Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients. respiration together define ecosystem metabolism and Smaller-scale main stem sampling revealed almost as help indicate the importance of internal and external much variance over a few kilometers as the larger carbon sources. Spatial variability of these processes is scale sampling. Local processes seemed to dominate poorly characterized in rivers. We measured metabo- dissolved oxygen dynamics, since diurnal dissolved lism in the Kansas River: (1) at 10 locations over 100 s oxygen patterns were better correlated with absolute of km in tributaries within the watershed and (2) over time than data corrected for travel times. A single- 20 km with detailed sampling in the main stem. station method compared against two-station metabo- Whole-river metabolism at the larger scale was lism methods indicated that local hotspots of metabo- decoupled from light, algal growth, and nutrient lism occur at scales less than 1 km and that single- station estimates average out this variance. The main stem data provide support to the idea that functional Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10750-018-3516-0) con- processing zones control characteristics used to esti- tains supplementary material, which is available to authorized mate system metabolism, but the nutrient effect at the users. whole watershed level indicates that transport from upstream can also be important. Handling editor: John M. Melack W. K. Dodds (&) Á S. A. Higgs Á J. Guinnip Á D. J. Hoeinghaus S. C. Hedden Á B. D. Frenette Á R. Taylor Á Department of Biological Sciences and the Advanced A. E. Schechner Environmental Research Institute, University of North Division of Biology, Kansas State University, Manhattan, Texas, Denton, TX 76203, USA KS 66506, USA e-mail: [email protected] M. A. Evans-White Department of Biological Sciences, University of M. J. Spangler Arkansas, Fayetteville, AR, USA Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA J. D. Scott Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA 123 Author's personal copy 86 Hydrobiologia (2018) 813:85–102 Keywords Scaling Á Respiration Á Gross primary Nutrient availability also acts as a driver of metabo- production Á Aeration Á Nutrients Á Light lism in rivers and such effects are well documented (e.g., Karr & Dudley, 1981; Wetzel, 2001; Richards et al., 2008). While the impact of abiotic factors on river metabolism has received substantial attention, Introduction few studies, of which we are aware, have empirically measured metabolism in large rivers at multiple points Ecosystem metabolism is a characteristic that controls within the network while paying explicit attention to food webs, biogeochemistry, and transport of organic scale of variance. materials and nutrients within and through rivers and Most investigators measure whole-system metabo- streams. This set of metabolic processes includes net lism at one or a few locations, with little understanding ecosystem production (NEP), the balance of gross of how representative these measures are of the entire primary production (GPP), and ecosystem respiration river (except see Williams et al., 2000; Reichert et al., (ER). Aquatic food webs rely on a continuous input of 2009; Demars et al., 2011; Hunt et al., 2012; Hondzo energy in the form of organic matter originating either et al., 2013; Houser et al., 2015; Siders et al., 2017). within (autochthonous) or outside of (allochthonous) When investigating drivers of metabolism, we expect the ecosystem (Wetzel, 2001). Thus, measures of specific parameters to differentially affect GPP and metabolism within an aquatic ecosystem are instru- ER and anticipate variation across scales. This vari- mental in understanding interactions among organ- ation in rivers has been represented mathematically isms and their environment (Thorp & Delong, 2002; (Reichert et al., 2009) but its assumptions have been Marcarelli et al., 2011) and act as important indicators questioned because results defying the laws of of trophic state (Dodds, 2006). Lotic waters are a biophysics of the system can emerge (Demars et al., unique system in which to study metabolism due to 2015), as previously found for other two-station their unidirectional flow, dynamic geomorphology, models (Demars et al., 2011). spatial heterogeneity, and high variability in physical, Lotic metabolism is sometimes measured at fine chemical, and biological characteristics (Wetzel, spatial scales or in controlled laboratory settings 2001). Some of these highly variable parameters (Oviatt et al., 1986; Findlay et al., 2003; Wiegner complicate the measurement and scaling of ecosystem et al., 2005), but these studies may not reflect whole rates, while others can inform models of metabolic ecosystem conditions and are therefore difficult to control over dissolved oxygen. accurately scale up to larger aquatic systems (Carpen- Several factors interact to determine spatial patterns ter, 1996). Studies that measure lotic metabolism of metabolic rates locally and across watersheds. across large spatial scales and incorporate heterogene- Light, temperature, and nutrient concentrations all can ity are lacking (Reichert et al., 2009), especially those directly influence GPP by stimulating photosynthetic with the goal of understanding processes that con- rates (Wetzel, 2001) while other factors, such as tribute to variation both within a river and across a grazing, sloughing, or scouring, can influence loss landscape (Hall et al., 2016). This heterogeneity could rates (Dodds & Whiles, 2010). In large rivers, light be important depending upon the extent to which availability can be spatially heterogeneous due to rivers and streams link to their upstream components factors such as canopy cover or the interaction (Siders et al., 2017). In fact, influential concepts in between depth and turbidity (Ochs et al., 2013). ER river ecosystem ecology variously recognize the can be influenced by carbon availability (GPP along- importance of upstream (i.e., River Continuum Con- side external inputs), as well as temperature and losses cept; Vannote et al., 1980) and lateral (i.e., Flood Pulse from grazing and scouring. Metabolic rates of aquatic Concept; Junk et al., 1989) linkages and modifications organisms generally increase with temperature (Allen thereof (i.e., Serial Discontinuity Concept; Ward & et al., 2005). Demars et al. (2011) found that NEP Stanford, 1995) for local metabolism. Alternatively, decreased exponentially with increasing temperatures local conditions can dominate ecosystem processes across a 20°C gradient due to ER increasing at a faster (i.e., Riverine Productivity Model; Thorp & Delong, rate than GPP. A better constrained study shows 1994), and this idea was more explicitly formalized as similar increases in ER and GPP (Demars et al., 2016). functional processing zones in rivers (i.e., Riverine 123 Author's personal copy Hydrobiologia (2018) 813:85–102 87 Ecosystem Synthesis; Thorp et al., 2006). These deployments of dissolved oxygen (O2), temperature, competing perspectives of river metabolism call into and light sensors along a 20-km stretch of the main question the specific applicability of river metabolism stem of the Kansas River coupled with multiple estimates. For example, if highly local processes measurements of physical habitat. dominate (e.g., Kupilas et al., 2017), but experimental methods measure metabolism on much greater spatial scales, incorrect inference is possible with respect to Materials and methods the interpretation of metabolic rate estimates (and vice versa). Methodology
Recommended publications
  • BIG RIVER ECOSYSTEM: Program 2
    BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining.
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Linking Biological Toxicity and the Spectral Characteristics Of
    Chen et al. Environ Sci Eur (2019) 31:84 https://doi.org/10.1186/s12302-019-0269-y RESEARCH Open Access Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers Zhongli Chen1, Zihan Zhu1, Jiyu Song1, Ruiyan Liao1, Yufan Wang1, Xi Luo1, Dongya Nie1, Yumeng Lei1, Ying Shao1* and Wei Yang2,3 Abstract Background: Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful efects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from fve sites of the seriously pol- luted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fuorescence excitation–emission matrix, and specifc ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results: The concentrations of DOC, TN, and TP in various samples amounted from 11.41 2.31 to 3844.67 87.80 mg/L, from 1.96 0.06 to 906.23 26.01 mg/L and from 0.06 0.01 to 101.00± 8.29 mg/L, respec- tively.
    [Show full text]
  • Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska
    Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska Abstract With climatic warming, wildfire occurrence is increasing m the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient dynamics. In 2004, the 217,000 ha Boundary Fire burned 65% of an established study site in the Caribou-Poker Creeks Research Watershed. We used this opportunity to investigate the impact of wildfire on stream chemistry and metabolism in boreal forest catchments. Wildfire impacts on chemistry were evaluated by examining solute chemistry in four catchments from 2002 to 2007. Ecosystem metabolism was measured over the summer of 2005 in one burned and two unburned catchments. Wildfire led to stream nitrate concentration increasing up to threefold, whereas dissolved organic carbon (DOC) and dissolved organic nitrogen concentrations decreased post-fire. Average stream gross primary production in the burned catchment was double that of the unburned sites (2.4 and -2 1.2 g O2 m day, respectively). Respiration rate was also elevated in the burned -2 -1 stream (6.6 g O2 m day ) compared with the control streams (l.2 and -2 -1 4.5 g O2 m day ). Climatic warming has the potential to impact boreal forest streams through permafrost thaw and increased fire frequency, leading to altered solute inputs and production and respiration rates. Introduction stream disch arge and hydrologic flowpaths through watersheds, In the boreal forest, wildfire is a widespread disturbance and thereby altering both the magnitude and timing of flows and fundamental in shaping forest structure, function, and succession- solute delivery to streams (Earl and Blinn, 2003; Petrone et al., al processes (Chapin et al., 2006).
    [Show full text]
  • EVALUATING the EFFECTS of CATASTROPHIC WILDFIRE on WATER QUALITY, WHOLE-STREAM METABOLISM and FISH COMMUNITIES Justin K
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Spring 4-12-2018 EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES Justin K. Reale Biology Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Reale, Justin K.. "EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES." (2018). https://digitalrepository.unm.edu/biol_etds/265 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Justin K. Reale Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Clifford N. Dahm, Chairperson Dr. David J. Van Horn, Co-Chairperson Dr. Thomas F. Turner Dr. Ricardo González-Pinźon i EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES BY JUSTIN KEVIN REALE B.S., University of New Mexico, 2009 M.S., University of New Mexico, 2016 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico May, 2018 ii ACKNOWLEGEMENTS I would like to express my gratitude to my co-advisors, Drs. Dahm and Van Horn, for their mentoring, teaching and support throughout my dissertation.
    [Show full text]
  • Key Restoration Methods of a Polluted River Ecosystem
    Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review.
    [Show full text]
  • Wildfire Effects on Stream Metabolism: Aquatic Succession Is Mediated by Local Riparian Succession and Stream Geomorphology
    Wildfire effects on stream metabolism: Aquatic succession is mediated by local riparian succession and stream geomorphology Emily A. Davis A thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2015 Committee: Daniel Schindler Christian Torgersen Colden Baxter Charles Simenstad Program Authorized to Offer Degree: School of Aquatic and Fishery Science ©Copyright 2015 Emily A. Davis i University of Washington Wildfire effects on stream metabolism: Aquatic succession is mediated by local riparian succession and stream geomorphology Emily A. Davis Chair of the Supervisory Committee: Dr. Daniel Schindler School of Aquatic and Fishery Science Abstract As climate change shifts and intensifies fire regimes, it is important to understand stream ecosystem responses to fire. How stream metabolism responds remains largely unexplored. We investigated effects of fire severity and watershed geomorphology on stream ecosystem metabolism at multiple spatial scales in an Idaho wilderness watershed. We measured dissolved oxygen, temperature, and irradiance in 18 streams varying in fire history and watershed characteristics in order to model diel oxygen dynamics, from which we estimated rates of production (P) and respiration (R), then used P:R as an index of stream metabolic state. We found that post-fire riparian canopy recovery strongly influenced stream metabolic state. Severely burned streams with dense riparian regrowth were heterotrophic, whereas streams with less canopy recovery were autotrophic. Fire effects on stream metabolic state were highly mediated by watershed geomorphology, with the strongest long-term changes observed in low- order, narrow, steep streams. Effect sizes of fire and watershed geomorphology on stream metabolism changed from fine spatial scale (500-m riparian buffer) to coarse scale (watershed), and were strongest at fine scales.
    [Show full text]
  • Organic Matter Decomposition and Ecosystem Metabolism As Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review
    water Review Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review Verónica Ferreira 1,* , Arturo Elosegi 2 , Scott D. Tiegs 3 , Daniel von Schiller 4 and Roger Young 5 1 Marine and Environmental Sciences Centre–MARE, Department of Life Sciences, University of Coimbra, 3000–456 Coimbra, Portugal 2 Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; [email protected] 3 Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; [email protected] 4 Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de l’Aigua (IdRA), University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; [email protected] 5 Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; [email protected] * Correspondence: [email protected] Received: 4 November 2020; Accepted: 8 December 2020; Published: 15 December 2020 Abstract: Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand.
    [Show full text]
  • Management, Ecosystems and Ecosystem-Based Management of Fisheries in the Gulf of Mexico
    Management, Ecosystems and Ecosystem-based Management of Fisheries in the Gulf of Mexico James H. Cowan, Jr., LSU Jake Rice, DFO, Canada Carl Walters, UBC, Fisheries Center Tim Essington and Ray Hilborn, UW John Day, LSU Kevin Boswell, LSU Source: LSU Earth Scan Laboratory Topics for Discussion (2 parts) Part 1. What I don’t know about fish/habitat relationships in the Mississippi River ecosystem Part 2. What I don’t know about ecosystem based fisheries management (ESBFM) But first, what is ESBFM? Short answer---we have no idea “Neither the science of ecosystem assessments nor the policy of integrated ecosystem-scale management is yet mature. Although modest progress has been made (examples include the Convention on Biological Diversity [CBD] 2009; NOAA 2009), consensus has not yet emerged on key components of the scientific basis for ecosystem-scale assessment and management (e.g., the appropriate spatial scale at which management should operate and/or is likely to be effective), nor on the form and extent of integration of fisheries management with other regulatory agencies” Now to the western Gulf of Mexico, for example-- Cowan et al. 2012 US Landings by Port LA alone accounts for 75% of landings in the US Gulf!! LA The “Fertile GoM Crescent” What generates this productivity? km 2 coastal wetlands (and estuarine dependency of juveniles) FL LA MX (from Deegan et al. 1986) 40% of the coastal wetlands in the US 14,834 km2 >80% of US coastal wetland loss >70% of species estuarine dependent A conundrum?--let’s look at the commercial landings
    [Show full text]
  • Annual Report Vol. 40 (2017) Unlocking the Role of Beaver in State-Transition and Their Own Sustain- Ability in Yellowstone's
    Annual Report Vol. 40 (2017) Unlocking the role of beaver in state-transition and their own sustain- ability in Yellowstone’s northern range Marjorie L. Brooks Department of Zoology, Southern Illinois University, Carbondale, IL [email protected] Abstract Extirpation of wolves from the Greater Yellowstone Ecosystem (GYE) in the 1920s hypothetically triggered a behaviorally-mediated trophic cascade in which elk (Cervus elaphus), released from the fear of wolf (Canis lupus) preda- tion, over-browsed riparian zones. Eventually, vast areas of meadow-wetland complexes transitioned to grass-lodgepole systems. The importance of beaver (Castor canadensis) in wetland losses has received less attention. Beaver aban- doned most of the GYE by the 1950s, possibly due to resource limitations. Researchers from Colorado State University established an experimental system for Long Term Environmental Research in Biology (LTREB) along several streams in the Lamar Valley of Yellowstone sixteen years ago. To evaluate effects of hydrologic changes and elk browsing on productivity of willows (Salix spp.) and state transition, they built small experimental dams with browsing exclosures. In 2015, beaver began recolonizing the region. I am investigating how their biologic as well as hydrologic impacts affect the underlying mechanisms of state transition: nutrient cycling, productivity, and stream respiration. I posit that beaver are keystone species, meaning that the sustained recovery of wetland-meadow complexes is unlikely without the higher levels of riparian
    [Show full text]
  • Heterotrophic Metabolism in a Forest Stream Sediment: Surface Versus Subsurface Zones
    AQUATIC MICROBIAL ECOLOGY Vol. 16: 143-151, 1998 Published November 27 Aquat Microb Ecol Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones Anna M. Romani, Andrea Butturini, Francesc Sabater, Sergi Sabater* Departament d'Ecologia. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 645. E-08028 Barcelona. Spain ABSTRACT: The heterotrophic metabolism of a forest stream sediment was studied during leaf fall, immediately after a flood that completely scoured and homogenized the first 10 to 12 cm of sediment. After this event, differences were found between the surface sediment (0 to 3 cm depth) and the sub- surface sediment (7 to 10 cm depth). Higher extracellular enzymatic and respiratory activities were measured in the surface than in the subsurface sediment. The higher heterotrophic activity was related to the higher quantity and quality of the organic matter, which accumulated in the surface sediment (higher chlorophyll and bacterial densities).The heterotrophic metabolism in the surface sediment fol- lowed a marked seasonal pattern that correlated with the variations in the environmental parameters (discharge, nutrients). However, no temporal pattern was observed in the subsurface sediment, less affected by the physical changes (e.g, scouring), where no significant change in any activity was recorded throughout the study period. There was a significant decrease in heterotrophic metabolism in the subsurface sediments. This difference can be attributed to the lower availability of algae-derived
    [Show full text]