Catàleg E-Liquids ENG.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Catàleg E-Liquids ENG.Indd our aromas Composition What are E-liquids? The cannabis aromas (cannabis terpenes profiles) of Cali Terpenes are from botanical origin, 100% pure, E-liquids, e-juice or food grade, toxic-free and GMO-free. vaping liquids are liquid mixtures intended to be vaporized in electronic cigarettes and the main objective of e-liquids is to offer an alternative to smokers, as it’s proven 100% faithful aroma to be 95% healthier www.caliterpenes.com than smoking. of each strain e-liquids catalog our e-liquids Composition Our e-liquids are composed exclusively of propylene glycol (PG), vegetable glycerin (VG) and food grade cannabis aromas of botanical origin. What is CBD? For its minimum vegetable glycerin content is the healthiest e-liquid on the market. CBD (or Cannabidiol) is one of the non-psychoactive components of cannabis and hemp. CBD acts on our High quality formulation, in collaboration endocannabinoid system with the doctor Mariano Garcia de Palau. and stimulates the natural response of the body against stress or pain. THC NIC VIT.E FREE FREE FREE CBD contained in our E-liquids is produced under Follow us: Do not Do not Do not GMP standard, with approximately 99,8% purity. contain contain contain @caliterpenes @cali_terpenes THC Nicotine Vit E @caliterpenes @caliterpenes E-LIQUID WITH TERPENES Available formats: • 10ml - 0 mg CBD Flavor Flavor Flavor Flavor Flavor • 50ml - 0 mg CBD Sweet / Blueberries / Pine Citric / Fresh / Sweet Sweet / Citric / Peppery Earthy / Deep / Pungent Diesel / Citric / Herbal Main terpenes Main terpenes Main terpenes Main terpenes Main terpenes Enjoy the taste of Terpinolene, Caryophyllene, Beta-Ocimene, Caryophyllene, Myrcene, L-alpha-Pinene, Caryophyllene, d-Limonene, Myrcene, Myrcene, Caryophyllene, d-Limonene, Caryophyllene, Myrcene, Limonene, Linalool, Myrcene, Beta-Pinene, D-Limonene, Alpha- D-Limonene, L-beta-Pinene, L-beta-Pinene, Linalool, L-alpha-Pinene, D-Alpha-Pinene, Alpha-Pinene, Beta-Pinene. Beta-Pinene, Alpha-Pinene, Terpinolene. your favorite varieties Pinene, D-3 Carene, D-Alpha-Pinene, Linalool. Beta-Ocimene, Cineol, Linalool. alpha-Terpineol, Camphene. CBD E-LIQUID Available formats: Flavor Flavor Flavor • 10 ml - 30 mg CBD Flavor Flavor Citric / Fresh / Spices • 10 ml - 100 mg CBD Fruity / Sweet hash / Pungent Sweet / Skunk / Citric Earthy / Sweet / Pungent Sweet / Citric / Walnuts Main terpenes Main terpenes Main terpenes Main terpenes Main terpenes Caryophyllene, B-Pinene, Terpinolene, Caryophyllene, Linalool, Myrcene, Caryophyllene, Alpha-Pinene, Caryophyllene, Myrcene, Limonene, Caryophyllene, Limonene, Linalool, B-Ocimene, Alpha-Pinene, Myrcene, Enjoy the taste and also Limonene, Myrcene, Menthol, Beta Pinene, Limonene, Terpinolene, Pinene, Linalool, Menthol, Nerolidol, Cineol. Menthol, Myrcene, Pinene. D-Limonene, D-3-Carene, Linalool, the properties of CBD Pinene, Nerolidol, Cineol. Linalool, Nerodiol. Gamma-Terpinene, Alpha-Terpinene, P-Cimene. E-LIQUID BASE Available formats: Flavor Flavor Flavor Flavor Flavor • 10 m - 100 mg CBD Sweet / Citric / Herbal Sweet / Citric / Pungent Fresh / Floral / Lavender Fruity / Citric / OG Citric / Sweet / Diesel Main terpenes Main terpenes Main terpenes Main terpenes Main terpenes Create your own Caryophyllene, D-Limonene, Linalool, Caryophyllene, Alpha-Pinene, Beta-Pinene, a-Pinene, b-Pinene, Myrcene, Caryophyllene, Limonene, Myrcene, Caryophyllene, Myrcene, Beta-Pinene, Myrcene, B-Ocimene, Limonene, Myrcene, Linalool, Terpinolene, CBD e-liquid with any Caryophyllene, d-Limonene, Linalool. Linalool, Pinene, Menthol, Nerolidol. Pinene, Limonene, Linalool. Terpinolene, Alpha-Pinene. Terpineol, Nerolidol, Camphene. of our aromas.
Recommended publications
  • Toxicity and Neurotoxic Effects of Monoterpenoids: in Insects and Earthworms Joel R
    Entomology Publications Entomology 1-9-1991 Toxicity and Neurotoxic Effects of Monoterpenoids: In Insects and Earthworms Joel R. Coats Iowa State University, [email protected] Laura L. Karr Iowa State University Charles D. Drewes Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons, Environmental Health Commons, Other Animal Sciences Commons, and the Plant Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/377. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Toxicity and Neurotoxic Effects of Monoterpenoids: In Insects and Earthworms Abstract The insecticidal activity of several monoterpenoids from essential oils was evaluated against insect pests. Toxicity tests illustrated the bioactivity of d-limonene, α-terpineol, β-myrcene, linalool, and pulegone against insects, including the house fly, the German cockroach, the rice weevil, and the western corn rootworm. Bioassays were conducted to assess their toxicity via topical application, fumigation, ingestion, and ovicidal exposures. Growth, reproduction and repellency were also evaluated in the German cockroach. Non-invasive electrophysiological recordings were used with an earthworm to investigate neurotoxic effects of the monoterpenoids. Relevant monoterpenoid bioassay results in the literature are also discussed. Disciplines Entomology | Environmental Health | Other Animal Sciences | Plant Biology | Plant Sciences Comments Reprinted (adapted) with permission from Naturally Occurring Pest Bioregulators, 449(20); 305-316.
    [Show full text]
  • In This Issue
    Issue n° 2 MAY 2019 In this issue----- ABACUS project in brief… - ABACUS project in brief The 3-year ABACUS project aims to provide a range of new molecules - Focus on WP1 & WP2 synthetized from microalgae and therefore to bring competitive innovative ingredients based on terpenes for fragrances markets and - Events of interest carotenoids for cosmetics and nutraceutics markets. The concept of ABACUS project associates several interdisciplinary approaches in order to support a high- value product market development stemming from: - Selection and biological engineering of microalgal strains and oriented photosynthesis of terpenoids; - Technological development of algae biomass production systems to optimize cultivation and photosynthesis of terpenoids; - Technological development of the downstream processing steps to reduce time and costs, and to optimize environmental acceptability; - Market development based on new algae-derived ingredients and structuration of new bio-based value chains. To reach its targets, ABACUS takes benefits from a wide range of expertise by gathering 2 large industrial partners (Proteus and Sensient Cosmetics Technologies), 3 algae SMEs (Algafuel, Microphyt and Subitec) and 4 RTOs (CEA, SAMS, CSIC and KIT). Since May 2017, a cooperative work has unfolded between all consortium members whose work is distributed in 10 defined work packages, altogether tailored to reach the objectives by the end of the project. With this second issue of our project’s newsletter, we are pleased to introduce WP1 & WP2 achievements to date. Product and market Market survey acceptances & roadmap Applicability Algae selection Fractionation Process design Up scaling Communication Management Ethics requirements WP1: Solidification of market opportunities and products specifications Two market studies for terpenoid and carotenoid molecules were performed during the first three months of the project.
    [Show full text]
  • Terpenoids Commonly Found in Cannabis Sativa Do Not Modulate the Actions of Phytocannabinoids Or Endocannabinoids on TRPA1 and TRPV1 Channels
    Cannabis and Cannabinoid Research Volume 5, Number 4, 2020 Mary Ann Liebert, Inc. DOI: 10.1089/can.2019.0099 Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels Marika Heblinski,1,2 Marina Santiago,3 Charlotte Fletcher,1,4 Jordyn Stuart,1,3,4 Mark Connor,3 Iain S. McGregor,1,4 and Jonathon C. Arnold1,2,* Abstract Introduction: Cannabis sativa produces hundreds of bioactive compounds, including cannabinoids and terpe- noids. It has been proposed that cannabinoids act in synergy with terpenoids to produce the entourage effect, a concept used to explain the therapeutic benefits of medicinal cannabis. One molecular explanation for the en- tourage effect is that the terpenoids augment the actions of cannabinoids at their molecular drug targets in cells. We recently reported that terpenoids commonly found in cannabis do not influence the functional effects of D9-tetrahydrocannabinol (D9-THC) on cannabinoid 1 and cannabinoid 2 receptors. The present study aimed to extend on this research by examining whether terpenoids influence the effects of phytocannabinoids and endo- cannabinoids on human transient receptor potential ankyrin 1 (hTRPA1) and human transient receptor potential vanilloid 1 (hTRPV1) channels heterologously expressed in mammalian cells. Materials and Methods: The activity of terpenoids, phytocannabinoids, and endocannabinoids was assessed in inducible HEK Flp-In T-Rex cells transfected with hTRPA1 and hTRPV1 channels, respectively. Real-time changes in intracellular calcium ([Ca]i) were measured using the Calcium 5 dye and a FlexStation 3 plate reader. Results: a-pinene, b-pinene, b-caryophyllene, linalool, limonene, b-myrcene or a-humulene did not affect [Ca]i in hTRPA1 and hTRPV1 overexpressing cells.
    [Show full text]
  • Topical Toxicity of Essential Oils to the German Cockroach (Dictyoptera: Blattellidae)
    HOUSEHOLD AND STRUCTURAL INSECTS Topical Toxicity of Essential Oils to the German Cockroach (Dictyoptera: Blattellidae) 1,2 1 3 ALICIA K. PHILLIPS, ARTHUR G. APPEL, AND STEVEN R. SIMS J. Econ. Entomol. 103(2): 448Ð459 (2010); DOI: 10.1603/EC09192 ABSTRACT The toxicity of 12 essential oil components [carvacrol, 1,8-cineole, trans-cinnamalde- Downloaded from https://academic.oup.com/jee/article/103/2/448/2199422 by guest on 28 September 2021 hyde, citronellic acid, eugenol, geraniol, S-(Ϫ)-limonene, (Ϫ)-linalool, (Ϫ)-menthone, (ϩ)-␣- pinene, (Ϫ)-␤-pinene, and thymol] to adult male; adult female; gravid female; and large, medium, and small nymphs of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae), was determined. Thymol was the most toxic essential oil component to adult males, gravid females, and medium nymphs, with LD50 values of 0.07, 0.12, and 0.06 mg per cockroach, respectively. trans- Cinnamaldehyde was the most toxic essential oil component to adult females, large nymphs, and small ϩ ␣ nymphs, with LD50 values of 0.19, 0.12, and 0.04 mg per cockroach, respectively. ( )- -Pinene was the least toxic essential oil component to all stages of the German cockroach. The most frequently occurring susceptibility ranking for the stages was small nymphs Ͼ medium nymphs Ͼ adult males Ͼ large nymphs Ͼ gravid females Ͼ adult females. Adult females were the least susceptible to the essential oils, so they will be the determining factor when considering a rate for Þeld application. Toxicity was positively correlated with essential oil component density and boiling point; however, there was no signiÞcant correlation between toxicity and lipophilicity.
    [Show full text]
  • Emission and Abundance of Biogenic Volatile Organic Compounds in Wind-Throw Areas of Upland Spruce Forests in Bavaria Benjamin S
    Technische Universität München Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Atmosphärische Umweltforschung Emission and abundance of biogenic volatile organic compounds in wind-throw areas of upland spruce forests in Bavaria Benjamin S. J. Wolpert Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Reinhard Schopf Prüfer der Dissertation: 1. Univ.-Prof. Hans Peter Schmid, Ph.D. 2. Univ.-Prof. Dr. Annette Menzel 3. Prof. Jose Fuentes, Ph.D., Pennsylvania State University, USA (nur schriftliche Beurteilung) Die Dissertation wurde am 02.05.2012 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 07.09.2012 angenommen. Table of contents 1. Introduction ............................................................................. 1 1.1. Motivation ................................................................................................... 1 1.2. Biogenic volatile organic compounds .......................................................... 2 1.3. Monoterpenoids .......................................................................................... 3 1.4. Functional relationship of monoterpenes and plants ................................... 5 1.4.1.
    [Show full text]
  • DIFFERENCES in Terpenoid Levels Between Plant Species Are Known To
    GENETICS OF TEP.PENES I. GENE CONTROL OF MONOTERPENE LEVELS IN PINUS MONTICOLA DOUGL. JAMES W. HANOVER Geneticist, Forestry Sciences Laboratory, lntermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Moscow, Idaho * Receivedi o.v.6 1.INTRODUCTION DIFFERENCESin terpenoid levels between plant species are known to exist but little is known about their genetic bases. The terpenes have been used extensively in biochemical systematic studies in Pinus (Mirov, 1958, 1961; Williams and Bannister, 1962; Forde, 1964), Eucalyptus (Baker and Smith, 1920; Penfold and Morrison, 1927), Cup ressacee (Erdtman, 1958),andmany other plant families and genera (Alston and Turner, 1963).Thesestudies were usually based upon the assumption that variation within a species is relatively small. Although this may be valid in some cases, Bannister et al. (1962)andothers have shown that the level of terpenes can vary with geographic origin within a species. Recent data on tree-to-tree variability in the monoterpenes of Pinus ponderosa Laws. show that such variation can be relatively large (Smith, 1964). Results of similar work in our laboratory with western white pine (Pinus monticola Dougi.) also revealed substantial qualitative and quantitative variation in the cortex monoterpenes between trees. In order to provide a basis for the use of terpenes for comparative biochemical studies, an understanding of both their variability and mode of inheritance is essential. The objective of the present study is to demonstrate the degree to which levels of six monoterpene compounds are gene-controlled in western white pine. Interrelations among the terpenes and between terpenes and growth are also considered, 2.MATERIALS AND METHODS Thematerials for this study are of three types: (i) parents—as clonal lines of grafts, () F1 progeny from crosses between the ortets (parents) represented by the clones, and () S1 progeny of the parent trees.
    [Show full text]
  • Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-Gc Analysis
    ORIGINAL RESEARCH published: 25 January 2016 doi: 10.3389/fenrg.2016.00002 Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis Anne E. Harman-Ware1* , Robert Sykes1 , Gary F. Peter2 and Mark Davis1 1 National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA, 2 School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from Edited by: the pine samples were quantified, using standard curves, and included the monoter- Subba Rao Chaganti, University of Windsor, Canada penes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included Reviewed by: caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in Yu-Shen Cheng, derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabi- National Yunlin University of Science and Technology, Taiwan etic, abietic, and neoabietic acids.
    [Show full text]
  • Terpenes and Terpenoids: Building Blocks to Produce Biopolymers
    Review Terpenes and Terpenoids: Building Blocks to Produce Biopolymers Marta. E. G. Mosquera 1,* , Gerardo Jiménez 1, Vanessa Tabernero 1,*, Joan Vinueza-Vaca 1, Carlos García-Estrada 2,3 , Katarina Kosalková 2, Alberto Sola-Landa 2 , Belén Monje 4, Carolina Acosta 4, Rafael Alonso 4 and Miguel Ángel Valera 4 1 Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química “Andrés M. Del Río”, Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Spain; [email protected] (G.J.); [email protected] (J.V.-V.) 2 Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real 1, 24006 León, Spain; [email protected] (C.G.-E.); [email protected] (K.K.); [email protected] (A.S.-L.) 3 Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain 4 Aimplas, Plastic Technologic Center, Valencia Parc Tecnologic, C/Gustave Eiffel 4, 46001 Valencia, Spain; [email protected] (B.M.); [email protected] (C.A.); [email protected] (R.A.); [email protected] (M.Á.V.) * Correspondence: [email protected] (M.E.G.M.); [email protected] (V.T.) Abstract: Polymers are essential materials in our daily life. The synthesis of value-added polymers is mainly performed from fossil fuel-derived monomers. However, the adoption of the circular economy model based on the bioeconomy will reduce the dependence on fossil fuels. In this context, biorefineries have emerged to convert biomass into bioenergy and produce high value- added products, including molecules that can be further used as building blocks for the synthesis of biopolymers and bioplastics.
    [Show full text]
  • The Therapeutic Effects of Curcumin and Capsaicin Against Cyclophosphamide Side Effects on the Uterus in Rats1
    4-Experimental Surgery The therapeutic effects of curcumin and capsaicin against cyclophosphamide side effects on the uterus in rats1 Ercan YilmazI, Rauf MelekogluII, Osman CiftciIII, Sevil EraslanIV, Asli CetinV, Nese BasakVI IAssociate Professor, Medicine Faculty, Inonu University, Department of Obstetrics and Gynecology, Malatya, Turkey. Manuscript writing. IIAssistant Professor, Medicine Faculty, Inonu University, Department of Obstetrics and Gynecology, Malatya, Turkey. Acquisition of data. IIIFull Professor, Medicine Faculty, Pamukkale University, Department of Medical Pharmacology, Denizli, Turkey. Analysis of data. IVMD, Elbistan State Hospital, Department of Obstetrics and Gynecology, Kahramanmaras, Turkey. Statistical analysis. VAssistant Professor, Medicine Faculty, Inonu University, Department of Histology, Malatya, Turkey. Histopathological analysis. VIMD, Pharmacy Faculty, Inonu University, Department of Pharmeceutical Toxicology, Malatya, Turkey. Acquisition of data. Abstract Purpose: To evaluate the impact of systemic cyclophosphamide treatment on the rat uterus and investigate the potential therapeutic effects of natural antioxidant preparations curcumin and capsaicin against cyclophosphamide side effects. Methods: A 40 healthy adult female Wistar albino rats were used in this study. Rats were randomly divided into four groups to determine the effects of curcumin and capsaicin against Cyclophosphamide side effects on the uterus (n=10 in each group); Group 1 was the control group (sham-operated), Group 2 was the cyclophosphamide group, Group 3 was the cyclophosphamide + curcumin (100mg/kg) group, and Group 4 was the cyclophosphamide + capsaicin (0.5 mg/kg) group. Results: Increased tissue oxidative stress and histological damage in the rat uterus were demonstrated due to the treatment of systemic cyclophosphamide chemotherapy alone. The level of tissue oxidant and antioxidant markers and histopathological changes were improved by the treatment of curcumin and capsaicin.
    [Show full text]
  • Living Polymerization of Renewable Vinyl Monomers Into Bio-Based Polymers
    Polymer Journal (2015) 47, 527–536 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj FOCUS REVIEW Controlled/living polymerization of renewable vinyl monomers into bio-based polymers Kotaro Satoh1,2 In this focused review, I present an overview of our recent research on bio-based polymers produced by the controlled/living polymerization of naturally occurring or derived renewable monomers, such as terpenes, phenylpropanoids and itaconic derivatives. The judicious choice of initiating system, which was borrowed from conventional petrochemical monomers, not only allowed the polymerization to proceed efficiently but also produced well-defined controlled/living polymers from these renewable monomers. We were able to find several controlled/living systems for renewable monomers that resulted in novel bio-based polymers, including a cycloolefin polymer, an AAB alternating copolymer with an end-to-end sequence, a phenolic and high-Tg alternating styrenic copolymer, and an acrylic thermoplastic elastomer. Polymer Journal (2015) 47, 527–536; doi:10.1038/pj.2015.31; published online 13 May 2015 INTRODUCTION aliphatic olefins and styrenes,22,23 whereas the latter applies to most Bio-based polymers are attractive materials from the standpoints of unsaturated compounds bearing C = Cbonds.24–38 Controlled/living being environmentally benign and sustainable. They are usually radical polymerization can precisely control the molecular weights and derived from renewable bio-based feedstocks, such as starches, plant the terminal groups of numerous monomers and has opened a new oils and microbiota, as an alternative to traditional polymers from field of precision polymer synthesis that has been applied to the fossil resources.1 Most of the bio-based polymers produced in the production of a wide variety of functional materials based on 1990s were polyesters prepared via condensation or ring-opening controlled polymer structures.
    [Show full text]
  • Importance of Secondary Organic Aerosol Formation of Α-Pinene, Limonene, and M-Cresol Comparing Day- and Nighttime Radical Chemistry
    Atmos. Chem. Phys., 21, 8479–8498, 2021 https://doi.org/10.5194/acp-21-8479-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Importance of secondary organic aerosol formation of α-pinene, limonene, and m-cresol comparing day- and nighttime radical chemistry Anke Mutzel1,a, Yanli Zhang1,2, Olaf Böge1, Maria Rodigast1,b, Agata Kolodziejczyk3,1, Xinming Wang2, and Hartmut Herrmann1 1Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstr. 15, 04318 Leipzig, Germany 2State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 3Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland anow at: Eurofins Institute Dr. Appelt Leipzig, Täubchenweg 28, 04318 Leipzig bnow at: Indulor Chemie GmbH & Co. KG Produktionsgesellschaft Bitterfeld, 06749 Bitterfeld-Wolfen, Germany Correspondence: Anke Mutzel ([email protected]) and Hartmut Herrmann ([email protected]) Received: 19 November 2019 – Discussion started: 29 January 2020 Revised: 11 March 2021 – Accepted: 6 April 2021 – Published: 4 June 2021 Abstract. The oxidation of biogenic and anthropogenic com- which originated from α-pinene varied between 2 and 80 % pounds leads to the formation of secondary organic aerosol as a function of RH. mass (SOA). The present study aims to investigate α-pinene, Furthermore, SOA from α-pinene revealed pinonic acid as limonene, and m-cresol with regards to their SOA formation the most important particle-phase constituent under day- and potential dependent on relative humidity (RH) under night- nighttime conditions with a fraction of 1–4 %.
    [Show full text]
  • Capsicum Anum L. Derived Phytochemicals Against Haemophilus Influenzae Causing Bronchitis
    Journal of Pharmaceutical Research International 32(7): 100-103, 2020; Article no.JPRI.57270 ISSN: 2456-9119 (Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, NLM ID: 101631759) Capsicum anum L. Derived Phytochemicals against Haemophilus influenzae Causing Bronchitis Debadatta Nayak 1, Debesh Kumar Hota 1, Tophani Sahu 1, Soumya Jal 1 1,2* and Dipankar Bhattacharyay 1Centurion University of Technology and Management, Odisha, India. 2Go to Market Laboratory, Gram Tarang, Odisha, India. Authors’ contributions This work was carried out in collaboration among all authors. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JPRI/2020/v32i730516 Editor(s): (1) Prof. Mostafa A. Shalaby, Cairo University, Egypt. Reviewers: (1) Adegbite Adesola Victor, Ladoke Akintola University of Technology, Nigeria. (2) Vinod Kumar Gauttam, IES University, India. Complete Peer review History: http://www.sdiarticle4.com/review-history/57270 Received 30 March 2020 Original Research Article Accepted 22 May 2020 Published 24 May 2020 ABSTRACT Phytochemicals from Capsicum anum L. plant extract are traditionally used to cure bronchitis. Bronchitis is caused by Haemophilus influenzae. Molecular docking method applied using “Biovia Discovery Studio”. “High positive values of -CDOCKER energy and -CDOCKER interaction energy” suggested that myrcetin and quercetin can effectively deactivate the Palmitoyl-CoA hydrolase enzyme thereby interrupting the life cycle of Haemophilus influenza . Keywords: Phytochemical; Capsicum anum L.; Haemophilus influenzae. 1. INTRODUCTION used for treating various diseases. These plant- based chemical substances are derived from Plants are used as medicine throughout the different parts of plants. The plant extracts show world and are the major resources of medicine antimicrobial action against different [1].
    [Show full text]