. Acta. 524, 1477 (1940).

50. H, Rabjohn, Organic iieaotlon. 551 j^1949).

51. A.P. Thomas, W. Bucher, Helv. Chim. Acta. 770 (1970).

52. Y. Sakuda, Bull.Soc. (Japan). 42, 5548 (l969).

55. E.N. Trachtenberg, J.R. Carver, J. Org. Chem. 55.

1646 (1970).

54. G. Dupont, W. Zacharewicz, R. Duiou, Compt. Rend. 198,

1699 (1954).

55. T. Matsuura, K. Pujita, J. Sci. Hiroshima Univ. Sert A16,

175 (1952); Chem. Abst. 48, 5507 (1954). 35

56. A.N. Singh, A.B. Upadhya, M.S. Y/adia, V.V. Maekar,

Sulf.h Dev, Tetrahedron. 25. 2855 (1969).

57. W. Zacherwicss, J. Krupowicz, L. Borowiecki, Rooznlki.

Chem. 8'^ (1959); Chem. Abet. 53, 16194 (1959).

58. B.A. Arbuzov, Z.G. Isaeva,V.Y.Ratner, J. Org. Chem.(USSR)

2, 1391 (1966).

59. R.O. Hutechins, D. Koharski, J. Ot r » Chem. 34# 2771 (1969)

60. M. Mousseron, E. Y/intemitz, K. Jacquier, Compt.Rend.

224. 1062 (1947).

61. Buu-Hoi, Hoing-Ki-Wei, J. Lecomte, R. Roger, Bull.Soc.

Chlra (France). 1946. 148.

62. R.A. Plattner, L. Kaui, Helv. Chim. Acta. 1553 (l943).

63. B.l¥. Finucane, J.B. Thomson, ^hem. Commun. 1969, 1220.

64. J.B. Lee, M.J, Price, Tetrahedron, 20. 1017 (1964).

65. C. Weis, M asertation, Technical University of Karbruhe,

Germany, 1963, 120.

66. W. Triebs, H. Bast, Liebigs Ann.Chim. 561, 165 (1949).

67. J.R. Gilmore, J.M. Mellor, J. Chem. Soc. (C) 1971. 2355.

68. S. Wolefe, P.G.C. Campbell, J.Amer. Chem. Soo. 93.

1497 (1971).

69. C.B. Anderson, S. Winstein, J.Org.Chem. 28, 605 (1953).

70. S. Winstein, R.M. Roberts, J. Amer. Chem. Soc. 75,

2297 (1953). 71. J.B. Lee, M.G. Price, Tetrahedron Lett. 1964. 1155. 36

72. W. Treibs, H. Lucius, H. Kogler, H. Breslauer,

•i^elblgB Ann,Chim» 581. 59 (1953)*

73. W. Kitching, Z. Rapport, S. Winstein, W.G. Young,

J. Amer. Chem. Soc. 88. 2054 (1966).

74. I.V . Alkonyi, Chem. Ber. 96, 1873 (1963).

75* V.V. Ratner, Z.G. l8aeva,B.A. irbuzov, Izv. Akad.

Nauk. USSR. Ser. Khlm. 12, 2766 (1969); Chem. Abst. J2,

121711 (1970).

76. G.H. Witham, J. Chem. Soc. 1961, 2232.

77. D.H.R. Barton, J. Rosenflelder, J. Chem.Soc. 1951. 2381.

78. D.H.R. Barton, £.!P. i i e r , J.F. McGhi-e, J.Chem. Soc. (C ).

1963. 1031.

79. K. Gollinick, Advancee In Chemistry series. 77. 78 (1968)

80. G.O. Schenck, K.Gollinick, G. Buchwald, S. Schroeter,

G. O hloff, Liebigs Ann. Chim. 64. 12 (1953). '

81. G.O. Schenck, Angew. Chem. 64, 12 (1953).

82. E. Klein, W. Rojaon, Chem. Ber. 98, 3045 (1965).

83* K Gollinick, G. Schede, Unpublished work through

reference 10.

84. C. Walling, A. Zayitsas, J. Amer. Chem. Soc. 851 2084

(1963). 85. M.S. Kharasch, G. Sosnovsky, N.C. Yang, J. Amer. Chem.

Soc. 81, 5819 ( 1959).

86. K. Pederson, P. Jakobsen, S.O. Lawesson, Organic

Synthesis.48.18 (1968). 37 87. M.S. Kharasch, G. Sosnovsky, J.Amer. Chem.Soc. 80.

756 (196a).

88. M.S. Kharasch, G. Sosnovsky, Abstracts of Papers,

134th Meeting. American Chemical Society, Stiicago,

1958, p7p.

89. G. Sosnovsky, J. Davik, M.H. Roder, Unpublished Work,

1965; through re f. 28.

90. W.J. Farrissey, J . Org. Chem. 29, 391 (1964).

91. H.Goering, U. Mayer, J. Amer. Chem. Soc. 86, 3753 (1964).

92. a) J.J. Villenave,H. Francois, R. Lalande, Bull.Soc.

Chim (France). 1970. 589.

b) R. Lalande J.J. Villenave, C .R. Acad. Scl.(C). 272.

1825 (1971).

c) J.J. Villenave, R. Lalande, C.R. Acad.Sci. (c ). 272.

1892 (1971).

93. D.Z. Denney,A. Appelbaum, D.B. Dermy, J. Amer.Chem. Soc.

84, 4969 (1962).

94. L. Starka, Pharmazie. 17. 126 (1962).

95. L.Strka.Collect. Czech.Chem. Commun. 26. 2452 (1961).

96. L,starka, K.Syhora, Czech. Patent. 100325 (1961);

Chem. Abst. 11270 (1962).

97. J.K. Kochi, A. Bemis,Tetrahedron. 5099 (1968).

98. G. Sosnovsky,Tetrahedron. 21. 871 (1963).

99. G. Sosnovsky, J. Org.Chem. 28. 2934 (1963).

100. M.S. Kharasch, P. Pauson, W. Nudenberg, J. Org.Chem.

18, 322 (1953). 38

101. M.S. Kharasch, A. Pono, J. Org. Chem. 23t 525 (1958).

102. F. Minisci, R. G a lli, Tetrahedron Letters. 1963. 557*

103. D.B. Denney, H. Napier, A. Cammarata. J. Org. Chem.

12, 3151 (1965).

104. J.R. Shelton, J.N. Henderson, J. Org. Chem. 26. 2185

(1961).

105. R, Lalande, C. P illia tre , Bull.Soc. Chlm. Prance.

1962. 792.

106. L. Borowiecki, Rocignlkl Chem. 921 (1963).

107. Y. Nakamura, K. Kato, S. Tanaka, T. Asano, Kogyo

Kagakuzasshl. 69, 444 (1966); Chem.Abet. ££, 116612

(1967).

108. J.P. Collman, M. Kubota, J.W. Hosking, J. Amer.Oh«n.Soc.

89, 4809 (1967).

109. A.H. Cook, J. Chem. Soc. 1938. 1774.

110. A Pu0i, R. Ugo, A. Pasinl, S. Cenini, J. Organometal.

Chem. 417 (1971).

111. P.A. Howard, P.G. William, Ger. Offen. 1957. 994;

Chem.Abst. 72» 44895 (1970). 112. M. Bukala, J. Arct.Chem. Stosowt Ser A. 1970, 14(2),

247; Chem. Abet. 74, 32801 (1971).

113* U.S. Shavyrin, I.I. Bardyshev, Sb. Tr. Tsent. Mauech.

Issle d . Prockt. In s t. Lesokhim. Prom. 1968, No. 19,

11-17 (Russ.), Zh. Khim. 1969 abet. 6P21; Chem. Abet.

71, 102024 (1969). 39

114. B.A. Arbuzov, Z.G. Isaeva, N.J). Ibragimova,

Izve8t«Akad« ^^auk» USSR, Otdel Khim. Nauk« 1962,

449, Chem. Abst. 16452 (1962). 115. B.A. Arbuzov, Z.G. Isaeva, V.V. Ratner, Doklady Akad. Nauk. USSR. 134. 585 (1960); Cbem.Abet. 6516 (1961).

116. R.N. Moore, C. Golumbic, G.S. Fischer, J. Amer.Ohem.

Soc. 78, 1173 (1956).

117. B.D. Sully, Chem. Ind. (London). 263, 1964, H.R. Ansari.

Flavour Ind. 1(4), 252 (1979).

118. Semmler, Jakubowicz, Chem. Ber. 47. 1143 (1914).

119. E. Klein and W. Schmidt, Dragoco Report.7. 1 (1969).

120. K. Fukui, H. Oookubo,T. Hshimoto, N. Kitano, Japan Pat.

70410071 Chem. Abet. 74, 88170 (1971).

121. A. Blumann, H ellriegel, Schiilz, Chem. Ber. 62. 1968(1920),

122. S.N. Bannore, Sukh Dev, Unpublished w>rk 1972.

123. P.K. Bhattacharyya, B.R. Prema, B.D. Kulkarni,

S.K. Pradhan, Nature. 187. 689 (1969). 124. B.R. Prema, P.K. Bhattaoharya.J. Appl. Microbiol.

10, 524 (1962).

125. P.K. Bhattacharyya, K. Ganapathy, Ind. J. Bio. 2, 137

(1966).

126. K. Ganapathy, K.S. Khanchandani, P.K. Bhattacharyya,

Ind. J. Bio. 158 (1966). 127. O.P. Shukla, U.N. Moholay, P.K. Bhattacharyya,

Ind. J. Bio. 79 (196b). 40

128. O.P. Shukla, P.K. Bhattachai^'ya, Ind. J. Bio. 92

(1968).

129. H. Hikino, K. Aota, Y, Tokuka, T. Takemoto,

Chem. fharta. B u ll. 1^, 1088 (1968).

130. A. Kramii, J.H. Horvath, Nature. 162, 619 (1948).

131. J. Urech, E. Yiecher, A. Weltsteln, Helv. Chlm. Acta.

12, 1077 (1960). 132. J. Pried, R.W. Thoma, U.S. Patent 29H543 (1959);

cf. reference 20.

133. H.Els. G. Englert, A. Puret, P.Reueser, A.J. Schocher,

Helv. Chim. Acta. 1157 (1959).

134. A. Butenadt, H. Danneberg, Naturwlse. 30. 52 (1942).

135. B. Tabenkin, R.A. Lemahieu, J. Berger, H.W. Kierstead,

Appl. Microbiol. 17, 7U (1969).

136. R.A. Lemahieu, B. Tabenkin, J. Berger, R.V/. Kierstead,

J. Org. Chem. 35. 1687 (1970J.

137. M. Falmade, P. Pesnelle, J. Streith, G. Ourisson,

Bull. Soc. Chim. (Prance). 1963. 1950.

138. W.D.P. Bums, M.S. Carson, P.V.R. Shannon,W. Cocker,

J. Chem. Soc. (C ). 1968. 3073.

139. S.J. Eisenbraun, A.R. Bader, J.W. Polacheck, E. Heif,

J. Org. Chem. 2057 (1963).

140. D. Rosenthal, J.P. Gratz, J. Org. Chem. 34# 409 (1969). 141 • K.A. Oglabin, A.A. Potenktain, Zhur. Organ. Khim. 1_,

865 (1965)» Chem. Abst. 6873 (1965).

TA /^ c o 3